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Abstract The paper presents numerical simulation of two-phase flow in
a heated capillary with evaporation on the meniscus. To solve the problem,
a model of evaporation from meniscus was developed in which the dynamics
of liquid-vapour interface is described by the Cahn-Hilliard equation. The
numerical simulations were performed using commercial software for 2D
axially symmetric case. The flow evolution was analysed for different values
of heat transfer coefficient at the capillary wall and inlet liquid mass flow
rate.
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equation

Nomenclature

C – constant, m/s
Cp – specific heat capacity, J/kg K
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Fst – surface tension force, n/m3

G – chemical potential, J/m3

g – acceleration due to gravity, m/s2

h – heat transfer coefficient, W/m2K
hc – capillary height, m
I – identity matrix
k – thermal conductivity, W/m K
Mw – molecular weight
n – unit vector, interface normal; normal to the wall
ṁ – rate of vaporization, kg/s
p – pressure, Pa
po – pressure at the outlet, Pa
q – heat flux through the capillary wall, W/m2

qo – inward heat flux, W/m2

Qm – liquid volume flow rate at the capillary inlet, m3/s
Qsink – heat sink due to evaporation, W/m3

r – radial coordinate, m
rc – capillary internal radius, m
t – time, s
T – temperature, oC
Text – external temperature, ◦C
Tsat – saturation temperature, ◦C
Tin – temperature at capillary inlet, ◦C
u – velocity vector, m/s
Vf,V – volume fraction of the vapour phase
v0 – velocity at the symmetry axis
z – axial coordinate, m
∆HV L – enthalpy of vaporization, J/kg

Greek symbols

γ – mobility
δ – smoothed representation of the interface, Dirac delta function
ε – capillary width, m
Θw – contact angle, rad
κ – mean curvature
λ – mixing energy density, J/m
ρ – density, kg/m3

σ – surface tension, N/m
Φ – dimensionless phase field variable
µ – viscosity, kg/m s
ϕ – azimuthal coordinate, rad
Ψ – dimensionless variable used in Eq. (13)
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Subscripts

L – liquid
V – vapor
T – transpose of matrix

1 Introduction

Application of microchannel heat exchangers in refrigeration and heat pump
technologies has many advantages, such as small dimensions, substantial
reduction of refrigerant charge in the system as well as possible enhancement
of heat transfer. The main drawback of this type of exchangers is significant
flow resistance. However, it can be substantially reduced by the capillary
pumping effect [1,2].

The goal of this work was to perform a theoretical analysis of water flow
in a heated capillary. This problem includes the following main issues: two-
phase flow, meniscus forming and the phase change. To achieve the goal,
a model of evaporation from meniscus has been developed and 2D axially
symmetric numerical simulations have been performed using commercial
software – COMSOL Multiphysics. The position of the meniscus, fluid
temperature and pressure distribution in dependence of the heat flux and
mass flow have been found for a capillary of given dimensions. Influence of
liquid superheating on the results has also been analysed.

2 Model of two-phase flow with phase change in

a heated capillary

2.1 Problem statement

The problem to be modeled can be defined as follows. The glass capillary
with the radius, rc, and height, hc, is placed vertically. Water is delivered
to the capillary through the inlet at the bottom with the mass flow rate
Qm. The capillary is heated through the walls with the heat flux Qh, so
the water is heated and its temperature increases up to the saturation tem-
perature Tsat and evaporates. In the experiment, the heat flux is adjusted
to the mass flow in such way that – in the stationary state – the height of
the water column reaches about 0.5 of the capillary height. The pressure
at the capillary outlet is atmospheric. The capillary is heated using hot air
of the temperature Text, which is higher than the saturation temperature.
This method of heating causes that the fluid temperature cannot exceed



6 J. Karwacki, H. Nowakowska, M. Lackowski and D. Butrymowicz

the heating air temperature. Both capillary and gravitational forces have
to be taken into account.

As far as physics is concerned, the evaporation (at saturation tempera-
ture) from a capillary is different from pool boiling, so typical boiling curve
cannot be applied. Such evaporation can be regarded as a metastable pro-
cess without bubbles forming. The temperature on the interface separating
liquid and vapour is assumed to be equal to the saturation temperature.

2.2 Governing equations

The whole theory and equations presented in Subsections 2.2, 2.3 and 2.4
are based on COMSOL Multiphysics documentation [3,4]. The problem can
be solved using proper set of heat and momentum equations, from which
the temperature, pressure and velocities can be found.

The velocity field and pressure for the liquid phase of a fluid are de-
scribed by the incompressible Navier-Stokes equations

ρL
∂uL

∂t
+ ρL(uL · ∇)uL =

= ∇
[

− pLI+ µL(∇ · uL + (∇ · uL)
T )
]

+ ρLg + Fst , (1)

∇(uL) = 0 , (2)

where ρL and uL are the fluid density and velocity, respectively pL is the
pressure, µL is the viscosity and I is the identity matrix, and the superscript
T denotes the transpose. Subscript L denotes liquid phase. Fst is the surface
tension force acting at the liquid-vapour interface and is calculated from:

Fst = ∇ ·T (3)

with
T = σ

(

I− (nnT
)

)δ , (4)

where n is the interface normal, σ is the surface tension coefficient, and δ
is a Dirac delta function that is nonzero only at the fluid interface.

The velocity field and pressure for the vapour phase of a liquid are
described by the compressible Navier-Stokes equations

ρV
∂uV

∂t
+ ρV (uV · ∇)uV =

= ∇
[

− pV I+ µV (∇ · uV + (∇ · uV )
T )− 2

3
µV (∇ · uV )I

]

+ ρV g ,(5)
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∂

∂t
ρV +∇(ρV uV ) = 0 , (6)

where physical quantities are designed by the same letters that in Eq. (1)
with the subscript V denoting the vapour phase, and g is the acceleration
due to gravity. The heat equations are solved independently for the vapour
and liquid phase:

ρV Cp,V
∂TV
∂t

+ ρVCp,V (uV · ∇)TV = ∇ · (kV ∇tV ) , (7a)

ρLCp,L
∂TL
∂t

+ ρLCp,L(uL · ∇)TL = ∇ · (kL∇tL) , (7b)

where Cp is the specific heat capacity, and k is the thermal conductivity.

2.3 Boundary conditions for the interface

The interface velocity, liquid velocity and vapour velocity are connected in
the following way:

uint = uL − ṁ

ρL
n . (8)

The natural boundary condition on the interface for the vapour phase is

n · ρV uV = ṁ

(

−ρV
ρL

)

+ (n · ρV uL) . (9)

The natural boundary condition on the interface for the liquid phase is

n
[

− ρLI+ µL(∇ · uL + (∇ · uL)
T )
]

=

= ṁ(uL − uV ) + σκn+ n
[

− pV I+ µV (∇ · uV + (∇ · uV )
T )

]

,(10)

which results from the force balance on the interface. The first term on the
right hand side represents a reaction force due to acceleration of vapour away
from the liquid surface. The second term is the surface tension and the last
term on the right hand side is the sum of pressure and viscous forces acting
on the liquid from the vapour. The mass flux leaving the liquid surface
leads to an increase in pressure of the vapour. The pressure exerts a force
on the liquid surface and the vapour region begins to expand. The presence
of the surface tension force leads to a discontinuity in pressure across the
interface. The mean curvature is designed by κ. In the energy equation, the
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temperature at the interface is fixed at the saturation temperature, which
may be a function of pressure

T = Tsat(p) . (11)

The mass flux leaving the interface can then be evaluated from the conduc-
tive heat flux:

ṁ = −
(

Mw

∆HV L

)

n · kV ∇TV , (12)

where k is the thermal conductivity, Mw is the molecular weight of the
medium, ∆HV L is the enthalpy of vaporization, and ṁ is the rate of vapor-
ization. This approximation is obtained by neglecting the kinetic energy
and work due to viscous forces [5].

Equations (1)–(7) along with boundary conditions Eqs. (8)–(12) repre-
sent a complete description of the evaporating flow.

2.4 Solution of the problem in COMSOL Multiphysics

The problem presented above was solved with COMSOL Multiphysics soft-
ware using a method, where the equations governing the interface dynamics
of a two-phase flow are described by the Cahn-Hilliard equation for the so
called phase field variable. To allow for the change of phase the equation
for the phase field variable should be modified, as it is shown in [6]. The
modified Cahn-Hilliard equation has the following form:

∂Φ

∂t
+ u · ∇Φ− ṁδ

(

Vf,V
ρV

+
Vf,L
ρL

)

= ∇γλ

ε2
∇Ψ , (13)

where Φ is the dimensionless phase field variable such that −1 ≤ Φ ≤ 1.
The volume fraction of the vapour phase is Vf,V , and the volume fraction
of the liquid is Vf,L. They are connected via the formula Vf,V = 1 − Vf,L.
The quantity λ is the mixing energy density and ε is the capillary width
that scales with the thickness of the interface. These two parameters are
related to the surface tension coefficient by the formula

σ =
2
√
2

3

λ

ε
. (14)

Quantity γ in Eq. (1) is the interface mobility, which determines the time
scale of the Cahn-Hilliard diffusion and must be large enough to retain a
constant interfacial thickness but small enough so that the convective terms
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are not too excessively damped. The equation governing dimensionless vari-
able Ψ appearing in Eq. (13) is

Ψ = −∇ε2∇Φ+ (Φ2 − 1)Φ . (15)

The quantity δ is a smoothed representation of the interface between the
two phases. It is defined as

δ = 6Vf (1− Vf )
|∇Φ|
2

. (16)

The momentum equation includes surface tension effects as a volumetric
body force

ρ
∂u

∂t
+ ρ(u · ∇)u = ∇ ·

[

− pLI+ µ(∇ · u+ (∇ · u)T )
]

+ ρg+G∇Φ , (17)

where G is the chemical potential. The continuity equation is modified to
account for the phase change from liquid to vapour:

∇ · u = ṁδ

(

1

ρV
− 1

ρL

)

. (18)

The problem is however with the definition of the rate of phase change.
Equation (12) cannot be used because the peak temperature gradient does
not coincide with the interface. This leads to a substantial underestimate
of the mass flux leaving the surface. Instead, the mass flux can be approx-
imated by the following expression

ṁ = −
(

Mw

∆HV L

)

nκV ∇TV = CρL
T − Tsat
Tsat

, (19)

where C is a constant. This expression is analogous to specifying a heat
transfer coefficient on the external boundary of the heat transfer problem.
The mass flux appears in energy equation as

ρCp
∂T

∂t
+ ρCp(u · ∇)T = ∇(k∇T )− ṁδ∆HV L

Mw
. (20)

The last term in Eq. (20) represents the heat sink due to evaporation,
Qsink. The combination of Eqs. (19) and (20) naturally forces the interface
temperature to the saturation temperature. The constant C should be large
enough that the temperature at the interface remains at the saturation
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temperature but not so large to induce numerical instabilities. The thermal
conductivity and specific heat capacity are computed as functions of the
volume fraction of two phases:

κ = (κL − κV )Vf,L + κV , (21)

Cp = (Cp,L −Cp,V )Vf,L + Cp,V . (22)

2.5 Boundary conditions

Due to the axial symmetry of the analysed model all calculations were per-
formed in cylindrical coordinate system (r, z, ϕ), where r, z and ϕ represent
the radial, axial and azimuthal coordinate, respectively. The domain used
for calculations and the directions of the coordinates are shown in Fig. 1.
Point A is assumed in the centre of the coordinate system (r = 0, z = 0).
The imposed boundary conditions (BCs) are presented in Tab. 1.

Figure 1: The calculation domain.

The symmetry axis boundary conditions require that all partial deriva-
tives over radial coordinate (r-coordinate) are equal to zero. By imposing
the laminar inflow boundary condition it is assumed that a fully developed
laminar flow is at the inlet.

The wetted wall boundary condition is imposed on walls in contact with
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Table 1: Boundary conditions (boundary description as in Fig. 1).

Boundary Flow Heat

AD Symmetry axis Symmetry axis

AB (inlet) Laminar inflow, mass flow rate Qm T = Tin

DC (outlet) p0 = 101325 Pa, no vicious stress Conductive heat flux = 0

BC (wall) Wetted wall, contact angle = θw Inward heat flux = q0

the fluid-fluid interface. If this boundary condition is used, the fluid-fluid
interface can move along the wall. For the phase field method, the motion
of the interface on the boundary due to advection is zero and so the no
slip boundary condition (u = 0) is used in the momentum equation. The
following boundary condition defines the contact angle between liquid and
the wall

n · ε2∇Φ = ε2 tan(π/2 − θw)
∣

∣∇Φ− (n · ∇Φ)
∣

∣n , (23)

where θw is the user-defined contact angle. The phase field help variable is
assigned to the boundary condition

n · γλ
ε2

∇ψ = 0 . (24)

The inward heat flux q0 is imposed in the following form:

q0 = h(Text − T ) , (25)

where h is the heat transfer coefficient and Text is the external temperature.
This form of heat boundary condition is adequate when the capillary is
heated by hot air flow. It is taken that only the convective heat flow is on
the capillary outlet (the conductive heat flow is equal to zero).

3 Results

3.1 Input data

The calculations were performed for the capillary radius rc = 0.1 mm and
the height hc = 20 mm. The two fluids considered were water and water
vapour. The liquid density was taken as ρL = 1000 kg/m3, and the viscosity
as µL = 1×103 Pa s. The vapour density was given by the ideal gas law, and
the viscosity of µV = 4×105 Pa s was specified. This is slightly higher than
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the actual viscosity of water vapour but leads to a more stable solution.
The thermal conductivity of liquid was taken as kL = 0.63 W/(mK) and
of vapour was calculated from

kV = 8.351 × 10−5
[

W/(mK)2
]

T − 7.4556 × 10−3
[

W/(mK)
]

.

The pressure in the surrounding environment was assumed as p0 = 101325 Pa
and the saturation temperature was taken as Tsat = 100 oC. The surface
tension coefficient was taken as σ = 0.0588 N/m. The contact angle was
chosen as θw = 67o. According to the experimental conditions, the ex-
ternal temperature was set as Text = 150 oC and the inlet temperature
Tin = 70 oC. The calculations were performed for different values of the
heat transfer coefficient, h, and the liquid volume flow rate, Qm. The con-
stant C in Eq. (19) was set as 0.03 m/s and it was confirmed that increasing
or decreasing this value by factor of two does not change the results. The
quantity ε in Eq. (13) was chosen as 5 × 10−5 m. It was confirmed in pre-
liminary calculations that such value ensures that the interface region is
narrow enough and may be estimated as 0.2 mm. For larger values of ε the
interface region is too fuzzy.

The calculations were performed in a time dependent form. The initial
conditions were taken as follows. The temperature was set to Tin in the
whole region, the pressure equal to p0 and the velocity having only radially
parabolic axial component vz, which responds to a laminar flow

vz(r) = v0(1− (r/rc)
2) , (26)

where v0 is the velocity at the symmetry axis and is adjusted to the volume
flow rate at the inlet.

The liquid-vapour interface was assumed as horizontal (z = const) and
its position was in the middle of the capillary height z = 10 mm.

3.2 Time development of the flow

First calculations were performed for liquid volume flow rate Qm = 0.7
µL/min, assuming that the heat transfer coefficient h is constant and equal
to 17.5 W/(m2K). Figure 2 shows the volume fraction of the vapour phase
in four time moments in a part of the calculation domain presented in Fig. 1,
which is in the vicinity of the meniscus. In both figures there is the same
coordinate system and values of r and z (horizontal and vertical coordinates,
respectively) seen in Fig. 2 are given in millimeters. The region where there
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is only water is marked blue (Vf,V = 0) and where there is only vapour is
marked brown (Vf,V = 1) The additional black lines show 0.4, 0.5 and 0.6
levels of Vf,V . It is seen that meniscus is formed almost immediately, which
means that although the initial condition for the water-vapour interface was
chosen as z = const = 0 mm, consistency of boundary conditions require
that the meniscus is formed as early as t = 0 s. From Fig. 2 it is seen that
the meniscus moves up by about 0.3 mm within 0.1 s.

(a)                          (b)                       (c)                         (d)

Figure 2: Spatial distributions of the volume fraction of the vapour phase, Vf,V , Qm =

0.7µL/min, h = 17.5 W/(m2K): (a) t = 0 s, (b) t = 0.01 s, (c) t = 0.05 s, (d)
t = 0.1 s. Coordinate system is the same as in Fig. 1. Numbers on the axis
represent the coordinate dimensions in mm.

Figure 3 shows the volume fraction of the vapour phase for six time
moments covering longer interval than that in Fig. 2. Values of z and r
coordinates (in millimetres) are shown only in Fig. 3(a). The scales of the
coordinates are different to enable to observe the results in the whole calcu-
lation domain. It is seen that the position of the interface is 10 mm at the
beginning and next it moves up reaching about 11.5 mm for t = 2 s. After
3 s it starts moving down and after 5 s it is almost at 10 mm level again.
This effect is also seen in Fig. 4, where the volume fraction is shown of
the vapour phase Vf,V at the capillary wall for several time moments. The
effect of the moving up is the consequence of the fact that the imposed flow
at the inlet and the capillary forces prevail the effect of the gravitational
forces. When the temperature increases and evaporation of the liquid is
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(a)              (b)               (c)              (d)               (e)               (f)

Figure 3: Spatial distributions of the volume fraction of the vapour phase Vf,V , Qm =

0.7µL/min, h = 17.5 W/(m2K): (a) t = 0 s, (b) t = 1 s, (c) t = 2 s, (d) t = 3 s,
(e) t = 4 s, (f) t = 5 s. Coordinate system is the same as in Fig. 1. Numbers
on the axis represent the coordinate dimensions in mm, r- and z-coordinate
scale are different.

strong enough the downward movement occurs.
Figure 5 shows the temperature distributions for the same six time mo-

ments as that shown in Fig. 3. The additional, almost horizontal line shows
Vf,V = 0.5 contour, i.e. the position of the meniscus. It is seen that the
temperature increases from the initial 70 oC quickly in the vapour phase. It
reaches the external temperature of 150 oC after 1 s. The temperature of the
liquid phase increases slowly. From Fig. 6, showing the temperature at the
capillary wall, it is seen that the liquid temperature exceeds the saturation
temperature (100 oC) after about 5 s.

Figure 7 presents the distribution of Qsink, heat sink term defined in
Eq. (20). It is greater than zero when the fluid temperature is greater than
saturation temperature in the region of the phase change (liquid-vapour)
interface. This is the condition of evaporation from the meniscus. Diagram
reveals that the evaporation is limited to the phase interface region. It starts
at about t = 1 s and the region of evaporation is close to the capillary tube.
As the capillary is heated the evaporation region extends and covers the
whole radius of the interface. It becomes strong enough that the effect
overcomes the induced flow and the meniscus moves down, reaching the
primary level after about 5 s. This effect is also shown in Fig. 8, where the
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Figure 4: The volume fraction of the vapour phase, Vf,V , at the capillary wall.

(a)              (b)               (c)               (d)              (e)                (f)

Figure 5: Spatial distributions of the heat sink Qsink; (a) t = 0 s, (b) t = 1 s, (c) t = 2 s,
(d) t = 3 s, (e) t = 4 s, (f) t = 5 s. The temperature scale at the right is in oC.
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Figure 6: The temperature at the capillary wall in several time instants.

heat sink at the capillary wall is presented. For t < 1 s the heat sink is
zero, it becomes noticeable for t ∼= 1 (maximal value is below 106 W/m3).
With time both the maximal value of the heat sink and the width of the
evaporation layer increase causing that the evaporation of water increases
and the position of the meniscus moves down.

In Fig. 9, supplementary information is given. It shows how the fluid
pressure at the capillary wall changes. The pressure at the outlet is assumed
to be zero. A drop of the pressure corresponding to the capillary pressure
is seen in the phase interface region. For all cases it is almost equal to its
equilibrium value 459 Pa, which can be found from ∆p = 2σ cos(θw)/rc.

3.3 Influence of the heat transfer coefficient

In the next step of analysis, the influence of heating conditions on the pro-
cesses has been analysed. A parametric study with four values of the heat
transfer coefficient, h, has been performed. According to Eq. (25), increas-
ing h causes increasing the inward heat flux q0. The results are presented in
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(a)             (b)               (c)              (d)              (e)               (f)

Figure 7: The heat sink Qsink; (a) t = 0 s, (b) t = 1 s, (c) t = 2 s, (d) t = 3 s, (e) t = 4 s,
(f) t = 5 s. The heat sink scale at right is in W/m3.

Figure 8: The heat sink Qsink at the capillary wall in several time instants.

Figs. 10–13. From Figs. 10 and 11 it is seen that for the same time moment
the higher the heat flux, the lower the position of the interface, and higher
temperature. It is accordance with expectations because stronger heating
causes the temperature increases quicker and the evaporation is stronger,
which causes that the position of the interface moves down. It is shown in
Fig. 12 how heat sink term depends on the coefficient h. For the same time
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Figure 9: The pressure at the capillary wall in several time instants.

moment the heat sink term increases with the coefficient h. The position
of the maximal heat sink term moves down with increasing h.

Figure 13 presents how the total heat flux penetrating the capillary walls
changes with time. It is seen that in every time moment the higher the co-
efficient h, the higher the heat flux. During first milliseconds the heat flux
is larger than 1 kW/m2 which is connected with heating vapour. When the
vapour reaches temperature about 150 oC, the heat flux almost stabilizes
for the first 5 s.

3.4 Influence of the mass flow rate

In the following step of analysis, the influence of mass flow rate, Qm, on
the processes has been analysed. A parametric study with three values of
the inlet volume flow rate (0.35, 0.7, and 1 µ L/min) has been performed.
Figures 14–16 present results of the calculations. It is seen from Fig. 14
that – as it is expected – for bigger mass flow rate the maximal value of
the position along z-axis is bigger and the time after which the maximum
is achieved is longer.

Figures 15 and 16 present influence of the mass flow rate on the temperature
of the capillary wall. It is seen that the difference between the cases, which
is seen in the vicinity of the inlet and close to the interface, increases with
time.
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(a) (b)

(c) (d)

Figure 10: Volume fraction of the vapour phase, Vf,V , at the capillary wall in the vicinity
of the interface for different heat transfer coefficients in four time moments.

(a) (b)

(c) (d)

Figure 11: Temperature at the capillary wall for different heat transfer coefficients in four
time instants.
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Figure 12: The heat sink, Qsink, at the capillary wall for different heat transfer coeffi-
cients for t = 3 s.

Figure 13: The heat sink, Qsink, at the capillary wall for different heat transfer coeffi-
cients for t = 3 s.

3.5 Fluid superheating and limitations of the model

The presented model can be applied when there is no liquid superheating
or the superheating is relatively low. The effect of superheating depends
on the heat delivered to the capillary and appears when the time of heat-
ing is long enough. Figure 17 presents temperature at the capillary wall
at t = 3.5 s for four values of the heat transfer coefficient h. It is seen
that for h = 25 and 27.5 W/(m2K) the fluid temperature below the phase
interface is above the saturation temperature with the minimum equal to
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Figure 14: Time dependence of the interface position for different mass flow rates.

60

70

80

90

100

110

120

130

140

150

160

0 5 10 15 20

Axial position [mm]

0.35 uL/min

0.7 uL/min

1 uL/min

(a)

1 s

60

70

80

90

100

110

120

130

140

150

160

0 5 10 15 20

Axial position [mm]

0.35 uL/min

0.7 uL/min

1 uL/min

(b)

2 s

60

70

80

90

100

110

120

130

140

150

160

0 5 10 15 20

Axial position [mm]

0.35 uL/min

0.7 uL/min

1 uL/min

(c)

3 s

60

70

80

90

100

110

120

130

140

150

160

0 5 10 15 20

Axial position [mm]

0.35 uL/min

0.7 uL/min

1 uL/min

(d)

4 s

Te
m

p
e

ra
tu

re
 [

C
]

o
Te

m
p

e
ra

tu
re

 [
C

]
o

Te
m

p
e

ra
tu

re
 [

C
]

o

Te
m

p
e

ra
tu

re
 [

C
]

o

Figure 15: Temperature at the capillary wall for different mass flow rates: a) t = 1 s, (b)
t = 2 s, (c) t = 3 s, (d) t = 4 s.

the saturation temperature close to the interface. Such phenomenon is not
properly depicted in the model. As can be noticed when the superheating
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(a)

(b)

(c)

Figure 16: Temperature at the capillary wall in different time moments for different mass
flow rates: (a) Qm = 0.35µL/min, (b) Qm = 0.7µL/min, (c) Qm = 1µL/min.
The numbers of legend present time in seconds.

increases, the interface position starts moving up, which seems against the
expectations.

The phenomenon of superheating and its influence can be analysed using
the results presented in Fig. 18, where it is shown how temperature, evap-
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Figure 17: Temperature of the capillary wall at time t = 3.5 s for different values of heat
transfer coefficient h.

oration rate, ṁ, and the smoothed representation of the phase interface
between the two phases δ changes in the vicinity of the phase interface.
The product of ṁ and δ plays an important role in the model equations
(see Eqs. (13), (19) and (20)).

For t = 0.9 s the fluid temperature exceeds the saturation temperature
only for vapour phase, i.e., above the phase interface, where δ is equal to
zero. It means that the product ṁδ = 0 everywhere, so there is no evapora-
tion. The evaporations starts at about t = 1 s when there can be observed
a region where ṁδ > 0. This region is at the upper boundary of the phase
interface. For the next 3 s the temperature in the phase interface region
(i.e., in the region where δ > 0) increases, so does the product ṁδ, because
the overlapping of the phase interface region and the region where ṁ > 0
is bigger. For t = 4.85 s the temperature is equal to the saturation temper-
ature in the whole phase interface region. Since that moment a region of
superheated liquid can be observed; it is at the lower boundary of the phase
interface region. The temperature of the superheated liquid increases with
time. This behaviour is in agreement with the expectations. The problem
arises however when position of the phase interface region is analysed. Be-
fore the evaporation starts, the phase interface moves up (because imposed
inflow and capillary forces exceed the gravitational force). When evapora-
tion starts the phase interface moves up slowly. When the liquid loss due to
evaporation is big enough, the phase interface starts moving down. This be-
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Figure 18: Evaporation rate ṁ, smoothed representation of the interface between the
two phases δ and temperature in the vicinity of the phase interface in several
time moments for mass flow rate 0.7µL/min and heat transfer coefficient
17.5 W/m2K). All quantities are expressed in arbitrary units.

haviour is in agreement with the expectations. However when superheating
effect is strongly expressed, the movement of the phase interface changes
and the phase interface moves up again, which is against the anticipations.
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One of the reasons of this behaviour seen in the model is the evaluation
of the mass flux leaving the interface. This evaluation, given as Eq. (12),
assumes that there is only one phase interface from which evaporation can
take place. When liquid superheating occurs this definition needs a modi-
fication, which should be a goal of a further analysis.

4 Conclusions

The simulations of capillary pumping were performed for water in a capil-
lary of internal diameter of 0.2 mm. The liquid temperature at the capillary
inlet was set to 70 oC. The fluid inside the capillary was heated through the
wall, which external temperature was 150 oC.

In the simulations, after the initial build up, the position of the menis-
cus in the capillary is constant. The location of the meniscus depends on
the heat flux on the capillary wall, which was controlled by changing the
heat transfer coefficient, h. With the increasing h, the liquid reaches the
saturation temperature over a shorter wall height and the meniscus forms
closer to the capillary inlet. Increasing the inlet flow rate shifts the meniscus
further from the capillary inlet. The pressure jump at the meniscus surface
was also calculated and for h = 17.5 W/m2K it equals to 450 Pa.
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