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Abstract

Botulinum toxin (BTX) belongs to a family of neurotoxins which strongly influence the function
of autonomic neurons supplying the urinary bladder. Accordingly, BTX has been used as an effective
drug in experimental therapies of a range of neurogenic bladder disorders. However, there is no
detailed information dealing with the influence of BTX on the morphological and chemical properties
of nerve fibres supplying the urinary bladder wall. Therefore, the present study investigated, using
double-labeling immunohistochemistry, the distribution, relative frequency and chemical coding of
cholinergic and noradrenergic nerve fibers supplying the wall of the urinary bladder in normal female
pigs (n=6) and in the pigs (n=6) after intravesical BTX injections. In the pigs injected with BTX, the
number of adrenergic (DBH-positive) nerve fibers distributed in the bladder wall (urothelium, sub-
mucosa and muscle coat) was distinctly higher while the number of cholinergic (VAChT-positive)
nerve terminals was lower than that found in the control animals. Moreover, the injections of BTX
resulted in some changes dealing with the chemical coding of the adrenergic nerve fibers. In contrast
to the normal pigs, in BTX injected animals the number of DBH/NPY- or DBH/CGRP-positive axons
was higher in the muscle coat, and some fibres distributed in the urothelium and submucosa ex-
pressed immunoreactivity to CGRP. The results obtained suggest that the therapeutic effects of BTX
on the urinary bladder might be dependent on changes in the distribution and chemical coding of
nerve fibers supplying this organ.
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Introduction double, acting contradictory, sympathetic-parasym-

pathetic innervation. The sympathetic innervation

The proper urine storage process depends, among takes place via the hypogastric nerve coming from the
other things, on an undisturbed transmission in the intermediolateral nucleus of the lumbar segments of
autonomic nerves supplying the urinary bladder wall. the spinal cord. The parasympathetic innervation is
The smooth urinary bladder detrusor muscle has carried out by pelvic nerve coming from the inter-
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mediolateral nucleus of the sacral segments of the spi-
nal cord (el-Badawi and Schenk 1966).

One of substances which strongly influence the
function of the autonomic nervous system supplying
the urinary bladder wall is Botulinum toxin (BTX),
produced by the Gram-negative, rodshaped anaerobic
bacteria Clostridium botulinum (van Ermengem
1897). This potent neurotoxin acts by inhibiting
acetylocholine (ACh) release at the presynaptic
cholinergic neuromuscular junction (Arnon et al.
2001). Currently, seven immunologically distinct
forms of botulinum toxin are distinguished, including
A, B, C, D, E, F and G. Only botulinum toxin type
A (BOTOX®, Dysport®) and B (Myobloc®/Neurob-
loc®) have been approved for use in the treatment of
conditions that are characterized by excessive or inap-
propriate muscle contractions. Botulinum toxin type
A (BoNT/A) was first investigated for its effects on
the parasympathetic nervous system in the 1920s
(Dickson and Shevky 1923). Recently, BTX has been
used in medicine as an effective drug in experimental
therapy of a range of neurogenic urinary bladder dis-
orders. The literature in the field contains many con-
tributions regarding a possible clinical use of
BTX-toxin in urology (for instance: Schurch al. 2000,
Reitz et al. 2004, Grosse et al. 2005). However, there
is no data concerning the influence of BTX on the
chemical coding of autonomic nerves supplying the
urinary bladder wall, whereas, this matter seems to be
of a great interest considering the mechanism of the
toxin action and the clinical results obtained. There-
fore, the present study was aimed at investigating the
distribution, relative frequency and chemical coding
of cholinergic and noradrenergic nerve fibers supply-
ing the wall of the urinary bladder in normal female
pigs and in the pigs after intravesical BTX injections.

Materials and Methods

The study was performed on 12 juvenile (8-12
weeks old, 15-20 kg body weight, b.w.) female pigs of
the Large White Polish race. The animals were kept
under standard laboratory conditions with free access
to water. All Surgical procedures were performed un-
der deep barbiturate anaesthesia according to the
guidelines of the Local Ethics Committee. The pigs
were divided into two groups. Six animals were used
as a control group. Six other pigs were injected with
botulinum toxin type A (100 IU per animal, Botox)
into the urinary bladder wall using cystoscope. Before
the BTX injections, the animals were pretreated with
atropine (Polfa, Poland; 0.04 mg/kg b.w., s.c.) and
propionylpromasine (Stresnil, Janssen Pharmaceutica,
Belgium; 0.5 mg/kg b.w., im.), and after thirty mi-
nutes, sodium pentobarbital (Tiopental, 0.5 g per ani-
mal) was given intravenously in a slow, fractionated

infusion. One week after the BTX injections, all the
pigs were deeply anaesthetized with sodium pentobar-
bital and transcardially perfused with 4% buffered
paraformaldehyde (pH 7.4). The samples of the uri-
nary bladder corpus were collected, placed in the fixa-
tive (10 minutes), washed several times in 0.1 M phos-
phate buffer and stored in 18% buffered sucrose at
4°C. The samples were cut with a cryostat on
10-um-thick sections which were processed for
double-labelling immunofluorescence.

Immunohistochemical procedure

Ten um-thick cryostat sections of the tissue
samples were processed for double-labeling immuno-
fluorescence (according to an earlier described
method; Kaleczyc et al. 1999) to study the distribution
of the intramural nerve fibres and their chemical codi-
ng using antibodies (listed in Table 1) against
dopamine B-hydroxylase (DBH; marker of norad-
renergic fibres), vesicular acetylocholine transporter
(VAChKT; marker of cholinergic fibres), NOS (nitric
oxide synthase), NPY (neuropeptide Y), VIP (vasoac-
tive intestinal polypeptide), GAL (galanin), L-ENK
(Leu’- enkephalin), PACAP (pituitary adenylate cyc-
lase-activating polypeptide), SOM (somatostatin), SP
(substance P) and CGRP (calcitonin gene-related
peptide). DBH-antiserum was applied in a mixture
with antisera against NOS, NPY, VIP, GAL, L-ENK,
PACAP, SOM, SP or CGRP, respectively.
VAChT-antiserum was applied in a mixture with anti-
sera against CGRP, GAL, L-ENK, NOS, PACAP,
SOM, SP or VIP, respectively

The sections were studied with an Olympus BX51
microscope equipped with epifluorescence filter and
an appropriate filter set for CY3 and FITC. Micro-
graphs were made using a digital camera connected to
a PC, analyzed with AanlySIS software (version 3.02,
Soft Imaging System, FRG) and printed on a wax
printer (Phaser 8200, Xerox, USA).

Results

Distribution of VAChT-immunoreactive nerve
fibers and their chemical coding

Control animals

In the control animals, a very dense network of
VAChKT-IR nerve fibers was distributed in the muscle
coat (Fig. 1a, 2a). Many of these nerve terminals were
observed around blood vessels. A moderate number
of the cholinergic nerve endings were found in the
submucosa and only single axons were encountered
beneath the urothelium (Fig. 2a).
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Table 1. List of primary antisera and secondary reagents used in the study. (FITC fluorescein isothiocyanate).

Antigen Code Dilution Species Supplier
Primary antibodies

CGRP T-5027 1:400 Guinea pig Peninsula
AB5920 1:8000 Rabbit Chemicon

DBH MAB 308 1:300 Mouse Chemicon
D21020 1:4000 Rabbit Biomol

GAL T-5036 1:1000 Guinea pig Peninsula
4600-5004 1:4000 Rabbit Biogenesis

L-ENK 4140-0355 1:800 Mouse Biogenesis
EA1149-002 1:600 Rabbit Biomol

NOS N2280 1:400 Mouse Sigma
AS2143 1:17000 Rabbit Euro-Diagnostic

NPY NA1233 1:8000 Rabbit Biomol
705869 1:100 Rat Biomol

PACAP 40119 1:200 Guinea pig Phenix
T-4465 1:20000 Rabbit Peninsula

SOM 11180 1:30 Rabbit Icn-Cappel
T-1608 1:30 Rat Bachem

SP 8450-0505 1:100 Rat Biogenesis

VACKT H-V006 1:6000 Rabbit Phoenix

VIP VA1285 1:6000 Rabbit Biomol
9535-0504 1:1000 Mouse Biogenesis

Secondary reagents

Biotinylated antiserum E 0432 1:800 Rabbit Dako

CY3 711-165-152 1:8000 Rabbit Jackson L.R.

FITC-conjugated anti-mouse IgG 715-096-151 1:400 Jackson L.R.

FITC-conjugated anti-rat IgG 712-095-153 1:400 Jackson L.R.

FITC-conjugated anti-guinea pig IgG 706-095-148 1:600 Jackson L.R.

In the muscle layer, the vast majority of
VACHT-IR nerve fibers were immunopositive to
SOM or NPY, and many VAChT-IR axons contained
immunoreactivity to NOS. Solitary cholinergic axons
located in the muscle coat were also CGRP or
VIP-positive.

Most of the cholinergic nerve terminals surround-
ing blood vessels exhibited immunoreactivity to SOM,
and single VAChT-IR axons expressed also im-
munoreactivity to CGRP or NOS.

In the submucosa, the majority of the cholinergic
nerve fibers showed immunoreactivity to SOM.
A moderate number of axons were also VIP-positive
and single nerve terminals stained for NOS.

The vast majority of the cholinergic nerve ter-
minals penetrating beneath the urothelium were
SOM-immunopositive and single VAChT-IR axons
revealed immunoreactivity to VIP or CGRP.

The cholinergic nerve fibers were GAL, L-ENK-,
PACAP-, SP- and DBH-immunonegative.

Animals after BTX injections

After BTX injections, VAChT-IR fibers were un-
evenly distributed in the muscle coat (Fig. 1b). Only
single nerve terminals were found in areas located
close to the submucosa (Fig. 2b), whereas in the re-
maining, external part they formed a very dense net-
work, comparable to that observed in the control ani-
mals. Single VAChT-IR nerve endings were distrib-
uted around blood vessels and in the submucosa. No

VAChT-IR fibers were found beneath the
urothelium.
Double-labeling immunofluorescence revealed

that the chemical coding of cholinergic axons in BTX
treated pigs was similar to that observed in the control
animals.

VACHKT-IR nerve fibers were GAL, L-ENK-,
PACAP-, SP- and DBH-immunonegative.
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Table 3. The distribution and relative frequency of VAChT-IR nerve fibers supplying the porcine urinary bladder wall.

Part of the urinary bladder wall Control pigs Pigs after BTX injection
Muscle layer ++++ +++ )
Submucosal layer +/- d
Urothelium - 2
Around blood vessels +/- 2

+/- — single fibres; + — few fibres; ++ — moderate number of fibres; +++ — many fibres

Distribution of DBH-immunoreactive
(DBH-IR) nerve fibers and their chemical
coding

Control animals

In the urinary bladder of the control animals,
a small number of DBH-IR nerve fibers was distrib-
uted in the muscle coat (Fig. 3a). Blood vessels were
densely supplied with these axons. A moderate numb-
er of DBH-IR nerve terminals was observed in the
submucosa and only single fibers were found beneath
the urothelium (Fig. 4a).

Double-labeling immunohistochemistry disclosed
that in the muscle layer, a moderate number of
DBH-IR axons stained for SOM or L-ENK and many
of the adrenergic nerve fibers revealed also im-
munoreactivity to NPY. Solitary DBH-IR nerve ter-
minals were CGRP-IR.

Most of the adrenergic axons associated with
blood vessels stained for NPY, and single DBH-IR
nerve terminals expressed immunoreactivity to SOM
or L-ENK.

Only single DBH-IR axons stained also for SOM,
NPY or L-ENK in the submucosa and beneath the
urothelium.

The adrenergic nerve terminals were GAL-,
NOS-, PACAP-, SP-, VIP- and VAChHT-im-
munonegative.

Animals after BTX injections
In the urinary bladder wall of the pigs after intra-

vesical BTX injections, the number of DBH-IR nerve
fibers in the smooth muscle layer was significantly

higher than that found in the control animals
(Fig. 3b). Many of these axons were also observed
around blood vessels. A large number of the fibers
was distributed in the submucosa and a few axons
were found to penetrate under the epithelium (Fig.
4b).

Double-labeling investigations revealed that the
chemical coding of the adrenergic nerve terminals
after BTX treatment was basically very similar to that
found in the control group. However, in the muscle
layer, the number of DBH-IR nerve terminals con-
taining also immunoreactivity to NPY was slightly
higher (Fig. 5). Some distinct differences were also
observed with regard to adrenergic nerve fibers which
exhibited immunoreactivity to CGRP. The number of
these axons was slightly higher in the muscle layer.
Moreover, in contrast to the findings obtained from
the control group, many DBH-IR nerve fibers found
in the submucosa (Fig. 6) and beneath the urothelium
expressed immunoreactivity to CGRP, and single
DBH/CGRP-IR nerve terminals were associated with
blood vessels. DBH-positive nerve terminals were
GAL, NOS, PACAP, SP, VIP, and VAChT-im-
munonegative.

Discussion

The present study has revealed that application of
BTX causes significant changes in the distribution,
relative frequency and chemical coding of adrenergic
and cholinergic nerve fibers supplying the wall of the
porcine urinary bladder.

The present results dealing with adrenergic and
cholinergic innervation pattern of urinary bladder wall

%

Fig. 1. Distribution of VAChT-positive nerve fibers (red; labelled with CY3) in the muscle layer of the urinary bladder in the
normal (a) and BTX-treated (b) pig. In the BTX-injected animal, the nerve fibres were less numerous than in the normal pig; x20.
Fig. 2. Distribution of VAChT-positive nerve fibers (red; labelled with CY3) in the urinary bladder wall of the normal (a) and
BTX-treated (b) pig. In the BTX-injected animal, the nerve fibres were less numerous than in the normal pig; U, urothelium;

S, submucosa; M, muscle layer; x20.

Fig. 3. Distribution of DBH-positive nerve fibers (red; labelled with CY3) in the muscle layer of the urinary bladder in the normal
(a) and BTX-treated (b) pig. In the BTX-injected animal, the nerve fibres were more numerous than in the normal pig; x20.
Fig. 4. Distribution of DfH-positive nerve fibers in the urinary bladder wall of a normal (a) and BTX-treated (b) pig. In the
BTX-injected animal, the nerve fibres were more numerous than in the normal pig; U, urothelium; S, submucosa; x20.
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DBH/NPY control § DBH/NPY

DBH/CGRP control

Fig. 5. Distribution of DBH- (green; labelled with FITC) and NPY-positive red (labelled with CY3) nerve fibres in the muscle
layer of the urinary bladder in the normal (a) and BTX-treated (b) pig. Red and green channels were digitally superimposed.
Double-labelled (DBH/NPY-positive) fibres are yellow to orange. Note that the number of DBH/NPY-positive nerve terminals
(arrows) was slightly higher in the BTX-injected animal; x20.

Fig. 6. Distribution of DBH- (red; labelled with CY3) and CGRP-positive (green; labelled with FITC) nerve fibres in the
submucosa of the urinary bladder in the normal (a) and BTX-treated (b) pig. Red and green channels were digitally superim-
posed. Double-labelled (DBH/CGRP-positive) fibres are yellow to orange. Note that the number of DBH/CGRP-positive nerve
terminals (arrows) was slightly higher in the BTX-injected animal; x20.

Table 2. The distribution and relative frequency of DBH-IR nerve fibers supplying the porcine urinary bladder wall

Part of the urinary bladder wall Control pigs Pigs after BTX injection

Muscle layer + +++ T
Submucosal layer ++ +++ 0
Urothelium +/- + )
Around blood vessels ++++ +++ 2
+/- —single fibres; + — few fibres; ++ — moderate number of fibres; +++ — many fibres

in control pigs generally correspond well with findings It is well known that peripheral autonomic
obtained by other authors, in both pigs (Crowe and neurons are highly plastic under the influence of di-
Burnstock 1989, Persson et al. 1995) and in other verse physiological and pathological factors (Sharkey
mammalian species studied, including humans (Dixon and Kroese 2001, Csillik et al. 2003). The plastic
et al. 2000) or rat (Alm et al. 1995), even though the changes of neurons include modifications of their
methods used in the above mentioned investigations chemical phenotype and/or alterations in the density
to visualize autonomic nerves were different to those of nerve fibers. These have been confirmed also in

used in the present study. pigs in studies performed under physiological
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(Lakomy et al. 1986a,b) or experimental (Kaleczyc
1994) conditions.

Probably the most radical factor evoking plastic
changes is axotomy, which deprives injured neurons of
growth factors, specifically nerve growth factor (NGF)
— an important biomolecule for the survival of ad-
renergic neurons (Hamburger 1992, Levi-Montalcini
et al. 1996). Wasowicz (2003) has revealed that the
total or partial extirpation of the uterus in the pig
triggers dramatic changes in the chemical coding of
uterus-projecting neurons in the porcine inferior mes-
enteric ganglion. Besides axotomy, there are many
other pathological agents or conditions influencing
the peripheral autonomic innervation of the
urogenital tract. In this paper, only few examples will
be mentioned including some investigations concern-
ing the urinary bladder. Immunochemical characteris-
tics of nerve fibers supplying the female rat urinary
bladder may be affected for instance by: the chronic
cystitis (Dickson et al. 2006), the x-ray irradiation
(Crowe et al. 1996) or the treatment with biologically
active substances like capsaicin or resiniferatoxin
(RTX) (Avelino and Cruz 2000). The plastic changes
of neurons were also observed in men with a form of
the bladder neck obstruction, called bladder neck dys-
synergia (Crowe et al. 1995).

The present findings suggest that BTX is a factor
evoking very strong adaptational changes in neurons
supplying the urinary bladder wall. It is impossible to
discuss these results with data obtained by other
authors, as no morphological investigations dealing
with the distribution and chemical coding of auton-
omic nerves supplying the urinary bladder wall after
BTX injections have been performed so far. However,
it has been found that BTX may influence sensory
neurons, because significant differences in amounts of
CGREP released from the urinary bladder tissues were
observed between rats treated with this toxin and the
control animals (Rapp et al. 2006). Using
a radiochemical method, it has also been demon-
strated that BTX influences the release of ACh and
norepinephrine from the rat bladder and urethra tis-
sues (Smith et al. 2003).

The paucity of data dealing with the influence of
BTX toxin on the chemical coding of nerve fibers sup-
plying the urinary bladder wall is in a striking contrast
to the large number of contributions focusing on the
possible clinical use of this toxin in urology.

It is well known, that BTX binds to and enters the
presynaptic end plate of cholinergic neurons by recep-
tor-mediated endocytosis and selectively cleaves
synaptosomal-associated protein 25 (SNAP 25). In
that way, BTX prevents normal vesicle docking and
fusion to the presynaptic plasma membrane, and in-
hibits ACh release at the presynaptic cholinergic
neuromuscular junction (Haferkamp et al. 2004).
Probably due to the toxin mechanism of action, the

most distinct changes observed in this study after
BTX treatment concerned the number of VAChT-im-
munopositive fibers. A marked decrease in the numb-
er of these fibers was observed in all layers of the
urinary bladder wall. In the muscular layer, however,
the number of VAChT-IR fibers was reduced only in
areas neighboring to the submucosa. It should be
noted that the samples of the urinary bladder wall
were collected one week after the application of the
toxin, whereas the temporal clinical effect of the BTX
treatment begins within 5 to 7 days and lasts up to
6 months (Schurch and Reitz 2004). Therefore it can
be assumed that after a longer period, a decrease in
the number of VAChT-IR fibers would be observed
over the entire width of the muscle layer, but this
hypothesis needs further experiments. The parasym-
pathetic innervation, through the release of ACh, acti-
vates muscarinergic receptors of the detrusor muscle
and mediates the contraction of the detrusor muscle
(Thuroff 1982) and, thus, causes bladder emptying
and micturition (Levin et al. 1986). Therefore a de-
crease in the number of cholinergic nerve fibers after
BTX injections observed in this study can be conside-
red as a very promising finding from the perspective
of the treatment of the urinary bladder disorders
involving the overreactivity of the bladder detrusor,
and may be a foundation for good clinical results.
There are two possible rationales for the above
mentioned changes in the cholinergic innervation
pattern of the urinary bladder wall: first, they could
reflect the diminish of the neurotransmitter in some
nerve fibers; second, they may reflect the reduction in
the general number of the nerves fibers.

Unexpectedly, BTX injections caused also a dis-
tinct increase in the number of DBH-IR nerve fibers
in all three layers of the urinary bladder wall, especial-
ly in the muscle layer. The function of sympathetic
innervation is opposite to that of parasympathetic in-
nervation. The release of sympathetic neurotransmit-
ter noradrenalin causes that the detrusor is blocked by
inhibitory B-adrenergic receptors and both the blad-
der neck and the smooth-muscular urethra are
tonicized by excitatory detrusor o-adrenergic recep-
tors, thus achieving continence (Nergardh and Boreus
1972, Edvardsen and Setekleiv 1968, Salimi et al.
1969, Raezer et al. 1973, Awad et al. 1974, Levin and
Wein 1979). Therefore, the observed increase in the
number of adrenergic nerve fibers could be a factor
which additionally decreases the spasticity of the over-
reactive bladder and for that reason improves the
treatment.

The present study has revealed that BTX treat-
ment also induces an increase in the number of ad-
renergic nerve terminals that are immunopositive to
CGRP. Generally CGRP is considered as a good
marker of sensory nerve fibers since it is expressed in
more than 80% of bladder afferents (Gabella and
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Davis 1998, Cervero and Laird 2004). The reason for
the increased expression of CGRP in the DBH-IR
axons after BTX injections is not clear. Dickson at al.
(2006) observed an overall increase in the number of
CGRP-IR nerve terminals especially in the sub-
mucosa of the rat urinary bladder in a chronic model
of cyclophosphamide-induced cystitis. It is possible
that an increase in the number of DBH/CGRP-posi-
tive axons observed in the present study may be
caused by a temporary cystitis induced by the BTX
injection technique. On the other hand Rapp at al.
(2006) have found that the incubation of the isolated
rat bladders with BTX-A solution inhibits evoked
CGREP release, thus the amount of CGRP may be
increased in the nerve fibers, because it is accumu-
lated in axons.

In conclusion, the present study has revealed for
the first time the existence of profound differences in
the distribution, relative frequency and chemical co-
ding of cholinergic and adrenergic nerve fibers supply-
ing the wall of urinary bladder in normal female pigs
and in female pigs after intravesical BTX injections.
The results obtained suggest that the therapeutic ef-
fects of BTX on the urinary bladder might be depend-
ent on changes in the distribution and chemical codi-
ng of nerve fibres supplying this organ.
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