Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Oxide-dispersion-strengthened high-entropy alloys were produced by hot-pressing a ball-milled mixture of Y2O3 and atomized CoCrFeMnNi powder. The effect of milling duration on grain size reduction, oxide formation behavior, and the resulting mechanical properties of the alloys was studied. Both the alloy powder size and Y2O3 particle size decreased with milling time. Moreover, the alloy powder experienced severe plastic deformation, dramatically generating crystalline defects. As a result, the grain size was reduced to ~16.746 nm and in-situ second phases (e.g., MnO2 and σ phase) were formed at the defects. This increased the hardness of the alloys up to a certain level, although excessive amounts of in-situ second phases had the reverse effect.
Go to article

Bibliography

[1] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A. 375-377, 213-218 (2004).
[2] F. Otto, A. Dlouhý, Ch. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61, 5743-5755 (2013).
[3] G .T. Lee, J.W. Won, K.R. Lim, M. Kang, H.J. Kwon, Y.S. Na, Y.S. Choi, Met. Mater. Int. (2020). DOI: https://doi.org/10.1007/s12540-020-00786-7
[4] J .H. Kim, Y.S. Na, Met. Mater. Int. 25, 296-303 (2019).
[5] Y.Z. Tian, Y. Bai, M.C. Chen, A. Shibata, D. Terada, N. Tsuji, Metall. Mater. Trans. A, 45, 5300-5304 (2014).
[6] R . Zheng, T. Bhattacharjee, A. Shibata, T. Sasaki, K. Hono, M. Joshi, N. Tsuji, Scr. Mater. 131, 1-5 (2017).
[7] Y.Z. Tian, Y. Bai, L.J. Zhao, S. Gao, H.K. Yang, A. Shibata, Z.F. Zhang, N. Tsuji, Mater. Charact. 126, 74-80 (2017).
[8] A. Siahsarani, F. Samadpour, M.H. Mortazavi, G. Faraji, Met. Mater. Int. (2020). DOI: https://doi.org/10.1007/s12540-020-00828-0
[9] B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Acta Mater. 96, 258-268 (2015).
[10] H . Shahmir, J. He, Z. Lu, M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A. 676, 294-303 (2016).
[11] C.L. Chen, C.L. Huang, Met. Mater. Int. 19, 1047-1051 (2013).
[12] B. Gwalani, R.M. Pohan, O.A. Waseem, T. Alam, S.H. Hong, H.J. Ryu, R. Banerjee, Scr. Mater. 162, 477-481 (2019).
[13] L. Moravcik, L. Gouvea, V. Hornik, Z. Kovacova, M. Kitzmantel, E. Neubauer, I. Dlouhy, Scr. Mater. 157, 24-29 (2018).
[14] P. He, J. Hoffmann, A. Möslang, J. Nucl. Mater. 501, 381-387 (2018).
[15] J .M. Byun, S.W. Park, Y.D. Kim, Met. Mater. Int. 24, 1309-1314 (2018).
[16] A. Patra, S.K. Karak, S. Pal, IOP Cof. Ser. Mater. Sci. Eng. 75 (012032), 1-6 (2015).
[17] S. Nam, S.E. Shin, J.H. Kim, H. Choi, Met. Mater. Int. 26, 1385- 1393 (2020).
[18] N. Salah, S.S. Habib, Z.H. Khan, A. Memic, A. Azam, E. Alarfaj, N. Zahed, S. Al-Hamedi, Int. J. Nanomed. 6, 863-869 (2011).
[19] H . Shahmir, J. He, Z. Lu, M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A. 676, 294-303 (2016).
[20] N. Park, B.-J. Lee, N. Tsuji, J. Alloys Compd. 719, 189-193 (2017).
[21] Q. Wang, Z. Li, S. Pang, X. Li, C. Dong, P. Liaw, Entropy 20, 878 (2018).
[22] V. Rajkovic, D. Božić, A. Devečerski, J. Serb. Che. Soc. 72, 45-53 (2007).
[23] S.K. Vajpai, R.K. Dube, P. Chatterjee, S. Sangal, Metall. Mater. Trans. A. 43, 2484-2499 (2012).
Go to article

Authors and Affiliations

Yongwook Song
1
ORCID: ORCID
Daeyoung Kim
1
ORCID: ORCID
Seungjin Nam
1
ORCID: ORCID
Kee-Ahn Lee
2
ORCID: ORCID
Hyunjoo Choi
1
ORCID: ORCID

  1. Kookmin University, School of Materials Science and Engineering, Seoul, Republic of Korea
  2. Inha University, Department of Materials Science and Engineering, Incheon 22212, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

CM247LC alloy was manufactured by using selective laser melting (SLM) process, one of the laser powder bed fusion ­(L-PBF) methods. The hot isostatic pressing (HIP) process was additionally conducted on the SLM-built CM247LC to control its microstructures and defects. The high temperature oxidation property was investigated, and it was compared with conventional DS247LC sample (reference) prepared via the directional solidification process. The L-PBF HIP sample showed blocky-type MC carbides generated along the grain boundary with average size of about 200 nm. A semi-spherical primary γ' phase of size 0.4-1.0 μm was also observed inside the grains. Moreover, the DS247LC sample displayed a coarse eutectic γ' phase and many script-type MC carbides. Furthermore, cuboidal-type γ' with an average size of about 0.5 μm was detected. High-temperature oxidation tests were conducted at 1000°C and 1100°C for 24 hours. The results at 1100°C oxidation temperature showed that the measured oxidation weight gains for HIP and DS247LC were 1.96 mg/cm2 and 2.26 mg/cm2, respectively, indicating the superior high-temperature oxidation resistance of the L-PBF HIP sample. Based on the above results, a high-temperature oxidation mechanism of the CM247LC alloys manufactured by the SLM process and the directional solidification process has been proposed.
Go to article

Authors and Affiliations

Jung-Uk Lee
1
Young-Kyun Kim
2
ORCID: ORCID
Seong-Moon Seo
2
Kee-Ahn Lee
1
ORCID: ORCID

  1. Inha University, Department of Materials Science and Engineering, Incheon 22212, Republic of Korea
  2. Korea Institute of Materials Science, Changwon 51508, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Fe-Cr-B-based metamorphic alloy coating layers were manufactured by plasma spray with a Fe-Cr-B-Mo-Nb composition (hereinafter, M+) powder. The microstructure and wear properties of the coating layers were investigated and compared with a metamorphic alloy coating layer fabricated with commercial M material. XRD analysis revealed that the M and M+ coating layers were composed of α-Fe, (Cr, Fe)2B, and some metallic glass phases. Wear test results showed that M+ coating layers had a superior wear resistance which had 1.48 times lower wear volume than M coating layers. Observations of the worn-out surfaces and cross-sections of the coating layers showed that M+ coating layer had relatively low oxides along the particle boundaries and it suppress a delamination behavior by the oxides.
Go to article

Authors and Affiliations

Yong-Hoon Cho
1
ORCID: ORCID
Gi-Su Ham
1 2
So-Yeon Park
1
ORCID: ORCID
Choongnyun Paul Kim
2
Kee-Ahn Lee
1
ORCID: ORCID

  1. Inha University, Department of Materials Science and Engineering, Incheon 22212, Republic of Korea
  2. Kolon Advanced Research Cluster, Kolon Industries Inc., Seoul 07793, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

A pure molybdenum (Mo) coating layer was manufactured by using the atmospheric plasma spray (APS) process and its wear and corrosion characteristics were investigated in this study. A Mo coating layer was prepared to a thickness of approximately 480 μm, and it had sound physical properties with a porosity of 2.9% and hardness of 434 Hv. Room temperature dry wear characteristics were measured through a ball-on-disk test under load conditions of 5 N, 10 N and 15 N. Based on the coefficient of friction graph at 5 N and 10 N, the oxides formed during wear functioned as a wear lubricant, thereby confirming an increase in wear resistance. However, at 15 N, wear behavior changed, and wear occurred due to splat pulling out. A potentiodynamic polarization test was conducted under an artificial seawater atmosphere, and Ecorr and Icorr measured 0.717 V and 7.2E-5 A/cm2, respectively. Corrosion mainly occurred at the splat boundary and pores that were present in the initial state. Based on the findings above, the potential application of APS Mo coating material was also discussed.
Go to article

Authors and Affiliations

Yu-Jin Hwang
1
ORCID: ORCID
Yurian Kim
1
ORCID: ORCID
Soon-Hong Park
2
ORCID: ORCID
Sung-Cheol Park
3
ORCID: ORCID
Kee-Ahn Lee
1
ORCID: ORCID

  1. Inha University, Department of Materials Science and Engineering, Incheon, 22212, Republic of Korea
  2. POSCO Technical Research Laboratories, Gwangyang 57807, Republic of Korea
  3. Surface Treatment R&D Group, Korea Institute of Industrial Technology, Incheon, 21999, Republic of Korea

This page uses 'cookies'. Learn more