Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Data

Wyniki wyszukiwania

Wyników: 1
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

In this research work, a Cylindrical Surrounding Double-Gate (CSDG) MOSFET design in a stacked-Dual Metal Gate (DMG) architecture has been proposed to incorporate the ability of gate metal variation in channel field formation. Further, the internal gate's threshold voltage (VTH1) could be reduced compared to the external gate (VTH2) by arranging the gate metal work-function in Double Gate devices. Therefore, a device design of CSDG MOSFET has been realized to instigate the effect of Dual Metal Gate (DMG) stack architecture in the CSDG device. The comparison of device simulation shown optimized electric field and surface potential profile. The gradual decrease of metal work function towards the drain also improves the Drain Induced Barrier Lowering (DIBL) and subthreshold characteristics. The physics-based analysis of gate stack CSDG MOSFET that operates in saturation involving the analogy of cylindrical dual metal gates has been considered to evaluate the performance improvements. The insights obtained from the results using the gate-stack dual metal structure of CSDG are quite promising, which can serve as a guide to further reduce the threshold voltage roll-off, suppress the Hot Carrier Effects (HCEs) and Short Channel Effects (SCEs).
Przejdź do artykułu

Autorzy i Afiliacje

Abha Dargar
1
Viranjay M. Srivastava
1

  1. Department of Electronic Engineering, Howard College, University of KwaZulu-Natal, Durban, 4041, South Africa

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji