Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper introduces a fractional-order PD approach (F-oPD) designed to control a large class of dynamical systems known as fractional-order chaotic systems (F-oCSs). The design process involves formulating an optimization problem to determine the parameters of the developed controller while satisfying the desired performance criteria. The stability of the control loop is initially assessed using the Lyapunov’s direct method and the latest stability assumptions for fractional-order systems. Additionally, an optimization algorithm inspired by the flight skills and foraging behavior of hummingbirds, known as the Artificial Hummingbird Algorithm (AHA), is employed as a tool for optimization. To evaluate the effectiveness of the proposed design approach, the fractional-order energy resources demand-supply (Fo-ERDS) hyperchaotic system is utilized as an illustrative example.
Go to article

Authors and Affiliations

Ammar Soukkou
1
Yassine Soukkou
2
Sofiane Haddad
1
Mohamed Benghanem
3
Abdelhamid Rabhi
4

  1. Renewable Energy Laboratory, Faculty of Science and Technology, Department of Electronics, University of MSBY Jijel, BP. 98, Ouled Aissa, Jijel, Algeria
  2. Research Center in Industrial Technologies CRTI, P. O. Box. 64, Cheraga 16014, Algiers, Algeria
  3. Physics Department, Faculty of Science, Islamic University of Madinah, Madinah, KSA
  4. Modeling, Information and Systems Laboratory, University of Picardie Jules Verne, Amiens, France.

This page uses 'cookies'. Learn more