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ESTIMATION OF THE PARAMETERS AFFECTING THE WATER PIPELINES 
ON THE MINING TERRAINS WITH A USE OF AN ADAPTIVE FUZZY SYSTEM

ESTYMACJA CZYNNIKÓW RYZYKA DLA SIECI WODOCIĄGOWEJ ZNAJDUJĄCEJ SIĘ 
NA TERENACH GÓRNICZYCH PRZY WYKORZYSTANIU NEURONOWYCH 

SYSTEMÓW ROZMYTYCH

The research presented in this paper is basically focused on two objectives. Firstly, the selection 
of parameters affecting the water supply network damage. The causes of failures were selected from 
a population of tens of breakdown cases and then classified in view of their importance. Secondly, at-
tention was paid to the selection of the most suitable linguistic model which could be commonly used 
for selecting factors which generate failures. Finally a Mamdani-based model could be worked out as 
a system possessing best generalization qualities. This model can create bases for an adaptative decision 
system which can show the type of water supply-sewage network, depending on continuous surface 
strains due to the mining activity. 
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Badania zaprezentowane w artykule miały dwa zasadnicze cele. Pierwszym z nich była selekcja 
czynników wpływających na awarie sieci wodociągowej zlokalizowanej na terenie górniczym. Analizując 
czynniki wyselekcjonowane z populacji kilkudziesięciu przypadków awarii, dokonano ich klasyfikacji pod 
względem istotności. Drugim celem był wybór najbardziej odpowiedniego modelu lingwistycznego, który 
mógłby być powszechnie stosowany dla celów selekcji czynników wywołujących awarie. Ostatecznie 
badania pozwoliły na wyłonienie modelu bazującego na wnioskowaniu według reguły Mamdani jako 
systemu cechującego się najlepszymi własnościami generalizacyjnymi. Model ten może być podstawą 
decyzyjnego systemu adaptacyjnego pozwalającego na wskazanie typu uszkodzeń sieci wodno-kanali-
zacyjnej w zależności od ciągłych deformacji powierzchni terenu wynikających z eksploatacji górniczej. 

Słowa kluczowe: szkoda górnicza, teren górniczy, sieć wodociągowa, ciągłe deformacje powierzchni 
terenu, rozmyta klasteryzacja
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1. Introduction

The water supply networks undergo failures, which frequently occur in areas subjected to 
movements and strains caused by underground construction, mining activity, rock mass tremors, 
earthquakes, etc. One of the applied prevention measures is usually replacement of old fragments 
of the network. Such prophylaxis, however, is not optimal for a number of reasons. Such opera-
tions are costly. It would be a better solution to identify damage-prone sections as in this way the 
number of failures and related social costs of such breakdowns could be minimized. It should be 
born in mind that most of water supply network failures end up in cutting off water for a large 
population of customers causing hazard for health and lowering the hygiene level. The analysis 
of water network damage allows for the identification of most frequent factors. However their 
evaluation and selection creates problems due to the highly diversified structure of water networks. 
Particular sections of the networks usually vary in age, pipe diameter and material from which 
they have been made. Accordingly, they have also different strength to stresses and to corrosion.

The stresses can be also analyzed using numerical calculations performed for a given net-
work section (Cao et al., 2010; Gao, 2013; Wang et al., 2007). This approach is applied when 
the evaluated endangered water network section is especially important (e.g. master supply 
network), and which will be subject to the tunnel construction or downhole deposit extraction 
activities (Olajossy & Zajda, 2002; Stryczek & Wiśniowski, 2004). Most frequently the evalu-
ation of technical state of the entire water supply network (if well documented) can be treated 
as damage risk analysis. In USA, when tremor areas are involved, such analyses are made with 
the use of, e.g. GIS (O’Rourke & Torpak, 1997). The analysis of sufficiently numerous samples 
does not prove strick correlation for this solution. There are methods lying in point evaluation 
of factors generating various breakdowns (Kliszczewicz et al., 1997), though they require highly 
professional experts who with their experience would select and analyze the factors. Accordingly, 
at present we do not have any method of evaluating damage risk for the entire water network 
system which would be sufficiently efficient. 

The objectives of this paper are twofold. Firstly, attention has been paid to the selection of 
factors affecting network breakdowns. The causes of failures were selected from a population 
of tens of breakdown cases and then classified in view of their importance. Secondly, attention 
was paid to the selection of the most suitable linguistic model which could be commonly used 
for selecting factors which generate failures. Finally a Mamdani-based model could be worked 
out as a system possessing best generalization qualities. This model should create bases for an 
adaptative decision system which can show the type of water supply-sewage network, depending 
on continuous surface deformations due to the mining activity.

Following the realization of these two goals the authors worked out a model for evaluating 
the damage risk of water networks. This model will be based on a linguistic model selected for 
this purpose. The future research works will lie in determining boundary conditions for the se-
lected parameters and testing of the obtained solution. In this sense the paper is a very important 
theoretical introduction and basis for the created model.

2. Engineering application of fuzzy models

Recently the fuzzy logic models started to be commonly used for solving problems where 
measurable quantitative factors are evaluated jointly with descriptive factors, the latter usually 
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assessed with expert methods. The Zadeh fuzzy set theory became popular in many scientific 
disciplines (Zadeh, 1965). The engineering disciplines, where reasoning is based on quantitative-
characteristic variables, artificial intelligence tools are employed. The number of research and 
studies based on artificial intelligence has definitely increased over the last decade (Lv Yaqiong 
et al., 2010). Attempts at applying fuzzy modelling were undertaken in nearly all engineering 
disciplines. Large-scale applications of fuzzy modelling are commonly used for, e.g. solving 
problems related to the estimation of such environmental hazards as soil degradation (Riedler & 
Jandl, 2002) or environmental degradation (Feoli et al., 2002). Moreover, these tools are used for 
controlling environmental systems, e.g. sewage treatment plants (Jeng-Chung Chen & Ni-Bin 
Chang, 2007) or operation of fossil power plants (Arroyo-Figueroa et al., 1998, 2000). The fuzzy 
logic principles are also applicable while evaluating estate houses and engineering constructions 
for potential hazard (Hao-Tien Liu & Yieh-lin Tsai, 2012; Malinowska, 2011; Rusek, 2009). In 
water network problems they are mainly used for evaluating damage hazard (Bonvicini et al., 
1998; Dong Yuhua & Yu Datao, 2005; Esayed, 2009; Han & Weng, 2011; Markowski & Man-
nan, 2009; Shahriar et al., 2012; Xingquan Liu et al., 2011). The results of over 30 year research 
have proved that in many engineering situations application of fuzzy models enables integrate 
and inference form ambiguity information.

3. Principles of fuzzy reasoning 

The basic concept in fuzzy reasoning lies in defining a fragment of elements from the do-
main of variables over which it has been described (Dubois and Prade, 1980; Łęski, 2008; Piegat, 
2003; Zadeh, 1965, 1973) (1). 

 
, ,AA= x x x X   (1)

where: μA(x): X → [0,1] — a membership function of a fuzzy set A.

In the system approach, variables which describe a given effect are grouped, i.e. fuzzy sets 
are superimposed over their total extent. By linking fuzzy sets theory and incorporating it to 
generalized fuzzy logic principles one can build complex fuzzy reasoning systems. Generally the 
fuzzy reasoning systems consist of a number of concurrently defined rules of IF…THEN… type. 
Each rule is a result of operation of some piece of information enclosed in a fuzzy implication.

These systems act in one-dimensional space of input variables, therefore each construction 
rule is based on a number of premises. This signifies that the presentation of a given rule in the 
case of n-dimensional space of input data closes the n + 1-dimensional cluster in the system 
reasoning space. 

The schematic concept of MISO-type fuzzy reasoning system is presented in Fig. 1.
Thus presented schematic concept of fuzzy reasoning system consists of four major parts.
The first one is the fuzzification block, where each input variable is fuzzified. This process 

lies in giving particular variables fuzzy (blunt) categories over their entire extent and expressed 
with fuzzy sets. 

Another part of the system is the rule base. The rule base is the most important part of expert 
and adaptive fuzzy reasoning systems. It is just there where the information nucleus about the 
relation between categorized input variables and system exit is stored. As already noted, each rule 
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is basically formulated by a fuzzy implication operator, therefore the rule base can be presented 
in the form of locally defined clusters, which store information about the system operation. 
Each cluster, depending on the degree to which the premise has been activated, (‘ignition’ level 
expressed by the value of membership function of a given fuzzy set (Dubois and Prade, 1980; 
Łęski, 2008; Piegat, 2003; Zadeh, 1965) activates the corresponding conclusions (exit from the 
system) – Fig. 2. 

Representation of reasoning scheme rule 
(fuzzy implication)

Interpretation of reasoning scheme conclusion activation 
for a given implication

I [μA(x), μB(y)] ,T
A' A Bx I x y  

Fig. 2. Reasoning for a given system rule

Fig. 1. Schematic of structure and operation of MISO system (Piegat, 2003) 
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Therefore, assuming arbitrarily N input variables and one output variable, explained at the 
stage of reasoning, we obtain a certain rule in the following form (Łęski, 2008):

 

( )( ) ( )
1

is is
N

ii i
n nn

R x A y B   (2)

On the other hand, the generalized reasoning scheme based on information in the rule, as-
sumes the following form:
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x A' x A y B y B'  (3)

Having assumed Mandani operator for the implication and Zadeh t-standard for conjunction, 
the operation of thus formulated reasoning scheme for the i-th system rule is presented in Fig. 3.

Fig. 3. Schematic of fuzzy reasoning operation for a given system rule

All system rules are involved in the reasoning process. As a consequence the number of the 
obtained activated input sets, being a conclusion of each of the rules, corresponds to the number 
of rules activated in the reasoning process. In this way one has to establish the ultimate fuzzy 
set in the input variable space, which is formed after all activated conclusions in the rule base 
are cumulated. This operation is performed in the aggregation block of the reasoning system. 

 

is is is

,sup

B'

T
A' A B

x X

x A' x A y B y is B' y

x I x y  (4)

where:
 sup(·) — upper limit of the set,
 ◦T  fuzzy conjunction operator expressed by appropriate t-standard, 
 I (·,·) — fuzzy implication operator,

A graphical interpretation of this reasoning scheme is given in Fig. 3.

4. Data description

The research is based on a water network, 62 km long, running through areas staying under 
the mining impact. All the investigated area was subject to a longwall coal extraction with roof 
caving. The thickness of the exploited lots ranged between 2 m to 4.5 m. The coal extraction was 
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realized successfully in the Upper Carboniferous strata. Relatively thick coal beds were mined by 
layers at levels 500 m to 710 m. The production in the years 2003 to 2012 resulted in a subsid-
ence of the surface reaching up to 3.2 m, horizontal strains locally over 9 mm/m. The analyzed 
water network remained under the influence of intense surface strains for over ten years (Fig. 4). 

 

Fig. 4. Distribution of water network in areas subjected to continuous deformations of the surface 
(maximum-in-time horizontal strains)
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The basic characteristic of water network is as follows. The water pipeline was principally 
made of steel (about 80% of cases), asbestos (15%), PE (3%) and cast iron (2%). Its average 
diameter was 40-200 mm. The pipes were laid at about 1.1 m of depth (73%) and the pressure in 
the network ranged from 0.38 MPa to 0.50 MPa. The ground in which the network was disposed 
was mostly wet (68% of cases) or hydrated (28%) and highly hydrated (4%). All the characteristic 
data were stored in the database. The basic variables referring to the construction of the water 
network were: material used in the pipelines network, pressure inside, depth of deposition and 
diameter. The base also contains data about failures and their localization. The set of variables 
characterizing the utilities was broadened by indices describing strains in the mining area. 

Fig. 5. Distribution of major and directional strains at the breakdown site

The impact of the following factors on a linear object was analyzed (Fig. 5):
– directional strain εα [mm/m] and its rate Vεα [(mm/m)/month] acting along the linear 

object axis, 
– major strain εg1 [mm/m], εg2 [mm/m] at the breakdown site,
– maximum strain εmax [mm/m], which occurred at the breakdown site 

(εmax = |εg1| or εmax = |εg2|) and its rate Vεmax [(mm/m)/month],
– amplitudes of horizontal directional strain Aεα [mm/m],
– amplitudes of maximum strain Aεmax[mm/m].

The frequency with which strains were monitored in this area was low and the density and 
distribution of observation points insufficient to determine the spatial distribution of extreme 
strain indices Therefore the strain indices and rates of their growth were determined with the use 
of Knothe’s influence function. The results of observations allowed for scaling out the prediction 
model and adjusting it to the local conditions. Having accounted for local parameters one could 
very accurately estimate continuous strains.
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These indices were used in various combinations, thus affecting particular calculation sets 
for the analyses. Moreover, thanks to the qualitative analysis of data performed at the very begin-
ning, the set of input data could be reduced to the ones presented in table 1. 

The categories indicating the type of damage were the input (explanatory) variable. On the 
whole 139 of damage cases were collected in the database and they were grouped according to 
eight damage-level categories, as presented in tab. 1.

TABLE 1

Assumed categorization of input variable

Description of damage in database Generalized name of damage 
used for analyses Category number

Corrosion Corrosion I
Broken welding Broken welding II
Broken asbestos pipeline Broken asbestos III
Breakings, tearings of tee, U-bend, etc. Broken connection IV
Lack of tightness Untight V
Petering out, tearing away Tearing VI
Bending, breaking, crashing Bending VII
Damaged asbestos collars Collar damage VIII

Apart from their main objective, i.e. finding out a decision system with best properties as 
far as adjusting and generalization are concerned, the analyses were also expected to help one 
select the most efficient set of input variables (in the context of representation, i.e. explain the 
variability in original data by the model) and show the direction of potential damage categoriza-
tion depending on its burdensome effect. 

5. Estimation of the parameters affecting the water pipelines 
on the mining terrains with a use of fuzzy clustering method

The analyses concentrated on the construction and consequently finding out the best fuzzy 
reasoning system for preselected combinations of input variables.

Two types of fuzzy reasoning systems were performed within the research, i.e. Takagi- 
Sugeno-Kanga system and Mamdani system.

The main difference in this type of systems concerns aggregation and the defuzzification 
method. As presented in fig. 1 the Takagi-Sugeno-Kanga (TSK) system is a typical regression 
model. The estimated value of such a model is acquired in line with the formula (Łęski, 2008; 
Osowski, 2006)

 

1
1 2

1

, ...

K

i i i
i=

N K

i i
i=

p p
y x x x =

p
  (5)
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where:
 N — number of input variables,
 K — number of all system rules,
 pi — conclusion carrier for i-th rule,
 μi (pi) — state of activation of i-th rule at the presentation of established variables x1, x2...xN 

at the system entry.

The parameters of such a system were adapted with the use of two methods (error back 
propagation method and hybrid method).

Additionally, the group of analyzed cases was checked out for the preliminarily initiated 
parameters, and which would later undergo adaptation. Three initiation methods for the optimiza-
tion were assumed: Grid Partition method, Subtractive Clustering method and Fuzzy C-Means 
FCM method.

In the Mamdani system the output variable is described with a fuzzy set undergoing ag-
gregation and sharpening, analogously as described in Chapter 2. In this case the distribution 
and geometrical characteristic of membership function of fuzzy sets both in the input an output 
space were conducted with the Fuzzy C-Means FCM method.

Apart from the main objective, i.e. finding out a decision system with the best adjusting and 
generalization properties, the analyses were also oriented to selecting the most efficient set of 
input variables in the context of representation, i.e. explain the variability in original data by the 
model) and show the direction of potential damage categorization depending on its burdensome 
effect. Moreover, the found model is further planned to be used for evaluating the significance 
of particular variables, mainly the mining ones, through the sensitivity analysis method.

Having assumed the original purposes of the research and accounting for the fact that:
– certain variables are uncertain in character,
– the burdensome character will be established linguistically.

the authors decided that at this stage of research the most efficient will be tools making use of 
fuzzy notation and fuzzy reasoning processes. 

Making still another assumption that the present research is of preliminary character at the 
stage of which the evaluation and data mining problems appear, the fuzzy reasoning systems, 
self-developing in the adaptation process, were applied. 

As a consequence, there were conducted investigations consisting of four parallel but inde-
pendent stages. Each stage (Fig. 6) consisted in making a MISO-type fuzzy reasoning system for 
seven combinations of input variables (described in table 1). The first three stages were devoted 
to construing an adaptive Sugeno-type fuzzy reasoning system (learning) (Fig. 7). At the fourth 
stage the Mamdani system was used along with the clusterization-based approach (Fig. 8). The 
data on the assumed methods as well as the employed start-up and learning algorithms were 
given in table 4.

As a consequence of the assumed four-stage flowchart, a total of 28 models were obtained. 
Prior to building the models, each input variable and output variable was normalized to the interval 
<0,1>. After a few preliminary simulations the accepted number of epochs for teaching the adap-
tive system equalled to ep = 200. Moreover, for the adaptive systems both for input and output 
variables, the assumed number of fuzzy sets was lR = 3. At the fourth stage when the Mamdani 
fuzzy reasoning system was construed the assumed number of clusters was lK = 4. 
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Fig. 6. Flowchart of the research algorithm

Fig. 7. Structure and operation of Sugeno fuzzy reasoning system
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Fig. 8. Structure and operation of Mamdani fuzzy reasoning system

The results of simulations are presented in tables 4 to 7, where the MSE (Mean Square Er-
ror) was assumed as a measure of fitting the model to paradigm data. The obtained models were 
verified on a training set (96 learners) and test sets (41). 

TABLE 4

Results obtained for a system created at the first stage

Set of input variables  MSE
Combination 

no. εg1 εg2 εαekstr Vεmax Vεα Aεmax Aεα Aver. Mat. Training 
set Test set

1 √ √ √ 0.000394 0.002873
2 √ √ √ 0.000352 0.002838
3 √ √ √ 0.000373 0.008531
4 √ √ √ √ 0.00019 0.028118
5 √ √ √ √ 0.000182 0.013723
6 √ √ √ 0.000373 0.006142
7 √ √ √ 0.000412 0.058601
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TABLE 5

Results obtained for a system created at the second stage

Set of input variables  MSE
Combination 

no. εg1 εg2 εαekstr Vεmax Vεα Aεmax Aεα Aver. Mat. Training 
set Test set

1 √ √ √ 0.000316 0.006772
2 √ √ √ 0.000414 0.001869
3 √ √ √ 0.000542 0.002309
4 √ √ √ √ 0.000188 0.003176
5 √ √ √ √ 0.000249 0.005132
6 √ √ √ 0.0004 0.001837
7 √ √ √ 0.000522 0.00318

TABLE 6

Results obtained for a system created at the third stage

Set of input variables  MSE
Combination 

no. εg1 εg2 εαekstr Vεmax Vεα Aεmax Aεα Aver. Mat. Training 
set Test set

1 √ √ √ 0.000542 0.00196
2 √ √ √ 0.000557 0.001008
3 √ √ √ 0.000588 0.000957
4 √ √ √ √ 0.000411 0.001215
5 √ √ √ √ 0.000447 0.008896
6 √ √ √ 0.000564 0.001631
7 √ √ √ 0.000572 0.001598

TABLE 7

Results obtained for a system created at the fourth stage

Set of input variables  MSE
Combination 

no. εg1 εg2 εαekstr Vεmax Vεα Aεmax Aεα Aver. Mat. Training 
set Test set

1 √ √ √ 0.001006 0.000901
2 √ √ √ 0.00086 0.001002
3 √ √ √ 0.00094 0.000705
4 √ √ √ √ 0.000909 0.001133
5 √ √ √ √ 0.000991 0.000875
6 √ √ √ 0.000929 0.001028
7 √ √ √ 0.00089 0.001236

6. Results and discussion

The obtained results were analyzed in two stages.
First, attention was paid to finding out a system, which is best as far and adaptation and 
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generalization are concerned. An auxiliary measure Selsys = MSETR/MSETS was used here. With 
thus defined measure one can indicate a model whose adaptive properties in training and test 
sets are comparable, i.e. has good generalization qualities.

At the second stage the set of generated systems was inspected with the objective to find out 
a combination of input variables which is most influential as far as explaining of the variability 
of information in data goes. In this case the MSE error for the training set was the criterion.

The result of the first stage of analysis showed the Mamdani fuzzy reasoning system built 
on input variables (combination no. 6 in table 7.)

As a result of the analysis of procedure conducted at the second stage the Sugeno fuzzy 
reasoning system was indicated for a combination of input variables no. 5 in table 5. This system, 
however, does not reveal good generalization qualities therefore is treated as supplementary, to 
be used at the second stage. The graphical distribution of errors for the training, test and the as-
sumed measure Selsys is presented in Fig. 9.

Fig. 9. Graphical illustration of error distribution for the training, test and assumed measure Selsys
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The generalization properties of all created systems are graphically presented in Fig. 9. In 
the first row we have the distribution of errors obtained for the training sets, in the second line 
for the test sets and in the last row we have a difference between the errors in the training and test 
sets. The highest generalization quality was observed for the fourth stage model, i.e. Mamdani 
system, and the lowest generalization for the all of the first stage models for all combinations 
of input variables. The bigger is the difference between the errors in the training and test sets, 
the lower is the generalization capacity. That means the reduction of the models ability is to act 
correctly when providing new observations to the set of data. 

In the course of the research the Mamdani model from the fourth stage was selected as pos-
sessing best generalization qualities. Among factors having a decisive influence on the damage 
level of a water network ultimately are: pipeline diameter and material from it has been made. 
The deciding risk factors are Aemax, eαekstr, Veα. Based on selected parameters novel model for 
pipeline hazard estimation will be created.
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