
Theoretical and Applied Informatics
ISSN 1896–5334

Vol.23 (2011), no. 3-4
pp. 229–243

DOI: 10.2478/v10179-011-0016-6

Modelling CTMC with a standard programming language and using
conventions from computer networking

ARTUR RATAJ, MATEUSZ NOWAK, PIOTR PECKA

Institute of Theoretical and Applied Informatics
of the Polish Academy of Sciences

Received 7 September 2011, Revised 1 December 2011, Accepted 5 December 2011

Abstract: Continuous time Markov chains (CTMC) are one of the formalisms for building models.
This paper discusses expressing these models in a standard programming language – Java. Using such a
language as a model description allows for a partially common implementation of the production software
and of the description of the model, for a greater flexibility in comparison to model–checker specific lan-
guages that often do not employ features of an object–oriented programming. Using Java also makes the
parsing of models relatively fast, using optimised Java runtime environment.

Our approach aims at using typical mechanisms of the Java language when implementing the model,
and at the same time, following closely the concepts from computer networking and from formalisms based
on it, like the queueing systems. These assumption result in techniques like plain object fields constituting
the state vector, or negotiation between nodes to decide if an event happens.

Keywords: Markov chain, continuous time, model checking, Java

1. Introduction

Along with model checkers or other software that analyses continuous–time Markov
chain models (Parzen 1999) there is a host of languages for representing these models.
These languages, usually being at the fringe of the effort focused on analysis of the
models themselves, typically lack expressiveness and employ outdated programming
paradigms.

A typical example is the Prism model checker (Kwiatkowska et al., 2005, 2009),
which employs state–of–the–art algorithms for solving the models, but at the same time
supports only a simple language that lacks basic features like intermediate variables
outside of the state vector, and uses text–level preprocessing techniques instead of more



230

modern methods like object instantiation. On the positive side, the language is built from
ground up to represents models (Alur and Henzinger, 1999), having in effect advantages
like the great readability of its dedicated grammar.

There are model checkers, though, that are able to embed a standard language like
C into their model description, for example the SPIN model checker (Holzmann, 2004).
This adds a lot of flexibility in comparison to the Prism language, but still, the Promela
language, into which the C code is embedded, represents a simple procedural approach
to programming.

It could be concluded, that the best way of improving the simple languages would be
extending them with features like a standard library with complex data types or a support
for object–oriented programming. Such approach would not compromise the readability
of these languages. Yet, an user would need to learn a new, advanced objective language,
what in certain cases might make the approach impractical. We base this supposition by
looking at the typical traits of languages that are flexible and expressive, or in other
words, include a complex set of grammar rules and a large standard library.

For starters, standard, general computer languages:

• are commonly used for production applications – that possibly allows for using
the same implementation for both production and model checking, what can save
on development and reduce the number of possible issues caused by the incoher-
ence between two implementations – one of a system, and one of its model; that
obviously may lead to checking of not only traits of the model, but also of the
correctness of its implementation;

• complex languages naturally require a long training process to master due to their
complexity – it is not surprising, thus, that the popular ones typically offer back a
lot to reward the learning effort: generality; in contrast, a dedicated language for
representing models usually offers nothing beyond that;

• they offer an excellent documentation – there are hundreds of books on Java or
C++, and hundreds of discussion groups devoted to exchanging experiences on
these dialects; this pairs well with the complexity of the languages;

• they can have a very fast runtime environment – for example, current versions of
the Java Virtual Machine have a very effective just–in–time compiler (Inc., 2007);
this can have a direct effect on the time of analysis of a model description;

• the discussed languages require a non–trivial maintenance – for example, there is
a large number of people maintaining the Java language and its implementation,
and still, they deal with hundreds of not yet resolved issues;

This raises a question about an alternative solution in the task of using an expressive
language for describing models – instead of building a complex dedicated language,



231

which would try to repeat the advantages given above, why not just design a library
on top of an existing complex language. Naturally, some of the advantages of model
languages like a dedicated grammar would be lost, but the discussed alternative might
still have its niche.

This paper proposes such an approach. We developed OLIMP2 – a library on top
of Java for representing models in that language and for translating these models into
transition matrices. The main reason for developing it was, that the Prism language
makes it very hard or impossible to implement certain models cleanly and optimally.

We did not want, though, to, in a sense, copy the Prism language or a similar one
into Java, by reusing as closely as possible the conventions for, say, defining guards or
synchronising actions, that are commonly obeyed in many model languages. While we
find such ‘copying into a standard language’ a possibly viable approach, especially that
the effect might resemble more accepted formalisms like that in (Alur and Henzinger,
1999), we were instead interested in reusing natural mechanisms of an imperative lan-
guage and of the formalism of computer networks, as the latter are commonly modelled
using Markov chains.

Due to the potentially very large sizes of a model’s transition matrix, its genera-
tion using OLIMP2 is parallelised, and the matrix can be compressed on-the-fly using a
dedicated compression based on finite-state automata.

The paper is organised as follows. The next section discusses a similar work. Sec-
tion 3 illustrates the basic ideas behind our method. Sec. 4 shows a simple example. The
last section concludes the paper.

2. Similar work

We are not aware of any CTMC library for a C–like language, that offers a similar
functionality, beside OLIMP (Pecka, 2002), from which stems OLIMP2. There are,
though, some projects that treat a Java application as a process with a discrete time,
like JavaPathFinder (Khurshidetal., 2004), or Java2TADD (Wozna and Zbrzezny, 2008;
Rataj et al., 2008; Rataj, 2009). The former is a kind of the Java Virtual Machine (Yellin
and Lindholm, 1999), that is able to test complex production applications, but it does not
translate these applications into transition matrices. The latter is, in contrast, limited to a
small subset of Java grammar and requires the analysed application to be instrumented,
but translates it to a form, that can be easily transformed to a transition matrix, which in
turn can be reused by a lot of model checking software.



232

3. Basic concepts

The basic assumption is to use the style and concepts found in the Java language
and in the formalism of queueing systems, that describe computer networks or similar
systems. The former stems obviously from choosing Java as the model representation,
the latter from the fact, that various kinds of networks are commonly modelled and
checked using CTMC.

To realise the assumption, we aimed at making the model representation similar to
an implementation of a computer network in Java.

3.1. Nodes and connections

Let a node be an entity, that, on basis of the current state vector, decides on a frag-
ment or a whole of the new state vector, and on its contribution to the respective transition
rate to that new state vector.

A node is thus a generalisation of a queueing theory’s server, in the sense that there
can be an arbitrary number of elements of the input state vector and in the output state
vector, that are respectively read or written to by a node.

In a computer network, an event is typically a transfer of a packet from one node to
another. The sender must decide that it sends a packet, and the receiver must accept that
decision. Similarly, in a queueing model, a sending server needs a non–empty buffer,
and the receiving server needs a non–full buffer to realise a transfer of a task. We follow
that closely.

Let a connection in OLIMP2 be a way, though which a token can be sent. per a
connection, there is a single sender node, and a number of receiver nodes. A token, to
be successfully transferred, must be sent by the sender and accepted by the receivers.
Sending a token is the only possible way of an event to occur in OLIMP2.

Thus, there is a negotiation needed between a number of nodes for every event to
occur. In a degenerated case, a single node sends a token to itself to change its own
internal state, what also is a case of a negotiation.

A connection is a generalisation of a connection in the queueing theory, in the sense,
that the token must not necessarily be a task, and its transfer may be an equivalent of a
number of arbitrary transitions, as opposed to only changing servers’ buffer sizes.

3.2. A node is a class

A node in OLIMP2 is a Java class, that directly of indirectly extends
AbstractNode. A node can contain a number of state fields. All state fields in all
instantiated nodes create together the state vector. A state field is an integer value or an
array of integer values, that can be read or modified by the nodes, what is an equivalent
of, respectively, reading the input vector state and creating the output vector state.



233

Initialising the state fields while constructing the nodes determines the initial state
of the model.

3.3. Negotiation details

AbstractNode needs two of its methods to be defined by subclasses – transit
and receive. The former method is called by OLIMP2 as a way of querying a node,
if, for a given input state vector and a given connection c, the node can asynchronously
initiate an event. A node, within transit’s code, reads the input state and then, on
basis of the values read, may try to send a token through c, by calling via OLIMP2 the
receive methods of the receiver nodes assigned to the other, receiving end of c.

A receive method defines token acceptance and, if the token is accepted, a con-
tribution to the rate and the output vector of a respective transition. The token sender,
again within transit, on basis of these return values of the called receive methods,
determines the resulting transition rate and returns it through transit’s return value
to OLIMP2. If the token has been accepted, the return rate is non–zero, otherwise, it is
zero.

If the rate is non–zero, OLIMP2 reads the output state from node’s state fields and
completes the transition matrix.

Fig. 1. An example queueing model

The example model in Fig. 1 illustrates a negotiation between two nodes – for a task
to be send from the server 1 to the server 2, the following sequence is required:

1. server 1’s transit reads from the input state, that x0 6= 0;

2. thus, it tries to send a token, by calling server 2’s receive;

3. server 2 reads from the input state, that x1 6= its maximum buffer size;

4. thus, it accepts the token sent by server 1, and increases x1 by 1;

5. server 1 sees, that receive’s return value is non–zero, thus, the token has
been accepted, so it decreases x0 by 1, and returns a non–zero transition rate in
transit’s return value.



234

3.4. Adhering to Markov’s property

A CTMC should be memoryless, and can have races. Both qualities have a direct
impact on the allowable behaviour of the nodes.

For each combination of a reachable input state and a connection, called further a
base combination, for which some node is a possible sender because it is that connec-
tion’s sender, a node’s transit is called only once, unless some receiver node declares
it wants to be queried again for a given base combination but with a different race num-
ber, because the node known that alternate output vectors are also possible. All in all,
the following should together completely determine, because of the required memory-
lessness, the behaviour of a node, whose transit or receive has been called by
OLIMP2:

• input state vector;

• a connection c;

• in the case of the sender, return values of called receive methods;

• in the case of a receiver, the mentioned race number.

While the base combination is the same for the sender and for the receivers of c, the
race numbers are individual for each of the receivers. Initially, for each base combina-
tion, each receiver i of c has its race number r = 0. Any of these receivers, though, may
request a successive race number as discussed.

The idea is, that all combinations of requested race numbers are queried. So, for
example, if there are two receivers in some connection, the first one requested race num-
bers 0 . . . N1 − 1, and the other, respectively, 0 . . . N2 − 1, a total number of queries of
the sender for a given base combination will be N1N2.

To request a next race number, a node changes the state according to the current race
number, and then modifies receive’s rate contribution by using a special function
neg, to inform OLIMP2.

Note, that the sender must behave sensibly when the receivers request successive
race numbers. It would be suspicious, if a receiver would request another race number,
but the sender would not try to send a token for the given base combination any more,
thus, the receiver would never be called with the race number it has requested. Such
suspicious behaviour is forbidden by the already discussed policy, because when the
sender decides or not to negotiate sending of a token, it does not yet know receive’s
return values, and thus, only the base combination can determine its behaviour.

Support for the race number implies, that there are two ways of a race to occur:

• a usual, directly declared one – if there is more than a single connection, for which
some node is a sender;

• if one or more receiver nodes requested more than a single race number.



235

The former is a typically defined race, as in the example illustrated in Fig. 1. As can
be seen, the server with the service time µ can send a task with the probability of 0.8 to
the next server, or return the task to its own buffer with the probability of 0.2. The node
representing that server would thus be asked twice for each reachable state – one time
for each of the two connections, to which it can send tokens.

The latter is a so called in–connection race. We will discuss that kind of race in detail
in Sec. 3.6.

3.5. Transition rate

The basis for a rate of the transition from an input state to an output state is rs,
that is defined by the sender in transit’s return value. For example, if the sender is
a exponential service server in the formalism of queueing systems, the value returned
might simply be its service rate.

We call it a basis, and not the transition rate, as the sender may return a number of
rs values for a single input state vector, if the sender sent accepted tokens to multiple
connections or if there is a in–connection race. If, for some of these values, there is not
only the input state the same, but also the output state is the same, then the respective
values rs will sum into a single transition rate.

A sender, as discussed in in Sec. 3.4., may compute rs on basis of the return values
of the receive methods it called. These return values are combined in a single value rr

by OLIMP2 though, and the sender sees only that single value. A token is accepted if
rr 6= 0. The exact formula for computing rr is dependent on c’s mode.

One of the factors in that formula is mode–independent – it is a connection–specific
constant value rc. By convention, that value reflects the probability of choosing the
connection. If a node can send tokens to a set of connections s, then the sum of rc within
s, if that convention is followed, is 1. In the example in Fig. 1, the server 1 would send
tokens to two connections whose rc values would be respectively 0.8 for the connection
going to the next server and 0.2 for the returning connection.

Beside rc, there are the mentioned values specified by receivers in receive’s return
value. Let there be a connection whose receivers are a set of nodes ti, i = 0, . . . T − 1.
Let the respective factors be rt

i .
In the default mode PRODUCT, receive’s return values are factors:

rr = rc

T−1∏

i=0

rt
i (1)

This mode is similar to that used by other model checkers when combining rates of
synchronised commands, and allows for multiplying rates by probabilities. In the mode,
for a token to be accepted, all receivers must return a non–zero rt

i .



236

There is also another mode possible – SUM:

rr = rc

T−1∑

i=0

rt
i (2)

An example application: receiving nodes are pumps, and rr is the flow speed.

3.6. In–connection races

A connection has two purposes – it connects a sender to the receivers, but it also
synchronises these receivers. It simply stems from the fact, that a given token is sent to
all of these receivers at once. The contribution of the sender of a connection c and of all
receivers of c to the state variables merges to form the output state.

By using the race numbers discussed in the previous section, a race within a single
base combination is possible. Let there be a connection c with a sender node s and a
number of N receivers ti, i = 0 . . . N − 1. If N = 1, and t0 requests race numbers
0 . . . M − 1, then the resulting in–connection race could obviously be equivalently de-
fined by M parallel connections between s and t0. The receive method of t0 would
in such an equivalent definition be sensitive to the connection number, instead of the
race number. So, an in–connection race would in such a case have no benefits – both
implementations would be similar.

But, if N > 1, the in–connection races allow for a very convenient definition of
certain complex races.

For example, let s be a clock, that ticks with the times between these ticks given by,
say, an Erlang distribution. Let ti be switches synchronised by a common tick from s.
On a tick from s, each switch releases a packet from its buffer to some network with a
probability p = 0.2, and the release is independent from possible releases made by other
switches.

Let it translates in the model description to each switch deciding about a part of the
output vector not overlapping with the respective parts of the vectors modified by the
other switches.

Clearly, a tick may produce 2N output states from a single input state. Were there
no in–connection races, then even for a small N a great number of connections would
be needed to which s would send the tick, one connection per output state. Instead, an
in–connection race can be used. It requires only a single connection c, through which
a tick token is sent from s. Each receiver ti of c requests two race numbers – one for
releasing the packet, and one for not releasing it. In both cases, the token is accepted, but
the rate contributions rt

i , i = 0 . . . N , are respectively 0.2 and 0.8. The c’s mode must be
PRODUCT, so that the probabilities of the independent events , in this case being equal
to the values rt

i , are correctly combined into rr.



237

3.7. Tokens

A sender can send various types of tokens through the connections. It does not give
any more possibilities for node behaviour beside these discussed in Sec. 3.4., but can
ease the implementation. For example, a sender node may parse the input vector to find
out, which action should be taken, and then it can send a token that defines that action.
This way, a receiver does not need to parse the input vector again, but it just looks at
the token type. It not only may remove redundancy from the implementation, but also
make nodes more modular – returning to the example, the receiver might be a model–
independent module, if it looks only at the token type, as opposed to divulging into the
model’s input state.

3.8. A library

OLIMP2 comes with a library of standard components. The library ex-
tensively uses the objective programming paradigm. For example, an ab-
stract class of a server AbstractBufferedServer is extended by a subclass
ErlangBufferedServer.

3.9. Further implementation details

In this section, some further implementation details are discussed.

3.9.1. Explicit state variables

As discussed, a node can contain various fields, but it explicitly lists to OLIMP2
the subset of these fields, that are a part of the state vector. It does that using a field
annotation. The annotation supports two parameters min and max, that define the
range of values, into which fits the state variable. If not defined, these limits default
to 〈−32768, 32767〉. Example of a state variable:

@State{min = 0, max = MAX_BUFFER_SIZE}
int packetsNum = 0;

A node’s initial state is determined while its construction. In the example, an initial
value of 0 is assigned to the part packetsNum of the state vector.

3.9.2. Refreshing the state variables

OLIMP2 must set the state variables to the input state before calling transit.
Some non–public state variables might be not set, as discussed in the next section. Any-
way, OLIMP2 might refresh these variables before each receiver’s receive is called,



238

but to reduce the computational complexity, there is a instead rule, that the sender is not
allowed to modify the state variables within transit before trying to send a token.
If there is more than a single receiver in a connection, though, the state variables are
refreshed between two successive calls to receive, along with saving of the modifica-
tions to the vector state made by the methods, of course. This is substantiated by the peer
nature of the receivers – there is no asymmetry like the sender/receiver asymmetry, so
all receivers equally receive the input vector in the state variables. The sender should not
rely on the state variables after a token is accepted, as their values are undefined. After
the acceptance, the sender may only write to the state variables, to specify the output
state.

3.9.3. Public vs non–public state variables

With further discussed exception, a node can not access in any way a non–public
state variable of another node – it can not either read it nor set the output state by
writing to it. It is because OLIMP2 optimises computations by possibly not updating
such variables.

The exception is, that a node is allowed to read the non–public state variables of all
senders and receivers of the connection, that is a part of the base combination, These
not–public fields can not still, though, be written to by a node to which they do not
belong.

A user that does not want to follow these somewhat complicated rules from this
section, may simply declare all state variables as public, but it may come with some
impact on the computation speed, which is typically very minor if the state vector is not
very large.

3.9.4. Sending a token

There is a method accept that serves as OLIMP2’s layer between the sender and
the receivers. The method calls the receive methods in turn – a sender should never
directly call receive.

A node can send a token to itself. It can do so using a looped connection, but it can
also do so using a so called internal token transfer.

To support th case of a looped connection, the receive methods have an addi-
tional parameter me, that represents, if the token to accept was send by the same node.
This way, a node knows, that it may yet modify the output vector in transit, af-
ter receive returns. That knowledge is sometimes crucial, what is illustrated by the
example described in Sec. 4.

An internal token transfer can be used, when using a looped connection would be
unnatural. For example, a server having the service time given by the Erlang distribution,



239

whose example is given in Sec. 4., changes its phase before the serviced task is released.
Due to OLIMP2 rules, such a change must involve a token transfer, just as any other
event. But, in queueing terminology, servers with Erlang service time do not possess a
looped connection just for changing the phase. An internal token transfer could thus be
used instead. That type of transfer is realised by by a variant of the method accept.

The method accept also computes the value rr. The return value of that method is
specifically rrra, where ra is the method’s argument decided by the sender. This eases
computing rs, as it is typical that the sender multiplies the ‘acceptance factor’ rr by a
given factor to create rs. An example of it is shown in Sec. 4., where ra is the rate of
reaching a new phase by a server.

3.9.5. Caveats of parallel execution

OLIMP2 is able to work concurrently. As the model is not reentrant, it is copied into
a number of clones, accessed concurrently.

If the models happens to have references to the other nodes in a model, then these
references must obviously be changed in the clone models..

To update the references, OLIMP2 scans all fields in the nodes for types being
AbstractNode or its subclass, and replaces these fields with references to cloned
nodes. If such references are hidden outside the node fields, OLIMP2 is not able to
reach and replace them. Such hidden references should thus not be used.

3.9.6. Adding a receiver to a source

All sources in the library implement an interface SourceInterface, which has a
method for adding new receivers. The method adds the receivers to a single connection,
instead of adding a separate connection for each receiver.

The effect is, that a token generated by the source goes to all receivers at once. If
this is not the desired behaviour, a number of separate sources should be declared, what
will effect in independent tokens being sent to each receiver.

3.9.7. Free use of features of the Java language

OLIMP2 is only a library, the user is thus free to use all of the language features.
For example, let us consider again the model with pumps, mentioned in Sec. 3.5.

The receivers return a total flow speed, which is a scalar, and that in turn is all what
can be returned in receive’s return value. So, if the pumps should also return the
electricity consumed, that value can be returned in another way, for example, through
a custom field in a token. The sender may then, say, quantise that value and increase a
respective part of the output state vector by the quantised amount.



240

3.9.8. Compression of the transition matrix

Because the nodes are currently a black-box to OLIMP2, the transition matrix is not
stored in a symbolic form. This might make it very large. To reduce memory require-
ments, a dedicated compression of the matrix using finite state automatons is used.

4. Example – a buffered server

Let us analyse an example – a simple buffered server with a service time given
by the Erlang distribution. In OLIMP2, there is a class ErlangBufferedServer,
that defines the service time only, as the buffer is defined in a superclass
AbstractBufferedServer. Let us look into the superclass first. The buffer
only receives packets, it never sends them over the network – the latter is done by the
server itself. The packet reception is modelled straightforwardly by a token reception –
AbstractBufferedServer defines the method receive for that end:

@Override
public double receive(boolean me, AbstractToken token,

int num) {
if(queueSize < maxQueueSize + (me ? 1 : 0)) {

++queueSize;
return 1.0;

} else
return 0.0;

}

Note that the method is sensitive to the parameter me. It is because if the server transfers
the packet to itself, the variable queueSize in transit and receive is exactly the
same. A node, as discussed, can never change its state before calling accept. But,
if accept returns a non–zero value, it means that the queue size should be decreased.
Thus, if the token was sent by the same node, queueSize will yet be modified after
receive exits. If the final value of queueSize, that is, the value of that variable in
the output, and not in the input state, is important for the acceptance of the token, the
method must predict the final value. It does so by looking at the parameter me. If it
is false, it means, that the value of queueSize set in receive is already the final
one. Otherwise, if the parameter is true, the node knows it can accept the token even
that the seems to be already full, as in reality the acceptance of the token means, that
queueSize will be decreased in transit, that called receive. So, if the packet is
going out of the server and arriving to the same server’s buffer again, all within a single
transition, then the queue size will be the same in the input and in the output vector, thus,
the respective token should be accepted for any buffer size.



241

The subclass ExpBufferedServer defines service time. It simply means, that it
declares sending a single packet from its buffer elsewhere with some rate µ. As sending
a packet is represented by the server’s token being accepted by a node that agrees to
receive that packet, the subclass needs only to declare an appropriate transit method:

@Override
public double transit(Connection t, int num) {

double rate;
if(queueSize > 0) {

if(phase < phasesNum - 1) {
rate = model.accept(this, phaseMu, null);
++phase;

} else {
if((rate = model.accept(t, phaseMu, getToken()))

!= 0) {
--queueSize;
phase = 0;

}
}

} else
rate = 0.0;

return rate;
}

As can be seen, the class changes the phase of processing the packet several times using
internal token transfers, until finally the packet is sent to the network. Transitions that
represent the change to the next phase have a rate phaseMu, and the transition that
represents sending the already processed token out of the server has that rate as well.

5. Conclusion and future work

OLIMP2 uses a different approach for defining CTMC models in comparison to that
of most model checkers – the model description language is a standard computer lan-
guage, that is oriented towards negotiation of transfers, and not guards and synchronising
labels. The approach aims at filling a niche beside the other languages for representing
model,s especially of computer networks.

OLIMP2 is planned to be enhanced so that it is able to find out, that a transit
method, along with any methods that are recursively called, reads only a subset b of the
input vector state. In such a case, OLIMP2 would decide to call that transit method
only for all reachable combinations of b, instead of all reachable states. That would



242

lead to the symbolic representation of the transition matrix, as used by other checkers
like Prism (Kwiatkowska et al., 2002), whose languages are not ‘black boxes’. Such
a representation might radically reduce the time and memory requirements needed by
OLIMP2. We are going to adapt the Java2TADD translator to realise that.

We plan to implement several ways, beside the existing one, of accessing the state
variables by the code that describes the model. For example, one where the changes to
the state vector in transit are allowed before calling receive, and visible in the
latter. It would make it more natural to define certain models, for example when a state
variable expresses a number of packets, which circulate between the nodes.

References

[1] R. Alur and T. Henzinger: Reactive modules. Formal Methods in System Design,
15(1):7–48, 1999.

[2] G.J. Holzmann: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley, 2004. ISBN ISBN 0-321-22862-6.

[3] Kogent Solution Inc. Java 6 Programm ing Black Book. Dreamtech Press, 2007. ISBN
ISBN 9788177227369.

[4] S. Khurshid, W. Visser, and C.S. Pasareanu: Test input generation with Java Path Finder.
In Proceedings of the ACM/SIGSOFT International Symposiumon Software Testing and
Analysis. ACM Press, 2004. ISBN ISBN 1-58113-820-2.

[5] M. Kwiatkowska, G. Norman, and D. Parker: Probabilistic symbolic model check-ing
with Prism: A hybrid approach. International Journalon Software Tools for Technology
Transfer, pages 52–66, 2002.

[6] M. Kwiatkowska, G. Norman, and D. Parker: Quantitative analysis with the probabilistic
model checker PRISM. Electronic Notesin Theoretical Computer Science, 153(2):5–31,
2005.

[7] M. Kwiatkowska, G. Norman, and D. Parker: Prism: Probabilistic model checking for
performance and reliability analysis. ACM SIGMETRICS Performance Evaluation Re-
view, 36(4):40–45, 2009.

[8] E. Parzen: Stochastic processes. Classics in applied mathematics. Society for Industrial
and Applied Mathematics, 1999. ISBN ISBN 9780898714418.

[9] P. Pecka: Obiektowo zorientowany wielowatkowy system do modelowania stanow
nieustalonych w sieciach komputerowych za pomoca lancuchow Markowa, PhD thesis,
IITiS PAN, Gliwice, 2002.

[10] A. Rataj: More flexible models using a new version of the translator of Java sources to
times automatons J2TADD. Theoretical and Applied Informatics, 21(2):107–114, 2009.



243

[11] A. Rataj, B. Wozna, and A. Zbrzezny: A translator of Java programs to TADDs. In Con-
currency, Specifcation and Programming (CS & P2008), pages 524–535, Gross Vaetern-
ear Berlin, Germany, 2008.

[12] B. Wozna and A. Zbrzezny: Towards verification of Java programsin VerICS. Fundamenta
Informaticae, 85(1-4):533–548, 2008.

[13] F. Yellin and T. Lindholm: Java Virtual Machine Specifcation. Prentice Hall, 1999. ISBN
ISBN 978-0201432947.

Modelowanie łańcuchów Markowa z czasem ciągłym przy użyciu standardowego
języka programowania i z zastosowaniem konwencji z dziedziny sieci

komputerowych

Streszczenie

Łańcuchy Markowa czasu rzeczywistego są jednym z formalizmów używanych do
budowy modeli. Artykuł ten omawia wyrażanie takich modeli w standardowym języku
programowania – Javie. Użycie takiego języka umożliwia częściowo wspólną imple-
mentację oprogramowania użytkowego i opisu modelu, większą elastyczność w porów-
naniu do często nie używających obiektowych konwencji programistycznych języków
stosowanych przez oprogramowanie weryfikujące, oraz szybką budowę modelu z uży-
ciem zoptymalizowanego środowiska czasu wykonania Javy.

Nasze podejście miało na celu wykorzystanie typowych mechanizmów języka Java
przy opisie modelu i jednoczesnie trzymanie się konwencji z dziedziny sieci kompu-
terowych i pokrewnych formalizmóm typu systemy kolejkowe. Dlatego używamy tech-
nik takich jak zastosowanie pól obiektów jako elementów wektora stanu czy negocjacja
pomiędzy węzłami, czy dane zdarzenie ma mieć miejsce.


