
Theoretical and Applied Informatics
ISSN 1896–5334

Vol.23 (2011), no. 1
pp. 55–72

DOI: 10.2478/v10179-011-0004-x

Improving efficiency of data-intensive applications in goal-oriented
adaptive computer systems

MACIEJ MŁYŃSKI, PRZEMYSŁAW RUMIK

Association for Computing Machinery
{maciej.mlynski},{przemyslaw.rumik}@acm.org

Received 30 December 2010, Revised 17 January 2010, Accepted 14 March 2011

Abstract: An accurate use of the ability to steer computer efficiency is essential from the database
point of view. Effective resource allocation is dependent on the performance indicators gathered from
running systems. There must be an appropriate balance between accurate measurements, performance
indicators and speed of the reallocation algorithms of the computing resources. The extended measurement
of efficiency which the authors propose for applications is: the average number of queries within a time unit
for particular groups of users. This paper presents an analysis of using the Workload Manager utility in the
AIX 5L operating system to improve the efficiency of applications in the MySQL database environment,
and an analysis of methods which allows the use of Workload Manager for steering efficiency dynamically.

Keywords: performance management; workload management; dynamic resource allocation; predic-
tive resource management

1. Introduction

Computer systems should be provided with support processes that establish priorities
that favour the operating system in terms of the allocation of resources such as processing
power, amount of memory used and utilization of I/O channels. This should be done in
such a way that processes can perform at a predefined time. [3] Failure of this assumption
may reduce the reliability of commercial applications. Failure or lack of efficiency of one
element can cause further failure and lack of efficiency of other system components that
are related to the first one. This scenario we term a “domino effect”. In specific cases, the
"domino effect" might result in lack of functionality of other elements of the system. In
the experiments that were carried out, Workload Manager was used. Workload Manager
is a tool that allows AIX [7] server computing power allocation according to defined
policies.



56

In order to make better use of system resources, it is necessary to define the char-
acteristics of the class assignment rules for the allocation, and specific system architec-
tures and characteristics of the applications must be considered [4]. Workload Manager
is based mainly on conceptual notions such as class assignment rules for classifying re-
sources and processes. The classes are defined as sets of non-defined resources with
defined characteristics such as memory occupancy, the use of computing power and
server capacity input and output channels [3].

Workload Manager allocates physical resources dynamically, depending on the de-
fined class assignment rules. This gives administrators and architects more control over
the scheduling program and virtual memory manager, which in turn allows them to al-
locate more processing power resources and physical memory in accordance with their
needs. In each class, resource limits can be defined, which is helpful for using the appli-
cation. Limits can be both hard limits, which the application may not exceed, and soft
limits, which may be exceeded in exceptional cases.

There at least two kinds of method for resource allocation. The first approach
is “goal-oriented” which aims to have previously defined application response times
match with their efficiency. The second is “resource-oriented” where only the amount
of used resource is defined. How to set the parameters is not defined in the “resource-
oriented”approach.

In [5, 9] the authors present work based on a similar environment using Workload
Manager, as described in [2]. [5] shows that achieving appropriate automatic settings
for such a complex environment is not trivial, and in order to be able to perform proper
resource management it needs to be founded on a theoretical basis, which is not yet
well defined. [5] also shows an example where increasing resources caused application
performance degradation. This was for shared processors working in uncapped modes.
In [10] the author shows a prototype for goal-oriented workload management based on
a knowledge database. Article [10] also shows that the stage of the learning process for
the database is time-consuming, and it could be improved to a limited extent.

In [9] the authors present research and the results of the dynamic resource allocation
experiments, based on databases, which were prepared especially for this research. The
aim of those experiments was to assess the effectiveness of applying a Workload Man-
ager to keep low the load of distributing system devoted to goal-oriented application.
The paper is based on research presented in [9]. With comparison to [9] the following
are the main contributions of the paper:

• formal justification of the selection of the used methods,

• shows additional analysis of statistics,

• formalize the problem and draw new conclusions,

• review of the literature in this area.



57

There are also related works in similar areas such as autonomic computing [1], self-
managing systems [21] and control theory. Many methods are already in existence.
In [17] and [18] the authors present an adaptive Grey Fuzzy controller. In [15] the
MGDC (Goal driven performance controller) is proposed. Closer analysis shows that
it is difficult to find a single method for resource allocation that covers so many varied
computing environments. In [14] we can see good methods for multisite environments,
in [19] for environments based on IA-64, in [20] for Grid computing, and in [16] for
virtualized resources through WWW and DB servers using Xen. All the methods pre-
sented are different. In [11] the author describes workload characteristics in a production
system. A production system is less determinist than computer systems that are avail-
able for researchers in laboratories. The workload is very often dependent on external
circumstances. A new approach such as virtualization [12, 13] offers a new possibil-
ity for changing hardware resources on-the-fly which would have a significant impact
on application program characteristics and also resource management, which must be
appropriate to the new approach.

This paper presents research using our own testing methods as described in section
2, and the results of the dynamic resource allocation experiments, based on databases,
were prepared especially for this research. This database environment, using several
applications with different response time expectations, is widely used in actual commer-
cial settings. We used the Workload Manager build in the AIX operating system as an
example of a dynamic environment.

2. Load generator

The BaseAttack program (Figure 1) was designed for testing purposes, and also a
database was created and configured on the MySQL [6] server. The purpose of the pro-
gram was, as far as possible, to load the database within the confines of the restrictions
of the computing resource defined by Workload Manager.

The program which we designed is as simple as possible, because we wanted to elim-
inate all effects known to arise from irregular applications. All the experiments had to be
repeatable. This program also implemented libraries in order to gather statistics from the
program execution and collect them into a readable spreadsheet for future analysis. Our
goal was to define and use our own testing methods which are appropriate for the area
of investigation. The purpose was to gain greater understanding of Workload Manager
behaviour – not application behaviour which is what most testing tools do.

The diagram of the program relies on opening the program, connecting to a database
and running a given number of threads so that the existing connection will send queries
to the database.

In order to satisfy the conditions of the simulation, in which all the threads tend to



58

Fig. 1. Logic schema of the program for server load generation

take as much CPU time as possible, this was achieved during the implementation by
using an infinite loop. The task threads O1 to O8 were constantly querying the database
for the number of records in the POSITIONS array and the maximum value of field X in
this table. The task was to thread Z1, adding new records to an array of positions. The
metric of the efficiency of the process was the number of queries made by each type of
program in the 10-second time segment.

The test database was composed of one table defined as follows:

POSITIONS (
ID INTEGER,
X FLOAT,
Y FLOAT,
STAMP TIMESTAMP
);

3. Experience in the field of dynamic resource allocation

In order to carry out the experiments, a model case was selected, which is one often
found in real computer systems. The current trend is to use Java based multi-user

applications connected to a central database system.



59

On the server used for the experiments, a database server and client applications were
installed. In the Workload Manager configuration three classes of resource are defined:

• prod

• prod24

• app

Class prod24 tracked resources used by the MySQL database management system. Class
prod and app is the class of clients. During the experiment, measurements were per-
formed in a situation where the system was running nine instances, and a client applica-
tion was executed by three different users:

• user prod counted in the class with three instances of the program,

• user app counted in the class with three instances of the program,

• user rmk counted in class app with three instances of the program.

The aim of the experiment was to demonstrate the possibility of controlling application
performance (measured as the number of queries per unit time) through the choice of
system parameters.

The test application named BaseAttack was run using standard compliant JVM of 1.4
supplied by IBM. The MySQL server used during these experiments was version 3.23.58
for IBM-Aix 5.1.0.0 on PowerPC. The BaseAttack application was developed using Java
because of the frequent use of the language in business solutions. The program used
for connecting to the database was MySQL Connector / J version 3.1.12 developed by
MySQL AB. The experiment carried out several tests with different settings of limits in
Workload Manager. Table 1 shows the settings used during these experiments.

The aim of each test, based on each set of limits (settings), was to test the impact of
the limits of a given group on application efficiency.

During these experiments the above sets were tested, which corresponded to: no lim-
its, limits for the CPU (two sets of tests), limits for memory consumption, and limits for
the I/O channel. One experiment was conducted using a set consisting of all the limits.
The first test allowed us to say that, in the absence of limits on the complexity of simi-
lar requests, all instances of the BaseAttack application achieved a similar performance
(Figure 2), and we noted that, in this case, the CPU load is distributed pro rata among all
the classes (depending on the number of applications running) (Figures 2 and 3).

In Figure 2, during the first 200 seconds, it was noticeable that the results showed
fluctuations in the imposition of the disorder introduced by setting up a Workload Man-
ager mechanism and starting the application. In Figure 2, the Workload Manager set-
tings were the same all the time. However, the efficiency of the application increased



60

Class CPU min CPU max MEM min MEM max I/O min I/O max
Tests set #1

prod24 0% 100% 0% 100% 0% 100%
prod 0% 100% 0% 100% 0% 100%
app 0% 100% 0% 100% 0% 100%

Tests set #2a
prod24 0% 30% 0% 100% 0% 100%
prod 0% 60% 0% 100% 0% 100%
app 0% 10% 0% 100% 0% 100%

Tests set #2b
prod24 0% 50% 0% 100% 0% 100%
prod 0% 40% 0% 100% 0% 100%
app 0% 10% 0% 100% 0% 100%

Tests set #3
prod24 0% 100% 0% 60% 0% 100%
prod 0% 100% 0% 35% 0% 100%
app 0% 100% 0% 5% 0% 100%

Tests set #4
prod24 0% 30% 0% 100% 0% 99%
prod 0% 60% 0% 100% 0% 99%
app 0% 10% 0% 100% 0% 1%

Tests set #5
prod24 0% 30% 0% 60% 0% 99%
prod 0% 60% 0% 35% 0% 99%
app 0% 10% 0% 5% 0% 1%

Tab 1. Limits for the Workload Manager, used during these experiments

app
[queries per 10 seconds]

prod
[queries per 10 seconds]

rmk
[queries per 10 seconds]

getMaxX 95 (113) 98 (118) 103 (117)
getCount 95 (112) 98 (119) 102 (117)
putPosition 21 (22) 15 (17) 18 (17)

Tab 2. Summary of performance for requests getMaxV and getCount 999, and 171 putPosition requests



61

Fig. 2. BaseAttack application efficiency without limits (results related to Tab. 2)

slightly. This is the result of caching of data, and database memory optimization mecha-
nisms. During the experiments the computer system was fully utilized. Besides that, the
processors were fully utilized – there were several threads ready to run in queue to those
processors. In Figure 2, there are sometimes anomalies such as peaking at more than
180 queries for around 100 seconds. This had happened because of the high processor
utilization.

Fig. 3. Processor utilization for particular classes without limits (tests set #1)

Another hypothesis is that all the other processes were blocked and then the two
processes from class RMK (RMK1 and RMK2) had too much processing power avail-
able and could process more than 180 queries. Figure 5 shows the second test which



62

consisted of imposing limits on CPU usage for classes. In these classes, client applica-
tions were run on the database server. Tests with the imposition of limits on CPU usage
reveal that such limits have a significant impact on application efficiency in a working
class, which imposed the limits. The phenomenon is that, despite the imposition of a
greater limit on CPU usage for the prodclass (60% for set # 2, and 40% for set # 2b), ap-
plications running in this class showed higher productivity. Because lowering the limits
for Class prod was associated with an increase in the limit for class prod24 (from 30%
to 60%), which runs the database server, this was a reasonable explanation. The lower
limits for the class made it impossible to work the database server efficiently, as defined
in resource class prod24.

Such behaviour of the server and client applications indicates that the real problem
appears when clients seize the CPU time which should be allocated to the database
server.

Fig. 4. Processor utilization with limits for the processors’ use (tests set #2a)

This shows a comparison of a summary of efficiency (i.e. the total number of queries
within 10 seconds) for a system with no limits (set # 1), such that the aggregated per-
formance of 999 getMaxX queries, 999 getCount queries and 171 putPosition queries
is significantly lower than for a system with applied limits (set # 2b) (Figure 6 and 7)
where the aggregated numbers of getMaxX and getCount queries is equal to 1248, and
putPosition queries are equal to 219 per 10 seconds.

In Figure 4, we see the wave that is caused by the internal algorithm implemented
in Workload Manager. In Workload Manager implemented in the AIX 5L operating
system, the decision system is implemented based on class colouring [3]. Each class
have a colour assigned to it, which changes depending on the usage of computing re-
sources. When the class is using no resources, or much fewer than it should, the colour
is cold (blue), which means that when new resources come to the operating system,
and the assigned class rules decide in which resource class the new processes should



63

be computed, then the operating system can decide quickly that the resources may be
computed. When the resource class is using resources near or above the defined limits,
then the class colour is warm (red), which indicates to the operating system kernel that
the new resources should wait and can only be allocated when the class is colder.

The only method which the operating system has available to disinherit or not al-
locate resources is to decrease process priority. Then, when the priority is low, the
processes use fewer computing resources. This works fine for the CPU, whereas for
memory allocation a lower priority for processing does not always means that the process
will release the earlier allocated memory quickly.

In Figure 4, we can see how the above described algorithm works, and the effect of
changing the process priorities.

app
[queries per 10 seconds]

prod
[queries per 10 seconds]

rmk
[queries per 10 seconds]

getMaxX 47 182 49
getCount 47 182 49
putPosition 10 32 11

Tab 3. Global efficiency for 834 getMaxX and getCount requests, and for 159 putPosition requests

Fig. 5. Efficiency (defined as numbers of requests to choose instances executed by particular users) (tests

set #2a) (results related to Table 3)



64

app
[queries per 10 seconds]

prod
[requests per 10 seconds]

rmk
[requests per 10 seconds]

getMaxX 52 314 50
getCount 52 314 50
putPosition 12 51 10

Tab 4. Global efficiency for 1248 getMaxX and getCount requests, and 219 putPosition requests

Fig. 6. Efficiency (defined as numbers of requests to choose instances executed by particular users)

(tests set #2b) (results related to Table 4)

Fig. 7. Processor utilization for particular classes with WLM limits for processors (tests set #2b)



65

Another group of tests sought to examine the impact of limits on the amount of
memory (set # 3) and on the I/O channel (set # 4). Graphs show how memory consump-
tion (Figure 8) with the limits set by # 3, and the breakdown of memory between the
different classes, was relatively stable despite the limits imposed, by suggesting that the
limits were higher than the requirements of the applications working in their respective
classes.

Fig. 8. Utilization of memory with limits on its occupation (tests set #3)

The test system with limits imposed on the amount of memory shows no change in
performance compared with a system without limits (see Figure 9 for the limits on the
amount of memory), suggesting that, in the case under examination, there is no clear
relationship between performance and memory limits.

app
[queries per 10 seconds]

prod
[queries per 10 seconds]

rmk
[queries per 10 seconds]

getMaxX 111 118 121
getCount 111 118 121
putPosition 24 25 25

Tab 5. Global performance for 1050 getMaxX and getCount requests,and 222 putPosition requests
(tests set #3)

Also, imposing limits on the scheme for the I/O channel had no significant impact
on productivity, which is comparable to that for a system without imposed limits (Fig-
ure 10).

The intention of the final experiment was to observe a series of system behaviours
with the imposition of limits on CPU time, as well as the amount of memory and I/O
channels. Previous experience suggests that the imposition of any limits (set # 5) should
give similar performance to that of a setup of limits only on CPU time (set # 2).



66

Fig. 9. Efficiency (defined as numbers of requests to choose instances executed by particular users) (tests

set #3) (results related to Table 5)

app
[queries per 10 seconds]

prod
[queries per 10 seconds]

rmk
[queries per 10 seconds]

getMaxX 116 112 117
getCount 116 112 117
putPosition 25 28 29

Tab 6. Global performance for 1035 getMaxX and getCount requests and 245 putPosition requests
(tests set #4)

Fig. 10. Efficiency (defined as numbers of requests to choose instances executed by particular users) (tests

set #4) (results related to Table 6)



67

However, it appears that the imposition of limits set by # 5 resulted in a significant
decrease in performance compared to a system without imposed limits. A deeper analy-
sis suggests that the average yield for this case is about 20% higher than recorded, but
the measure imposes an additional load on the server.

app
[queries per 10 seconds]

prod
[queries per 10 seconds]

rmk
[queries per 10 seconds]

getMaxX 20 156 28
getCount 20 156 28
putPosition 2 34 3

Tab 7. Global performance for 612 getMaxX and getCount requests and 117 putPosition requests
(tests set #5)

Fig. 11. Efficiency (defined as numbers of requests to choose instances executed by particular users) (tests

set #5) (results related to Table 7)

Results obtained for the tested limits suggest that it is possible to use Workload
Manager (or its equivalent) to improve the performance of the application and database
server.

4. Analysis of the statistics

Selecting the appropriate limits for the class, in which there is a database server
process running, allows avoidance of a race (threshing) between the client application



68

and the server for access to CPU time. Mechanisms provided by Workload Manager, en-
riched with simple counting mechanisms in applications, allow us to determine the safe
limits for the class-server by carrying out measurements for running Workload Manager
without limits and running a database process and applications processes.

Execution in the system of the application (in class prod) by the prod user, and si-
multaneously MySQL engine (in class prod24) without limits (Figure 12), helps us to
determine the class-limits required by the server. A similar test also allows us deter-
mine the relationship between the limits applied in Workload Manager and application
performance.

The required value of the limits for class prod24 in the examined model was 25%.

Fig. 12. Processor load caused by class prod (client application) and class prod24 (server MySQL)

In the examined example, there was only a correlation between the CPU limit and
the application performance. This is described by equation 1. In the presented research,
for primary performance metrics, the efficiency of getMaxX and getCount queries was
used.

CPUthread% =
CPUMAX

efficiencymax
· exp ected_efficiency (1)



69

Knowing the value of the limits of the CPU for a single application instance and the
number of applications running within a class can be the designated limit for a class
with the authors’ assumption that each application within the class uses the CPU to the
same extent (the assumption we adopt on the basis of the earlier measurements).

5. Conclusions

In applications where the emphasis is on their service quality, defined as the ability
to process a particular number of requests, predictive workload management is essen-
tial. This feature can therefore improve the operation of conventional mechanisms for
dynamic allocation of resources in an operating system.

The result of the presented experiments shows that, after applying appropriate limits
(settings) for Workload Manager, the efficiency of the resource classes for production
more than doubled. The tests carried out have shown that it is not a trivial matter to
choose the parameters of Workload Manager. Several ad-hoc settings were applied. The
same settings did not always result in the same application efficiency in the database
environment. Empty databases behave differently than databases that have collected
millions of records.

The experiments presented in this paper show that it is better to use soft limits than
hard limits. Soft limits allow one to use all the resources from the server. There are
many cases where hard limits would be more suitable. Hard limits are better for real-
time applications, or applications where short processing time is unnecessary.

In [10] the author described a resource management system based on a knowledge
database. The learning process for building this knowledge database was automatic and
permutations of Workload Manager settings were used. In each permutation the appli-
cation efficiency was measured. In the experiments presented here, the ad-hoc settings
were based on the authors’ knowledge of how their application works. The application
used in these experiments was written especially for this occasion. We decided to build
our own testing methods so as to be sure that the experiments are repeatable. In complex
and irregular applications the knowledge of how to set up accurate Workload Manager
settings to gain expected response times is more difficult. The results of the experiments
as presented also show that, besides a theoretical background, knowledge about operat-
ing system behaviours is also important. Even when using a simple (regular) application
and constant conditions, the measurements are different. This is presented in Figures 2,
5, 6, 9, and 10. Further analysis shows that the same request, for instance reading the
same data from the same table, might takes different amounts of time, due to caching,
running background processes, or just memory allocation into paging spaces.

The program and the testing methods used in these experiments are not relevant for
irregular applications. Irregular applications are much more difficult to manage. The



70

testing methods used in this paper can only be used in part for this purpose. Irregular
applications need more complex and time-consuming testing strategies. This work can
be continued towards building a machine that will perform a series of tests and look
for optimal performance. Perhaps genetic algorithms [8] or other more sophisticated
methods can be used for this purpose.

References

1. L. W. Russell, S. P. Morgan, E. G. Chron: Clockwork: A new movement in autonomic
systems, IBM Systems Journal, pp. 77-84, 2003.

2. S. Castro, N. Tezulas, B. Yu, J. Berg, H. Kin, D. Gfroerer: AIX 5L Workload Manager
(WLM), IBM International Technical Support Organization, Austin 2001.

3. M. Mlynski: Dynamic resource allocation in AIX 5L, In 12th Conference of Real Time
Systems, WKL, pp. 247-256, 2005.

4. M. Mlynski: Analysis of using an AIX dynamic resource allocation mechanism to describe
a utility level of servers in an Oracle database environment, Studia Informatica (formerly
Zeszyty Naukowe Politechniki Slaskiej), Vol. 26, no. 3 (64), Gliwice 2005.

5. M. Mlynski: The influence of the IBM pSeries servers virtualization mechanism on dy-
namic resource allocation in AIX 5L, Scalable Computing, Practice and Experience Sci-
entific International Journal for Parallel and Distributed Computing, Volume 10, no. 2,
pages 189–199, June 2009.

6. S. K. Cabral, K. Murphy: MySQL Administrator’s Bible, Willey, 2009.

7. N. Tickett, T. Nakagawa, R. Mani, D. Gfoerer: Understanding IBM @server pSeries
Performance and Sizing, IBM International Support Organization, Austin 2001.

8. Y. Long, J. Connan, KernTune: self-tuning Linux kernel performance using support vector
machines, In Proceedings of the 2007 annual research conference of the South African
Institute of Computer Scientists and on IT research in developing countries, 2007.

9. M. Mlynski, P. Rumik: Examination of usefulness of Workload Manager in AIX 5L to
improve efficiency of applications in an MySQL database, In 2nd Conference of Database,
Applications and Systems, WKL, Warsaw 2006.

10. M. Mlynski: Automatic Adjustment of the settings of Workload Manager for adaptive
performance management, Theoretical and Applied Informatics, Vol. 21, no. 1, pp. 37-
57, 2009.

11. M. Mlynski: Analysis of using an AIX dynamic resource allocation mechanism to describe
a utility level of server in an Oracle databases environment, Studia Informatica (formerly
Zeszyty Naukowe Politechniki Slaskiej), Vol. 26, no. 3 (64), 2005.

12. M. Mlynski: Understanding performance metrics and their collection in dynamic virtual
machines, Theoretical and Applied Informatics, Vol. 22, no. 2, pp. 115-130, 2010.



71

13. C. Matthys, M. Mlynski, N. Tollet, G. Barbati, H. Chauhan, B. Dierberger, R. Marchini,
H. Wittmann: Planning, Installing and Using the IBM Virtualization Engine Versin 2.1,
IBM International Technical Support Organization, Poughkepsie (USA), 2006.

14. M. Srivatsa, N. Rajamani, M. Devarakonda: A Policy Evaluation Tool for Multiside Re-
source Management, IEEE Transactions on Parallel and Distributed Systems, Vol. 10, no.
10, 2008.

15. J. Aman, C. K. Eilert, D. Emmes, P. Yocon, D. Dillenberg: Adaptive algorithms for man-
aging a distributed data processing workload, IBM Systems Journal, Vol. 36. no. 2, pp.
242, 1997.

16. P. Padala, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, K. Salem: Adaptive
Control of Virtualized Resources in Utility Computing Environment, Proceedings of the
2nd ACM SIGOPIS/EuroSys European Conference on Computer Systems, 2007.

17. E. Kayacan, O. Kaynak: An Adaptive Grey Fuzzy PID Controller With Variable Prediction
Horizon, In Proceedings of SCIS&ISIS 2006, Japan, 2006.

18. X. Xianghua, Y. Yanna, W. Jian: Gray Prediction Control of Adaptive Resources Alloca-
tion in Virtualized Computing System, Eight IEEE International Conference on Depend-
able, Autonomic and Secure Computing, 2009.

19. S. H. Chiang, S. Vasupongayya: Design and Potential Performance of Goal-Oriented Job
Scheduling Policies for Parallel Computer Workloads, IEEE Transactions on Parallel and
Distributed Systems, Vol. 19, no. 12, pp. 1642-1656, 2008.

20. Y. Wu, K. Hwang, Y. Yuan, W. Zheng: Adaptive Workload Prediction of Grid Perfor-
mance in Confidence Windows, IEEE Transactions on Parallel and Distributed Systems,
2009.

21. Y. Diago, J. L. Hellerstein, S. Parekh, R. Griffith, G. Kaiser, D. Phung: Self-Managing
Systems: A Control Theory Foundation, In 1st Workshop on Operating System and Archi-
tectural Support on Demand IT Infrastructure, 2004.

Poprawa wydajności aplikacji intensywnie wykorzystujących dane w
zorientowanych na cele adaptacyjnych systemach komputerowych

Streszczenie

Właściwe wykorzystanie zdolności do sterowania wydajnością systemu kompu-
terowego jest niezbędna z punktu widzenia odbiorcy usług informatycznych. Efektywna
alokacja zasobów obliczeniowych jest uzależniona od zebranych metryk wydajności.
Należy, więc zachować właściwą równowagę pomiędzy dokładnością pomiarów, oraz
szybkością algorytmów służących do realokacji zasobów obliczeniowych rozważanego
systemu komputerowego.

Proponowany przez autorów rozszerzony pomiar efektywności dla aplikacji to śred-
nia liczba zapytań w jednostce czasu dla poszczególnych grup użytkowników. Taka



72

metryka jest celem do zrealizowania w badanym systemie komputerowym. W artykule
przedstawiono analizę wykorzystania zarządcy obciążeniem w systemie operacyjnym
AIX 5L do poprawy wydajności aplikacji w środowisku bazy danych MySQL. Za-
prezentowano również analizę metod, które pozwalają na korzystanie z zarządcy ob-
ciążeniem do dynamicznego sterowania wydajnością.

Autorzy analizują zachowanie się systemów nieregularnych. Takie systemy charak-
teryzują się dość wysokim niedeterminizmem, objawia się to tym, że wielokrotne wyko-
nanie pomiaru obciążenia przy jednakowych warunkach, może dać różne rezultaty.
Takie zachowanie systemu jest powodowane magazynowaniem danych w podręcznych
strukturach pamięci oraz działaniem systemowych algorytmów przydzielania i zwalnia-
nia zasobów informatycznych.

Autorzy wykorzystują do badań samodzielnie przygotowane programy i procedury
testujące. Program BaseAttack napisany został w języku Java, co sprawia, że testowane
środowisko jest zbliżone do stosowanych obecnie w przedsiębiorstwach nowoczesnych
systemów komputerowych. Testowane środowisko zostało podzielone na podklasy.
Procesy systemowe o większym znaczeniu dla użytkownika są w innych klasach niż
procesy mniej znaczące. Wyniki eksperymentów pokazują, że możliwe było zwięk-
szenie wydajności wybranych podklas niemal dwukrotnie bez ingerencji w ustawienia
wewnętrznych parametrów bazy danych.


