Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Buckling restrained brace is an important structure for improving the seismic resistance of structures. Conducting research on new types of buckling restrained brace can improve the seismic performance and reliability of buckling resistant support. Four different types of buckling restrained braces specimens were designed and manufactured: cross-shaped square steel pipe members, cross-shaped round steel pipe members, cross-shaped carbon fiber members, and in-line carbon fiber members. By conducting quasi-static tests, the force displacement hysteresis curves, skeleton curves, stiffness degradation, equivalent viscous damping coefficient, and energy dissipation ratio of four different types of buckling restrained brace were analyzed. The research results showed that all four buckling restrained brace specimens have good hysteresis performance. The load-bearing capacity and energy consumption performance of the three specimens of square steel pipe, round steel pipe and carbon fiber with the same core unit are the same, but the inline type is worse than the cross type. The core unit specimen with a width of 80 mm is about 60% higher in bearing capacity and energy consumption than a specimen with a width of 50 mm. The core unit of some specimens undergoes multi-wave buckling. For carbon fiber specimens, the CFRP is prone to breakage due to the lateral thrust of the restraining unit. Therefore, steel hoop or stirrup should be added to the end to improve the restraint effect when designing and manufacturing.
Go to article

Authors and Affiliations

Yuan Fang
1
ORCID: ORCID
Lei Lv
1
ORCID: ORCID
Yuqiang Gao
2
ORCID: ORCID
Zhongqiu Fu
2
ORCID: ORCID

  1. Department of Architecture and Civil engineering, Zhejiang Tongji Vocational College of Science and Technology, Hangzhou 311231, China
  2. College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China

This page uses 'cookies'. Learn more