Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Underwater wireless optical communication is the best alternative for many applications especially for high bandwidth data communication between underwater objects and vehicles. The implementation of coding scheme along with advanced modulation technique and equalisation methods is identified as a key research scope for enhancing the performance of the system. In this paper, the coded generalised frequency division multiplexing (GFDM) technology is employed to provide high-data rates and less out-of-band emission. The Bose-Chaudhuri-Hocquenghem (BCH) and Reed-Solomon (RS) coding schemes along with equalisation techniques namely normalised least mean square (NLMS)-based decision feedback equalisers (DFE), minimum mean square error (MMSE) and zero forcing (ZF) are utilized to reduce inter symbol interference (ISI). The bit error rate (BER) performance is evaluated in the presence of pointing error (PE) and turbulence using Monte Carlo channel modelling simulations. The results showed that RS coding with NLMS-DFE outperforms other techniques and achieves a BER of roughly 10−5 with a signal-to-noise ratio levels below 20 dB. The simulation results demonstrate that RS code with 15 total symbols per code word and 3 data symbols, i.e., RS (15, 3) and BCH code with 31 total symbols in a code word and 6 data symbols, i.e., BCH (31, 6) provided the best error performance among other coding schemes employed. It is inferred that RS (15, 3) coded 2 × 2 multiple input multiple output systems with NLMS-DFE achieved a BER value of 1.1925 ×  10−5 at 11 dB which is 16 dB less than uncoded system. Thus, the coded GFDM improves overall BER performance and has the potential to provide higher reliability for internet of underwater things (IoUT) applications.
Go to article

Authors and Affiliations

R. Hema
1
Ananthi A.
Diana D. C.
1

  1. Department of Electronics and Communication Engineering, Easwari Engineering College, 162 Bharathi Salai, Ramapuram, Chennai, Tamil Nadu 600089, India
Download PDF Download RIS Download Bibtex

Abstract

This work reports on the investigation of homogeneity of the inside of indium micro-bumps/ columns placed on Ti/Pt/Au under bump metallisation. This is very important for connection resistivity, long-time durability, and subsequent hybridisation process (e.g., die-bonding). Gold reacts with indium to form intermetallic alloys with different chemo-physical parameters than pure indium. The geometrical and structural parameters of intermetallic alloys were analysed based on transmission electron microscope images. Distribution of elements in the investigated samples was determined using the transmission electron micro-scope with energy dispersive spectroscopy method. A thickness of intermetallic alloy was 1.02 μm and 1.67 μm in non-annealed (A) and annealed (B) indium columns, respectively. The layered and column-like interior structure of alloys was observed for both samples, respectively, with twice bigger grains in sample B. The graded chemical composition of Au-In intermetallic alloy was detected for the non-annealed In columns in contrast to the constant composition of 40% of Au and 60% of In for the annealed sample B. The atomic distribution has a minor impact on the In column mechanical stability. A yield above 99% of an In column with a 25 µm diameter and a 11 µm height is possible for a uniform columnar structure of intermetallic alloy with a thickness of 1.67 μm.
Go to article

Authors and Affiliations

Paweł Kozłowski
1
ORCID: ORCID
Agata Jasik
1
ORCID: ORCID
Adam Łaszcz
1
ORCID: ORCID
Krzysztof Czuba
1
ORCID: ORCID
Krzysztof Chmielewski
1
ORCID: ORCID
Krzysztof Zdunek
2
ORCID: ORCID

  1.  Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02-668 Warsaw, Poland
  2. Warsaw University of Technology, Faculty of Materials Science and Engineering, ul. Wołoska 141, 02-507 Warsaw, Poland

This page uses 'cookies'. Learn more