Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Foamed concrete incorporating processed spent bleaching earth (PSBE) produces environmentally friendly foamed concrete. Compressive strength, porosity, and rapid chloride penetration tests were performed to investigate the potential application for building material due to its low density and porous concrete. Laboratory results show that 30% PSBE as cement replacement in foamed concrete produced higher compressive strength. Meanwhile, the porosity of the specimen produced by 30% PSBE was 45% lower than control foamed concrete. The porosity of foamed concrete incorporating PSBE decreases due to the fineness of PSBE that reduces the volume of void space between cement and fine aggregate. It was effectively blocking the pore and enhances the durability. Consistently, the positive effect of incorporating of PSBE has decreased the rapid chloride ion permeability compared to that control foamed concrete. According to ASTM C1202-19 the foamed concrete containing 30% PSBE was considered low moderate permeability based on its charge coulombs value of less than 4000. Besides, the high chloride ion permeability in foamed concrete is because the current quickly passes through the specimen due to its larger air volume. In conclusion, incorporating PSBE in foamed concrete generates an excellent pozzolanic effect, producing more calcium silicate hydrate and denser foamed concrete, making it greater, fewer voids, and higher resistance to chloride penetration.
Go to article

Authors and Affiliations

Rokiach Othman
1
Khairunisa Muthusamy
1
ORCID: ORCID
Mohd Arif Sulaiman
1
ORCID: ORCID
Youventharan Duraisamy
2
ORCID: ORCID
Ramadhansyah Putra Jaya
2
ORCID: ORCID
Chong Beng Wei
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
3
ORCID: ORCID
Sajjad Ali Mangi
4
ORCID: ORCID
Marcin Nabiałek
5
ORCID: ORCID
Agata Śliwa
6
ORCID: ORCID

  1. Faculty of Civil Engineering Technology, University Malaysia Pahang, 26300 Gambang, Pahang, Malaysia
  2. Department of Civil Engineering, College of Engineering, University Malaysia Pahang, 26300 Gambang,Pahang, Malaysia
  3. Center of Excellence Geopolymer and Green Technology, University Malayia Perlis (UniMAP), 01000 Kangar Perlis, Malaysia
  4. Department of Civil Engineering, Mehran University of Engineering and Technology, SZAB Campus, Khairpur Mirs, Sindh 66020, Pakistan
  5. Department of Physics, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Czestochowa
  6. Division of Materials Processing Technology and Computer Techniques in Materials Science, Silesian University of Technology, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Low calcium fly ash is used as the main material in the mixture and the crumb rubber was used in replacing fine aggregates in geopolymer mortar. Sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) which were high alkaline solution were incorporated as the alkaline solution. The fly ash reacted with the alkaline solution forming alumino-silicate gel that binds the aggregate to produce a geopolymer mortar. The loading of crumb rubber in the fly ash based geopolymer mortar was set at 0% (CRGM-0), 5% (CRGM-5), 10% (CRGM-10), 15% (CRGM-15), and 20% (CRGM-20), respectively. NaOH solution (12M) and Na2SiO3 solution ratio is set constant at 2.5 for all geopolymer mixture and the fly ash to alkali activator ratio was kept at 2.0. The CRGM at 28 days of curing time was exposed to elevated temperature at 200°C, 400°C, 600°C and 800°C. The weight loss of the CRGM increases with increasing temperature at all elevated temperatures. However, the density and compressive strength of CRGM decrease with an increase of crumb rubber loading for all elevated temperature exposure. The compressive strength of CRGM reduced due to the fact that rubber decomposes between 200°C and 600°C thereby creating voids. CRGM-15 and CRGM-20 showed cracks developed with rough surface at 800°C. Image obtained from scanning electron microscope (SEM) showed that, the CRGM changed significantly due to the decomposition of crumb rubber and evaporation of the free water at 400°C, 600°C and 800°C.
Go to article

Authors and Affiliations

Ahmad Azrem Azmi
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
2
ORCID: ORCID
Che Mohd Ruzaidi Ghazali
3
ORCID: ORCID
Romisuhani Ahmad
4
ORCID: ORCID
Ramadhansyah Putra Jaya
4
ORCID: ORCID
Shayfull Zamree Abd Rahim
4
ORCID: ORCID
Mohammad A. Almadani
5
ORCID: ORCID
Jerzy J. Wysłocki
6
ORCID: ORCID
Agata Śliwa
7
ORCID: ORCID
Andre Victor Sandu
8
ORCID: ORCID

  1. Center of Excellence Geopolymer and Green Technology, University Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia
  2. Faculty of Chemical Engineering Technology, University Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia
  3. Faculty of Ocean Engineering Technology and Informatics, University Malaysia Terengganu, Terengganu, Malaysia
  4. Faculty of Mechanical Engineering Technology, University Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
  5. Department of Civil Engineering, Faculty of Engineering – Rabigh Branch, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
  6. Department of Physics, Czestochowa University of Technology, 42-200, Czestochowa, Poland
  7. Division of Materials Processing Technology and Computer Techniques in Materials Science, Silesian University of Technology, 44-100 Gliwice, Poland
  8. Faculty of Material Science and Engineering, Gheorghe Asachi Technical University of Iasi, 41 D. Mangeron St., 700050 Iasi, Romania
Download PDF Download RIS Download Bibtex

Abstract

In Eurocode 5, the stiffness equation for bolted steel-wood-steel is stated as a function ofwood density and fastener diameter only. In this research, an experimental study on various configurations of tested bolted steel-wood-steel (SWS) connections has been undertaken to predict the initial stiffness of each connection. In order to validate the Eurocode 5 stiffness equation, tests on 50 timber specimens (40 glued laminated timbers and 10 laminated veneer lumbers (LVL)) with steel plates were undertaken. The number of bolts was kept similar and the connector diameter, timber thickness, and wood density were varied. The results obtained in the experimental tests are compared with those obtained from the Eurocode 5 stiffness equation. From the analysis, it is signified that the stiffness equation specified in Eurocode 5 for bolted SWS connections does not adequately predict the initial stiffness. The results from Eurocode 5 stiffness equation are very far from the experimental values. The ratio of stiffness equation to experimental results ranges from 3.48 to 4.20, with the average at 3.77, where the equation overpredicted the experimental stiffness value for the connection. There is a need to consider or incorporated other parameters such as geometric configurations in Eurocode 5 stiffness equation to improve the ratio with the experimental data.
Go to article

Authors and Affiliations

Nur Liza Rahim
1 2
ORCID: ORCID
Gary Raftery
3
ORCID: ORCID
Pierre Quenneville
3
ORCID: ORCID
Doh Shu Ing
4
ORCID: ORCID
Marcin Nabiałek
5
ORCID: ORCID
Ramadhansyah Putra Jaya
4 6
ORCID: ORCID
Norlia Mohamad Ibrahim
1 7
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
8 6
ORCID: ORCID
Agata Śliwa
9
ORCID: ORCID

  1. University Malaysia Perlis, Faculty of Civil Engineering Technology, 02600 Arau Perlis, Malaysia
  2. 2Sustainable Environment Research Group (SERG), Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), University Malaysia Perlis (UniMAP), 01000 Kangar Perlis, Malaysia
  3. University of Auckland, Faculty of Civil Engineering, Department of Civil and Environmental Engineering, Auckland, New Zealand
  4. Department of Civil Engineering, College of Engineering, University Malaysia Pahang, 26300 Gambang Kuantan, Pahang Malaysia
  5. Czestochowa University of Technology, Czestochowa, Poland
  6. Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), University Malaysia Perlis (UniMAP), 01000 Kangar Perlis, Malaysia
  7. Sustainable Environment Research Group (SERG), Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), University Malaysia Perlis (UniMAP), 01000 Kangar Perlis, Malaysia
  8. University Malaysia Perlis, Faculty of Chemical Engineering Technology, 02600 Arau Perlis, Malaysia
  9. Division of Materials Processing Technology and Computer Techniques in Materials Science, Silesian University of Technology, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Malaysia’s construction industry is experiencing rapid growth, translating into increased demand for cement. However, cement production pollutes the air to the detriment of the climate via CO2 emission, making research into a cementitious replacement in concrete a necessity. This paper details an experimental study of self-compacting concrete (SCC) with partial replacement of cement by rice straw ash (RSA), which is expected to result in environmental preservation due to the green materials being used in cement production. The physicomechanical properties of the SCC with RSA replacement were determined via its compressive strength, water absorption, self-workability, and fire resistance (residual strength after exposure to high temperatures). The proportion of RSA replacement used were 0%, 5%, 10%, 15%, 20%, and 25%, and all passed the slump flow test, except the 20% and 25% samples. The SCC samples with 15% of RSA replacement reported the highest compressive strength at 7 and 28 curing days and the highest residual strength post-exposure to high temperatures. The lowest percentage of water absorption was reported by the 15% of RSA replacement, with a density of 2370 kg/m3.
Go to article

Authors and Affiliations

Rafiza Abd Razak
1 2
ORCID: ORCID
Yi Qin Chin
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
3 2
ORCID: ORCID
Zarina Yahya
1
ORCID: ORCID
Mokhzani Khair Ishak
1
ORCID: ORCID
Sebastian Garus
4
ORCID: ORCID
Marcin Nabiałek
5
ORCID: ORCID
Warid Wazien Ahmad Zailani
6
ORCID: ORCID
Khairil Azman Masri
7
ORCID: ORCID
Andrei Victor Sandu
8
ORCID: ORCID
Agata Śliwa
9
ORCID: ORCID

  1. Universiti Malaysia Perlis, Faculty of Civil Engineering Technology, 02100 Padang Besar, Perlis, Malaysia
  2. Centre of Excellence Geopolymer and Green Technology (CEGeoGTech)
  3. Universiti Malaysia Perlis, Faculty of Chemical Engineering, 01000, Kangar, Perlis, Malaysia
  4. Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Czestochowa, Poland
  5. Department of Physics, Czestochowa University of Technology, Czestochowa, Poland
  6. UniversitiTeknologi MARA, School of Civil Engineering, College of Engineering, 40450 ShahAlam, Selangor, Malaysia
  7. 1 Department of Civil Engineering, College of Engineering, Universiti Malaysia Pahang, 26300 Gambang Kuantan Pahang, Malaysia
  8. Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iasi, 71 D. Man-geron Blv., 700050 Iasi, Romania
  9. Division of Materials Processing Technology and Computer Techniques in Materials Science, Silesian University of Technology, 44-100 Gliwice, Poland

This page uses 'cookies'. Learn more