Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Excessive use of chemical fertilizers, in agriculture, has negative impacts on water, soil and affects the environment and health. In recent decades, researchers have been interested in the natural benefits of natural microorganisms and how they could be a good alternative to the use of chemical fertilizers. The aim of this study was to investigate the effect of soil inoculation with strains of mycorrhizae and beneficial bacteria on soil properties and productivity of table grapes. Field trials were conducted on a commercial table grape production farm ( Vitis vinifiera cv. Mousca), located in northeastern Morocco. Twelve-yearold plants were used. Control plants were not inoculated (T1). The prototype plants were inoculated with 1.2 × 104 of Glomus iranicum var. tenuihypharum/100 g (T2), a mixture of 1/2 concentration of Glomus iranicum var. tenuihypharum and 1/2 concentration of Pseudomonas putida (T3) and 1 × 108 CFU ∙ g–1 of Pseudomonas putida (T4). The inoculations were realized twice; the first inoculation was completed on July 19, 2019 while the second inoculation on February 21, 2020. Soil analyses were carried out, both physicochemical (pH, electrical conductivity (EC), salinity, % of dry matter) and microbiological properties (total flora, fungi and actinobacteria). Plant growth (length of the plant, number and diameter of sticks, number of clusters per tree, number of nodes per stick, distance between nodes and bud burst), yield and fruit quality (number of berries per cluster, cluster weight, cluster length and width, pH, Brix degrees, acidity, EC and % dry matter) were measured. Results showed slight trends regarding the effects of treatments on the physicochemical and microbiological properties of the soil, plant growth and fruit quality. The number of clusters was significantly higher in Glomus (T2) Pseudomonas (T4) and Glomus than in control treatments.
Go to article

Bibliography


Aguín O., Mansilla J.P., Vilariño A., Sainz M.J. 2004. Effects of mycorrhizal inoculation on root morphology and nursery production of three grapevine rootstocks. American Journal of Ecology and Viticulture 55 (1): 108−111. Available on: https://www.ajevonline.org/content/55/1/108.articleinfo [Accessed: 15 May 2021]
Aktar W., Sengupta D., Chowdhury A. 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology 2: 1−12. DOI: https://doi.org/10.2478/ v10102-009-0001-7
Atafa Z., Mesdaghinia A., Nouri J., Homaee M., Yunesian M., Ahmadimoghaddam M., Mahvi A.H. 2010. Effect of fertilizer application on soil heavy metal concentration. Environmental Monitoring and Assessment 160 (1−4): 83. DOI : https://doi.org/10.1007/s10661-008-0659-x
Augé R.M. 2004. Mycorhizes à arbuscules et relations eau/sol/ plante. Canadian Journal of Soil Science 84: 373−381. DOI: https://doi.org/10.1139/b04-020
Baslam M., Esteban R., García-Plazaola J.I., Goicoechea N. 2013. Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Applied Microbiology and Biotechnology 97: 3119−3128. DOI: https://doi.org/10.1007/s00253-012-4526-x
Birhane E., Sterck F.J., Fetene M., Bongers F., Kuyper T.W. 2012. Les champignons mycorhiziens arbusculaires améliorent la photosynthèse, l’efficacité d’utilisation de l’eau et la croissance des semis d’encens dans des conditions de disponibilité en eau pulsée. Oecologia 169: 895−904.
Bona E., Cantamessa S., Massa N., Manassero P., Marsano F., Copetta A., Lingua G., D'Agostino G., Gamalero E., Berta G. 2017. Arbuscular mycorrhizal fungi and plant growth- -promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27: 1−11. DOI: https://doi.org/10.1007/s00572-016-0727-y
Bona E., Todeschini V., Cantamessa S., Cesaro P., Copetta A., Lingua G., Gamalero E., Berta G., Massa N. 2018. Combined bacterial and mycorrhizal inocula improve tomato quality at reduced fertilization. Scientia Horticulturae 234: 160−165. DOI: https://doi.org/10.1016/j.scienta.2018.02.026
Boutas Knit A., Baslam M., Ait-El-Mokhtar M., Anli M., Ben- -Laouane R., Douira A., El Modafar C., Mitsui T., Wahbi S., Meddich A. 2020. Arbuscular mycorrhizal fungi mediate drought tolerance and recovery in two contrasting carob (Ceratonia siliqua L.) ecotypes by regulating stomatal, water relations, and (in) organic adjustments. Plants 9 (1): 80. DOI: https://doi.org/10.3390/plants9010080
Brundrett M.C., Abbott L.K. 2002. Arbuscula mycorrhiza in plant Communities. p. 151−193. In: “Plant Conservation and Biodiversity” (K. Sivasithamparam, K.W. Dixon, R.L. Barrett eds.). Kluwer Academic-Publishers: Dordrecht, Netherlands, 391 pp.
Chen W., Meng P., Feng H., Wang C. 2020. Effects of arbuscular mycorrhizal fungi on growth and physiological performance of Catalpa bungei C.A. Mey. under drought stress. Forests 11 (10): 1117. DOI: https://doi.org/10.3390/ f11101117
Childers D.L., Corman J., Edwards M., Elser J.J. 2011. Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle. Bioscience 61 (2): 117−124. DOI: https://doi.org/10.1525/bio.2011.61.2.6
Criss R., Davisson M. 2004. Fertilizers, water quality and human health. Environnemental Heath Perspectives 112 (10): A536. DOI : https://doi.org/10.1289/ehp.112-a536
Farhadinejad T., Khakzad A., Jafari M. 2014. The study of environmental effects of chemical fertilizers and domestic sewage on water quality of Taft region, Arabian Journal of Geoscience 7: 221−229. DOI: https://doi.org/10.1007/s12517-012-0717-0
Garcia K., Zimmermann S.D. 2014. Le rôle des associations mycorhiziennes dans la nutrition potassique des plantes. Plant Science 5: 337. DOI: https://doi.org/10.3389/fpls.2014.00337
Geng Y., Cao G., Wang L., Wang S. 2019. Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution. PLoS ONE 14 (7): e0219512. DOI : https://doi.org/10.1371/journal.pone.0219512
Gianinazzi S., Gollotte A., Binet M.N., van Tuinen D., Redecker D., Wipf D. 2010. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20: 519−530. DOI: https://doi.org/10.1007/s00572-010-0333-3
Halpern M., Bar-Tal A., Ofek M., Minz D. 2015. The use of biostimulants for enhancing nutrient uptake. Advances in Agronomy 130: 141−174. DOI: https://doi.org/10.1016/ bs.agron.2014.10.001
Hmelak Gorenjak A. 2013. Nitrate in vegetables and their impact on human health. Acta Alimentaria 42 (2): 158−172. DOI: https://doi.org/10.1556/AAlim.42.2013.2.4
Javanmardi J., Zarei M., Saei M. 2001. Influence of arbuscular mycorrhizal fungi on physiology and fruit quality of pepino (Solanum muricatum Ait.) in vermicompost amended medium. Advances in Horticultural Science 28 (1): 35−42. Available on: https://core.ac.uk/download/pdf/228571948.pdf. [Accessed: 15 May 2021]
Jiang Y., Wang W., Xie Q. Liu N., Liu L., Wang D., Zhang X., Yang C., Chen X., Tang D., Wang E. 2017. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 16: 356 (6343): 1172−1175. DOI: https://doi.org/10.1126/science.aam9970
Johansson J.F., Paul L.R.R.D. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology 48 (1): 1−13. DOI: https://doi.org/10.1016/j.femsec.2003.11.012
Kamayestani A., Rezaei M., Sarkhosh A., Asghari H. 2019. Effects of arbuscular mycorrhizal fungi (Glomus mosseae) on growth enhancement and nutrient (NPK) uptake of three grape (Vitis vinifera L.) cultivars under three different water deficit levels. Australian Journal of Crop Science: 1401−1408. DOI: https://doi.org/10.21475/ajcs.19.13.09.p1174
Koide R.T., Mosse B. 2004. A history of research on arbuscular mycorrhiza. Mycorrhiza 14 (3): 145−163. DOI: https://doi. org/10.1007/s00572-004-0307-4
Li Y., Chen Y.L., Lin X.J., Liu R.J. 2012. Effects of arbuscular mycorrhizal fungi communities on soil quality and the growth of cucumber seedlings in a greenhouse soil of continuously planting cucumber. Pedosphere 22 (1): 79−87. DOI: https://doi.org/10.1016/S1002-0160(11)60193-8
Liu G., Bollier D., Gübeli C., Peter N., Arnold P., Egli M., Borghi L. 2018. Simulated microgravity and the antagonistic influence of strigolactone on plant nutrient uptake in low nutrient conditions. NPJ Microgravity 4 (1): 1−10. DOI: https:// doi.org/10.1038/s41526-018-0054-z
Luciani E., Frioni T., Tombesi S., Farinelli D., Gardi T., Ricci A., Sabbatini P., Palliotti A. 2019. Effects of a new arbuscular mycorrhizal fungus (Glomus iranicum) on grapevine development. BIO Web Conference 13, Vineyard Management and Adaptation to Climate Change Section: 04018 (5 p.). DOI: https://doi.org/10.1051/bioconf/20191304018
Meddich A., Jaiti F., Bourzik W., El Asli A., Hafidi M. 2015. Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm (Phoenix dactylifera). Scientia Horticulturae 192: 468−474. DOI: https://doi.org/10.1016/j.scienta.2015.06.024
Neuenkamp L., Moora M., Öpik M., Davison J., Gerz M., Männistö M., Jairus T., Vasar M., Zobel M. 2018. The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities. Hempel 220: 952−953. DOI: https://doi.org/10.1111/nph.14995
Ozdemir G., Akpinar C., Sabir A., Bilir H., Tangolar S., Ortas I. 2010. Effect of inoculation with mycorrhizal fungi on growth and nutrient uptake of grapevine genotypes (Vitis spp.). European Journal of Horticultural Science 75 (3): 103−110. JSTOR: https://www.jstor.org/stable/24126418
Popko M., Michalak I., Wilk R., Gramza M., Chojnacka K., Górecki H. 2018. Effect of the new plant growth biostimulants based on amino acids on yield and grain quality of winter wheat. Molecules 23 (2): 470. DOI: https://doi.org/10.3390/molecules23020470
Reuter D.J. 2008. Soil analysis. An interpretation manual. CSIRO Publishing. Collingwood, Victoria, Australia, 387 pp. Rodriguez-Echeverria S., Costa S.R., Freitas H. 2007. Biodiversité et interactions dans la rhizosphère. p. 581−600. In: “Functional Plant Ecology”, 2nd ed. (F.I. Pugnaire, F. Valladares, eds.). CRC Press, New York, USA, 724 pp.
Ronga D., Caradonia F., Francia E., Morcia C., Rizza F., Badeck F.W., Ghizzoni R., Terzi V. 2019. Interaction of tomato genotypes and arbuscular mycorrhizal fungi under reduced irrigation. Horticulturae 5 (4): 79. DOI: https://doi.org/10.3390/horticulturae5040079
Riah W., Laval K., Laroche-Ajzenberg E., Mougin C., Latour X., Trinsoutrot-Gattin I. 2014. Effets des pesticides sur les enzymes du sol. Environmental Chemistry Letters 12: 257−273. DOI: https://doi.org/10.1007/s10311-014-0458-2
Schubert R., Werner S., Cirka H., Rödel P., Moya Y.T., Mock H.P., Hutter I., Kunze G. Hause B. 2020. Effects of arbuscular mycorrhization on fruit quality in industrialized tomato production. International Journal of Molecular Sciences 21: 7029. DOI: https://doi.org/10.3390/ijms21197029
Shaver G.R., Chapin F.S. 1986. Effect of fertilizer on production and biomass of tussock tundra, Alaska, USA. Arctic and Alpine Research 18 (3): 261−268. DOI: https://doi.org/10.2307/1550883
Singh R., Soni S.K., Kalra A. 2013. Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 23 (1): 35−44. DOI: https://doi.org/10.1007/s00572-012-0447-x
Soares C., Siqueira J. 2008. Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soil. Biology and Fertility of Soils 44: 833−841. DOI: https://doi.org/10.1007/s00374-007-0265-z
Trouvelot S., Bonneau L., Redecker D., Van Tuinen D., Adrian M. Wipf D. 2015. Arbuscular mycorrhiza symbiosis in viticulture: A Review. Agronomy for Sustainable Development 35 (4): 1449−1467. DOI: https://doi.org/10.1007/s00374-007-0265-z
Ye L., Zhao X., Bao E., Li J., Zou Z., Cao K. 2020. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Scientific Reports 10 (1): 1−11. DOI: https://doi.org/10.1038/s41598-019-56954-2
Yousaf M., Li J., Lu J. 2017. Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Scientific Report 7: 1270−1279. DOI: https://doi.org/10.1038/s41598-017-01412-0
Go to article

Authors and Affiliations

Salah Ed-dine Samri
1
ORCID: ORCID
Kamal Aberkani
1
ORCID: ORCID
Mourad Said
1
Khadija Haboubi
2
ORCID: ORCID
Hassan Ghazal
3
ORCID: ORCID

  1. Biology and Geology, Plolydisciplinary Faculty of Nador, University Mohammed Fisrt, Selonane, Morocco
  2. Environment, National School of Applied Sciences, University Abdelmalek Essaadi, Al Hoceima, Morocco
  3. Bioinformatics, National Center for Scientific and Technical Research, Rabat, Morocco

This page uses 'cookies'. Learn more