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PREDICTIVE REGRESSION MODELS OF MONTHLY SEISMIC ENERGY EMISSIONS INDUCED 
BY LONGWALL MINING 

REGRESYJNE MODELE PREDYKCYJNE MIESIĘCZNEJ EMISJI ENERGII SEJSMICZNEJ 
INDUKOWANEJ EKSPLOATACJĄ W ŚCIANIE

This article presents the development and validation of predictive regression models of longwall 
mining-induced seismicity, based on observations in 63 longwalls, in 12 seams, in the Bielszowice colliery 
in the Upper Silesian Coal Basin, which took place between 1992 and 2012. A predicted variable is the 
logarithm of the monthly sum of seismic energy induced in a longwall area. The set of predictors include 
seven quantitative and qualitative variables describing some mining and geological conditions and earlier 
seismicity in longwalls. Two machine learning methods have been used to develop the models: boosted 
regression trees and neural networks. Two types of model validation have been applied: on a random 
validation sample and on a time-based validation sample.

The set of a few selected variables enabled nonlinear regression models to be built which gave rela-
tively small prediction errors, taking the complex and strongly stochastic nature of the phenomenon into 
account. The article presents both the models of periodic forecasting for the following month as well as 
long-term forecasting. 

Keywords: Induced seismicity, mining tremors, rockburst hazard, longwall mining, boosted trees, neural 
networks, data mining, regression models, predictive models

W artykule przedstawiono budowę i walidację predykcyjnych modeli regresyjnych sejsmiczności 
indukowanej eksploatacją w ścianie, opartych na obserwacjach w 63 ścianach kopalni Bielszowice pro-
wadzonych w 12 pokładach w latach 1992-2012. Zmienna prognozowaną jest logarytm miesięcznej sumy 
energii sejsmicznej wstrząsów w ścianie. Zestaw predyktorów składa się z siedmiu zmiennych ilościowych 
i jakościowych opisujących wybrane czynniki górnicze i geologiczne w ścianach. Do budowy modeli 
zastosowano dwie metody uczenia się maszyn: drzewa wzmacniane oraz sieci neuronowe. Zastosowano 
dwa rodzaje walidacji modeli: na losowej próbie walidacyjnej oraz na czasowej próbie walidacyjnej. 

Zestaw kilku wybranych zmiennych pozwolił na zbudowanie nieliniowych modeli regresyjnych, 
które, biorąc pod uwagę złożoną i silnie stochastyczną naturę zjawiska, dają względnie małe błędy pro-
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gnozy. W artykule przedstawiono zarówno modele do prognozy okresowej na kolejny miesiąc jak i do 
prognozy długoterminowej.

Słowa kluczowe: Sejsmiczność indukowana, wstrząsy górnicze, zagrożenie tąpaniami, eksploatacja 
ścianowa, drzewa wzmacniane, sieci neuronowe, data mining, modele regresyjne, 
modele predykcyjne

1. Introduction 

Rock mass at great depth is found in a state of primary, stable mechanical equilibrium, 
shaped by high vertical pressure, by geological history and by local tectonic structures. Mining 
activity disturbs the primary mechanical equilibrium of rock mass, inducing movement, stress and 
elastic energy concentrations. Local ruptures and sudden discharges of elastic energy take place 
along with propagation of seismic waves, in other words – tremors, and sometimes rockbursts 
accompanied by excavation destruction.

The most important and most difficult geophysical and mining research problems include 
forecasting the size, time of occurrence and location of these tremors, as well as the level of 
seismic activity in a given area and during a given time interval.

A few research tools are used to build short- and long-term seismicity forecasts such as the 
Gutenberg-Richter relation and the variations of its parameters (Lasocki, 1993; Gołda & Kor-
nowski, 2011), probability distributions (Lasocki, 1992; Idziak et al., 1991), nonparametric estima-
tors of probability distributions (Lasocki & Orlecka-Sikora, 2008; Orlecka-Sikora, 2008), fractal 
description of energy, time, and the locations of tremor centres and the variation of the fractal 
dimension (Idziak & Zuberek, 1995), space-time cluster analysis (Leśniak & Isakow, 2009), rela-
tionship between seismic energy and extracted output (Głowacka, 1993; Stec, 2008; Jakubowski, 
2014), pattern recognition (Marcak, 1993), neural networks (Kabiesz, 2008; Jakubowski, 2014), 
logistic regression and boosted trees (Jakubowski, 2014), rule induction methods (Sikora, 2011), 
time series analysis considering the seismic and acoustic energy (Kornowski & Kurzeja, 2008; 
Cianciara & Cianciara, 2005, 2006). 

This article presents a regression predictive model of monthly seismic energy induced in 
a longwall area, based on two machine learning methods: gradient boosted regression trees and 
neural networks. This is a nonparametric data-based model and not a physical model. The forecast 
is a result of the development and implementation of a model which describes the relationship 
between 7 continuous and categorical predictors and the continuous predicted variable.

2. Geological and mining conditions and seismic activity 
in Bielszowice colliery

The Bielszowice colliery, which lies in the southern part of Poland, in the north-western 
part of the Upper Silesian Coal Basin, within the boundaries of the cities of Zabrze, Ruda Śląska 
and Mikołów is comprised of 34 km2 mining area. The mine employs 3.5 thousand people and 
has an output of about 2 million tonnes of coal a year.

The deposit is intensively cut with faults with latitudinal, longitudinal and diagonal orien-
tation. A number of faults have significant thrust (up to 200 m) and create local faulting zones 
(up to 220 m wide). There are also numerous local faults with thrusts of several metres and some 
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other tectonic features and seam irregularities. The main faults with latitudinal orientation divide 
the deposit into three parts: northern, middle (so-called Centralna part where seams from 410 
to 510 are mined) and southern (so-called Borowa part, has available seams which range from 
358/1 to 408). The main drifts and respective protection pillars run along the longitudinal axis 
of the mining area and divide it into the eastern and western parts. The average strata inclination 
is 10° and locally even 17°. 

The Bielszowice mine is among mines associated with high rockburst hazards, with 27 
rockbursts recorded in the last 35 years. The majority of the series 500 and 400 seams are classi-
fied in the highest rockburst hazard category. Owing to this hazard, the Bielszowice mine utilizes 
a stress-relieving extraction system across a long, regular front. In addition to the rockburst hazard, 
there are also methane and fire hazards as well as difficult climatic conditions. 

All of the 63 longwalls considered, were mined between 1992-2012 with roof caving in the 
gob, in 12 seams of the Rudzkie layers (400 series) and the Siodłowe layers a (500 series), these 
being in the Westphalian and Namurian stages of the Carboniferous period. 

Figures 1-4 present the quantitative characteristics of the extraction in longwalls based 
on monthly-aggregated data. In particular, there are histograms for monthly longwall output, 

Fig. 1. Monthly output histogram (left) and monthly advance in longwalls histogram (right)

Fig. 2. Number of observations by seams (left) and by parts of mine deposit (right)
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advance, number of tremors and seismic energy. The number of extraction months in layers, 
sections and years are also presented. One observation on the histogram indicates one month of 
extraction in one longwall.

3. General approach and analytical methods applied 
to the model development

Classic statistical inference uses mathematical tools for the precise evaluation of uncertainty. 
Data and models must comply with rigorous assumptions and requirements. In the data mining 
approach, uncertainty evaluation is not strict, but empirical. Due to this, generalizations to the 
entire population are not strict and may be evaluated quantitatively, but only empirically, by 
means of verification. 

Fig. 4. Logarithm of monthly seismic energy histogram (left) and monthly number 
of tremors histogram (right)

Fig. 3. Number of observations by year
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The empirical uncertainty evaluation in machine learning methods is based on the division 
of the dataset into training, testing, and validation sets. The model is built on the training set with 
the involvement of the testing set and evaluated on the validation set (Fig. 5). 

In the classical statistical approach, the general form of the relationship between the variables 
under study is usually assumed in advance. Development of the model is the estimation of its 
interpretable parameters. This is not the case in the majority of machine learning models. They 
form the black box models constructed solely on the basis of data, the models whose parameters 
lack a direct, physical interpretation.

Fig. 5. Model development and evaluation in data mining and machine learning methods

Two machine learning methods have been used here to develop models: boosted regression 
trees and neural networks. The final forecast is an arithmetic mean of the forecasts obtained using 
each of the two methods. Both component models were built using the specialized Statistica Data 
Miner v.10 (StatSoft, 2011) system. Extensive descriptions of algorithms used in these methods, 
interpretation of parameters, advantages and disadvantages can be found in publications (Berry 
& Linoff, 2000; Seidman, 2000; Hand & Mannila, 2001; Larose, 2008; Lasek, 2002; Ratner, 
2003; Koronacki & Ćwik, 2005; Tadeusiewicz et al., 2007; Migut & Haranczyk, 2011; StatSoft, 
2011). Below, only an outline of general model development rules in both methods is presented. 

Boosted regression trees model consist of many simple C&RT trees. The component trees 
entered into the model are generated iteratively. The first tree was created using training set data, 
while the next was created on the basis of training data modified with weights in such a way 
as to represent erroneously classified cases with greater weights. In each consecutive step, case 
weights are corrected and a new component tree is generated. The response of the trained model 
is the averaged response of all component trees. The process of adding new component trees to 
the model is only interrupted when the model error on the test sample ceases to decrease.

The second analytical method to be applied was a neural network – a feed forward neural 
network with linear aggregating function, a so-called multilayer perceptron. Every neuron on 
each layer is connected to every neuron on the neighbouring layers, with a weight correspond-
ing to each connection. The purpose of training the network is to find a weight vector for which 
the network’s output values are the closest to those observed, or the measure of error is the 
smallest. The process of training a neural network consists of many successive stages (epochs), 
during which, an entire training set is scanned, the weight vector is then modified and thus error 
is minimized. The learning error is minimized on the learning sample and monitored on the test 



710

sample in order to prevent the network over-learning. Initial weight values are chosen at random 
(StatSoft, 2011). 

Table 1 presents the basic parameters of the models developed by means of both aforemen-
tioned techniques, using models described in section 5 as examples.

TABLE 1

Basic parameters of boosted regression trees and neural networks models. 
Specifications refer to models described in section 5 as examples

Models Model specifi cations

Neural 
networks

Number of input neurons 8
Number of hidden neurons 10
Number of output neurons 1
Number of epochs 144
Training algorithm Broyden, Fletcher, Goldfarb, Shanno
Error function Sum of squares
Hidden activation Hyperbolic tangent
Output activation Hyperbolic tangent

Boosted regression 
trees

Optimal number of trees 199
Maximum tree size 5
Learning rate 0.1
Random test data proportion 0.3
Subsample proportion 0.5

4. Input data, predicted variable and predictors 

Input data include data from the seismic catalogue, basic data on the longwall extraction, 
and characteristics of mining and geological conditions accompanying the exploitation.

Data from seismic catalogue include about 115,000 tremors recorded in the vicinity of 36 
longwalls between 1992 and 2012. Longwall extraction data include, inter alia, monthly output, 
basic longwall parameters such as face length, height, depth, seam and region number, mining 
scheme etc. Other data describes mining and geological conditions in longwall face location and 
in the overlying and underlying seams. 

Data on tremors and mining and geological conditions were collected in data files with dif-
ferent structures, so they had to be merged and aggregated by month separately for each longwall. 
Months with no mining or no tremors were disregarded. The pre-processed data included nearly 
1000 cases and over 200 continuous and categorical variables initially considered in the analysis. 

The dependent (predicted) variable is a logarithm of the monthly sum of seismic tremor 
energy in a longwall. Seven dependent variables, including 6 quantitative and 1 binary, were 
selected by examination and testing of many variable sets and models. 

The independent variables (predictors) in the models described below comprise:
Var1: Total longwall face advance [m],
Var2: Uniaxial compressive strength of coal in the seam [MPa],
Var3: Total MRG method score for a longwall,
Var4: Longwall face distance to the nearest fault with thrust exceeding 3 m [m],
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Var5: Impact of extraction edges for current longwall location, 
Var6: Longwall advancing along faults (yes/no, binary variable), 
Var7: Logarithm of monthly seismic energy in the longwall in previous month. 

Total longwall face advance is the distance travelled by the face from the set-up position 
to the current one. MRG (in Polish “Metoda Rozeznania Górniczego”) is an expert method of 
rocburst hazard evaluation, comprised of several simple geological, geomechanical and mining 
technology feature scores. It is commonly used as a supporting element of the comprehensive 
rockburst hazard evaluation in Polish coal mining (Barański et al., 2007). ‘Impact of extrac-
tion edges’ refers to gob-solid edges, pillars and remnants in the overlying and underlying coal 
seams. It is calculated based on previous mining activities documented in neighbouring seams 
and depends both on vertical distance and time of extraction. If the considered longwall pannel 
was adjacent and advancing parallel to fault or fault zone, the binary variable Var6 equals 1.

Figures 6 through to 8 present histograms of independent variables in the dataset. One 
observation on the histogram indicates one month of extraction on one longwall.

Fig. 6. Total longwall advance histogram (left) and uniaxial compressive strength of coal 
in seams histogram (right)

Fig. 7. Total MRG method score histogram (left) and distance to the nearest fault 
with thrust exceeding 3 m histogram (right)
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Table 2 shows the correlation matrix of variables. The relationships between variables are 
strongly nonlinear and the linear correlation analysis assumptions are mainly not met, but such 
a table could still be expected and helpful at the stage of preliminary data analysis. 

TABLE 2

Correlation matrix for dependent and continuous independent variables. Target denotes the dependent variable. 
Independent variables are designated Var1-Var7 as in the description above. 

Var6 is not included because it is a categorical variable. 

Target Var1 Var2 Var3 Var4 Var5 Var7
Target 1.00 –0.07 0.25 0.31 –0.22 –0.01 0.50
Var1 –0.07 1.00 –0.13 –0.09 0.01 0.01 0.25
Var2 0.25 –0.13 1.00 –0.36 –0.23 –0.10 0.15
Var3 0.31 –0.09 –0.36 1.00 –0.28 0.17 0.18
Var4 –0.22 0.01 –0.23 –0.28 1.00 0.06 –0.19
Var5 –0.01 0.01 –0.10 0.17 0.06 1.00 0.03
Var7 0.50 0.25 0.15 0.18 –0.19 0.03 1.00

Six independent variables include data determined on the basis of extraction plans and rec-
ognized faults, hence the data are available in advance in relation to mining. A single independent 
variable (logarithm of the monthly seismic energy in previous month) can only be determined 
during the mining extraction, at the end of each month, and used in forecasts for the next month. 

Using the longwall output as one of the predictors did not significantly improve the monthly 
seismic energy model, contrary to the daily seismic energy models investigated elsewhere 
(Jakubowski, 2014). 

The characteristics of the problem, along with the dataset size are suitable for development 
and evaluation of regression models, using each of the applied analytical methods. 

Fig. 8. Impact of extraction edges histogram (right) and histogram of binary variable informing whether the 
longwall was advancing along faults (left)
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5. Development and evaluation of the regression model 
validated on a random sample (A)

The aforementioned machine learning methods were both used to develop the model. 
The methods were used in the data mining approach, i.e. according to the concept presented in 
Figure 5. It was assumed that the final forecast was an arithmetic mean of predictions received 
from component models.

The development of these models was preceded by a preliminary data review, data cleaning, 
missing data handling and defining dependent variable according to the established problem. 
The choice of predictors was performed during the process of repeated analysis and evaluation 
of models. 

The dataset was divided into training and testing sets on which the models were built, and 
an independent, random validation set on which the models were verified. Table 3 presents good-
ness of fit for component models and the final model. Figure 9 includes prediction-observation 
scatterplots for these models. Measurements of goodness of fit in the validation set are close to 
those in the training-testing set, thus indicating the stability of the final model. High R 0.80 and 
R2 0.64 values indicate that the model describes a significant portion of variability of monthly 
seismic energy. Taking into account the complex and strongly stochastic nature of the phenomenon, 
the limited range of data and the small number of predictors, the evaluation of the model is high.

A certain narrowing of prediction range in relation to the observation range can be noticed 
for low seismic energy values. 

Various measures of predictor importance have been developed for different machine learn-
ing methods. Figure 10 shows some measures of importance of predictors used for the boosted 
trees and neural network methods (StatSoft 2011) which are useful during the development of 
the models. The higher the values on the vertical axes, the ‘more important’ the variable is for 
the model. Note, that according to the measures presented, Var6 is the most important variable 
in the neural networks model and the least important variable in the regression boosted trees 
model (Fig. 10). Var1 is the second most important variable in the boosted trees model and the 
second least important variable in the neural networks model. Prediction quality is comparable 
with both models. Both analytical methods applied are black-box methods, hence the direct, 
physical interpretation of these graphs may be misleading.

 The magnitude of estimated prediction errors indicates that the model can be used in prac-
tice to predict the monthly sum of seismic energy in a longwall. Please note that the same model 
can be used to predict the monthly seismic energy in longwalls located in different seams and 
mine sections. 

TABLE 3

Criteria and results of evaluation of component models and final model A

Training and testing sets, 1992-2012 Random validation set, 1992-2012

Models Size Correlation 
coeffi cient 

Mean 
squared 

error

Mean 
absolute 

error
Size Correlation 

coeffi cient 

Mean 
squared 

error

Mean 
absolute 

error
Regression boosted trees 721 0.83 0.22 0.35 231 0.77 0.32 0.42
Neural networks 721 0.82 0.23 0.35 231 0.80 0.29 0.39
Final model A 721 0.84 0.21 0.34 231 0.80 0.29 0.39
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6. Regression models with validation on time-based 
sample (B1 and B2) 

The independent validation set, against which the models were evaluated in the preceding 
section, was uniformly sampled from a dataset and included cases from various seams, sections 
and longwalls, covering the entire data period. This therefore allowed for the proper verification 
and evaluation of model quality. It allowed for the presumption that the model would also be 
able to reflect conditions which could occur in successive months of mining. 

However the sample, comprising successive months of mining, is not a random sample from 
the whole dataset, but a time-based sample covering a certain period in the future. 

Fig. 10. Predictor importance measures for component models: boosted regression trees (left) 
and neural networks (right)

Fig. 9. Observation-prediction scatterplot for the final model A on the training-testing set (left) 
and random validation set (right)
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One might therefore be concerned that, as a result of changes in mining and geological 
conditions, which may have taken place during the analysed twenty year period of exploitation, 
models trained on the whole dataset may be irrelevant to a certain time interval in the future.

Therefore, the models’ behaviour was checked against the time-based validation sample. 
For this purpose, data from the final period of exploitation, between 2010 and 2012 (lasting more 
than two years) was separated to serve as a time-based validation sample. The remaining data 
from 1992-2009 were used to develop model B1. As with the previous case, the final predic-
tion is an average of the two component models. Evaluation of the final model B1 is shown in 
table 4 and Fig. 11. 

Fig. 11. Observation-prediction scatterplots for model B1. Results on the training-testing sample 1992-2009 
(left), random validation sample (middle) and time-based validation sample 2010-2012 (right)

In addition, a similar procedure was performed for the time-based validation set corre-
sponding to the initial exploitation period between 1992 and 1993. The remaining data from 
1994-2012 were used to develop model B2. Evaluation of the final model B2 can be found in 
table 4 and Fig. 12. 

TABLE 4

Criteria and results of evaluation of models B1 and B2 on time-based validation set

Training and testing sets Validation sets

Models
Model built 

using the 
data from

Size
Correla-

tion 
coeffi cient 

Mean 
squared 

error

Mean 
absolute 

error

Validation 
type and 

data range
Size

Correla-
tion 

coeffi cient 

Mean 
squared 

error

Mean 
absolute 

error

Final 
model 

B1
1992-2009 749 0.79 0.26 0.37

Random
1992-2009 123 0.76 0.29 0.39

time-based
2010-2012 80 0.81 0.37 0.44

Final 
model 

B2
1994-2012 716 0.80 0.28 0.38

random
1994-2012 115 0.80 0.27 0.36

time-based
1992-1993 121 0.81 0.18 0.32
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It turns out that both models (B1 and B2) work well on time-based validation sets covering 
the longwall extraction in the two outermost time intervals. 

The observation-prediction correlation coefficients on both time-based validation sets are 
high and comparable to the values obtained with random validation sets and training-testing sets 
(Table 4). Error values on the respective sets are also similar and moderate in general. The cor-
relation coefficients and model errors found in time-based validation sets do not differ much from 
the results obtained from model A which was developed and verified on data from 1992-2012. 
Hence, it may be inferred that for the conditions prevailing in the Bielszowice mine, the models 
trained on data from 18 years of exploitation are stable in the following 2-year period and that 
the description of phenomenon by means of the variables selected for the model is capable of 
reflecting changes in mining and geological conditions occurring in that perspective. 

As shown by training the model on the data from 1992-2009 and verifying it using the data 
from 2010-2012, and by developing the model on the data from 1994-2012 and verifying it us-
ing the data from 1992-1993, the model can be trained using available historical data and used 
for future predictions. 

7. Regression model for a long-term forecast (C)

Earlier regression models are based, inter alia, on tremor data from previous months. Such 
models can be used, for instance, during the next 2-year period (or updated every three months 
or every year) as a predictive model for periodic, monthly forecasts. This means that a forecast 
for the next month can be made at the end of each month after summarizing tremor energy data.

The question arises as to whether it’s possible to build a good predictive model based solely 
on mining and geological characteristics without taking into account the seismic energy in the 
previous month. Such a model could be used to predict the monthly seismic energy emissions 
several months or a couple of years in advance, which would be an advantage. 

Similarly to the previous models, a regression model was developed using the same set of 6 
variables and without the Var7 variable describing the logarithm of the seismic energy from the 
previous month. The model evaluation on the validation set is presented in Table 5 and Figure 13. 

Fig. 12. Observation-prediction scatterplots for model B2. Results on the training-testing sample 1994-2012 
(left), random validation sample (middle) and time-based validation sample 1992-1993 (right)
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TABLE 5

Criteria and results of evaluation of component models and final model C

Training and testing sets, 1992-2012 Random validation set, 1992-2012

Models Size Correlation 
coeffi cient 

Mean 
squared 

error

Mean 
absolute 

error
Size Correlation 

coeffi cient 

Mean 
squared 

error

Mean 
absolute 

error
Regression boosted trees 809 0.71 0.34 0.46 143 0.67 0.52 0.55
Neural networks 809 0.73 0.32 0.44 143 0.74 0.41 0.50
Final model C 809 0.75 0.31 0.43 143 0.74 0.43 0.50

Fig. 13. Observation-prediction scatterplots for the final average model C. Results on the training – testing 
sample (left) and validation sample (right) 

It turns out that model C works rather well. Correlation coefficients are lower than the cor-
relation coefficients for model A. Its mean squared error and mean absolute error are moderately 
greater than the errors in model A. Taking a long, possibly 2-3 year perspective for the model 
into account, the forecast errors seem to be reasonable. 

Some narrowing of the prediction range in relation to the observation range can be detected, 
which results in deflated high values and inflated low values of energy predictions (Fig. 13).

Predictor Var7 was indicated as important for both component models of the final model 
A (Fig. 10) and it had the greatest linear correlation coefficient with the dependent variable 
(Tab. 2). The lack of this predictor in model C increased prediction error, but much less than it 
could be expected.
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8. Summary

This article presents the development and validation of predictive, nonlinear, nonparametric 
regression models of longwall mining-induced seismicity, developed on the basis of data for 
mining carried out for 63 longwalls in the Bielszowice colliery between 1992 and 2012.

The predicted variable was the logarithm of the monthly sum of seismic tremor energy in 
the longwall area, and the predictors were the variables which characterize the mining and geo-
logical conditions for the longwalls and the induced seismicity. Two regression methods have 
been applied: regression boosted trees and neural networks. Each final model is an average of 
the component models obtained using these two analytical methods.

The first model (A), presented in section 5, was for periodic, monthly forecasts. Low es-
timated prediction errors indicate that the model may be useful in forecasting monthly seismic 
energy in the longwall. Quite high correlation and determination coefficients on the validation 
set indicate that the model describes a significant portion of variation in monthly seismic energy. 
The same model can be used to predict monthly seismic energy in longwall panels located in 
various seams and parts of the Bielszowice colliery deposit. 

Any forecast, using any method, is based on the assumption that general dependencies on 
which the model is based will be valid during the forecast period. A decision was made to check 
whether this assumption was true in the 1992-2012 period. The regression model (B1) was de-
veloped using data from 1992-2009 and it was used to make a forecast for 2010-2012. In other 
words, it was checked whether the model developed at the end of 2009 could be used to predict 
seismic energy in the next 2 years, or if a possible change in mining and geological conditions 
in 2010-2012 would render the model irrelevant. 

In addition, a similar verification was performed “backwards”, i.e. it was checked how model 
(B2) developed using the data from 1994-2012 estimated the seismic energy from 1992-1993.

It turned out that both models (B1 and B2) work well and are stable for the data coming 
from 2-year validation periods. Hence, it can be presumed that the phenomenon description us-
ing the variables chosen for the model and the time interval of training data make it possible to 
account for significant factors which affect monthly seismic activity and to explain a portion of 
observed variability of monthly seismic activity. 

It was therefore demonstrated that good and stable regression models can be developed 
for the Bielszowice mine and that such models can be used during the next 2 years of mining 
for periodic forecasts of monthly seismic energy in various longwalls for the following month. 

It was then decided to check whether it is possible to make a reasonably good forecast not 
just one month in advance, but several months or a couple of years in advance. The model used 
for such a prediction had to be based only on data available at the time the forecast was made, 
so it could not include the seismic energy in the previous month. 

The model for a long-term forecast (C) is inferior to the previous models, but still works 
quite well. It has lower correlation coefficients than model A. Its mean squared error and mean 
absolute error are moderately greater than the errors in model A. Taking into account a long 
perspective for the model, the forecast errors seem to be acceptable. 

The set of several chosen independent variables describing mining conditions in the Bielszo-
wice mine made it possible to develop reasonably good regression models for predicting the 
logarithm of the total monthly seismic energy. Taking the complex and strongly stochastic nature 
of the phenomenon into account, the models have relatively small prediction errors and high 
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correlation coefficients. A certain narrowing of the prediction range in relation to the observation 
range occurs in various models to a different degree. 

The monthly induced seismic energy describes the longwall propensity for seismic emis-
sions, but is not a direct measure of the hazard of extremely large tremors or rockburst hazard. 
The models presented in this article are not designed for the prediction of these phenomena. 
They can be used to forecast monthly mining-induced seismic energy in the Bielszowice mine, 
both as a periodic forecast for the following month or a long-term forecast. The comprehensive 
evaluation of the approach presented as well as its utility, requires further research, however the 
results presented for Bielszowice mine are encouraging. 

Acknowledgements

The authors wish to thank the management and employees of Kompania Węglowa and Bielszo-
wice colliery for their support in collecting data necessary for the research. 
The authors are grateful to Michał Zelek and Łukasz Wanat for collecting data used for this work. 
Prepared within research 11.11.100.197

References

Barański A., Drzewiecki J., Kabiesz J., Konopko W., Kornowski J., Krzyżowski A., Mutke G., 2007. Zasady stosowania 
metody kompleksowej i metod szcze gółowych oceny stanu zagrożenia tapaniami w kopalniach wegla kamiennego. 
GIG Seria Instrukcje, No 20, Katowice.

Berry M., Linoff G., 2000. Mastering Data Mining. Wiley, Hoboken, NJ.
Cabena P., Hadjinian P., Stadler R., Verhees J., Zanasi A. 1998. Discovering Data Mining: From Concept to Implementa-

tion. Prentice Hall, NY.
Cianciara A. Cianciara B., 2005. Method of evaluation of mining tremors prediction on the basis of the analysis of asym-

metry of seismoacoustic signals emission. Arch. Min. Sci., Vol. 50, No 3, p. 317-326.
Cianciara A. Cianciara B., 2006. The meaning of seismoacoustic emission for estimation of time of mining tremors oc-

currence. Arch. Min. Sci., Vol. 51, No 4, p. 563-575.
Dubiński J., Konopko W., 2000. Tąpania. Ocena, prognoza, zwalczanie. GIG Katowice.
Gibowicz S. J., Kijko A., 1994. An Introduction to Mining Seismology. Academic Press, San Diego.
Gibowicz S.J., Lasocki S., 2001. Seismicity induced by mining: Ten years later. Adv. Geophys., 44, 39-181.
Głowacka E., 1993. Application of the extracted volume as a measure of deformation for the seismic hazard evaluation 

in mines. Tectonophysics, 202, 285-290.
Gołda I., Kornowski J., 2011. Zastosowanie rozkładu Gutenberga-Richtera do prognozy zagrożenia sejsmicznego, wraz 

z oceną jego niepewności. Górnictwo i Geologia, 6(3), p. 49-62 
Hand D., Mannila H., Smyth P., 2001. Eksploracja danych. MIT Press, WNT.
Idziak A., Sagan G., Zuberek W.M., 1991. An analysis of frequency distributions of shocks from the Upper Silesian Coal 

Basis. Publ. Inst. Geophys. Pol. Acad. Sci., M-15(235), 163-182.
Idziak, A., Zuberek, W. M., 1995. Fractal analysis of mining induced seismicity in the Upper Silesia Coal Basin. [In:] 

Mechanics of Jointed and Faulted Rocks (H. P. Rossmanith, ed.). Balkema, Rotterdam, 1995, 679-682.
Jakubowski J., 2014. A predictive model of daily seismic activity induced by mining developed with data mining methods. 

Geoinformatica Polonica, 13, 
Kabiesz J., 2008. Badanie kategoryzacji zagrożenia tąpaniami z wykorzystaniem sieci neuronowych. Górnicze zagrożenia 

naturalne 2008. Prace naukowe GIG. Górnictwo i Środowisko 7, GIG, Katowice. 



720

Kornowski J., Kurzeja J., 2008. Krótkookresowa prognoza zagrożenia sejsmicznego w górnictwie. Główny Instytut 
Górnictwa, Katowice

Larose D.T., 2008. Metody i modele eksploracji danych. PWN, Warszawa.
Lasek M., 2002. Data mining. Zastosowania w analizach i ocenach klientów bankowych. BMiB, Warszawa. 
Lasocki S., 1992. Weibull distribution for time intervals between mining tremors. Publ. Inst. Geophys. Polish Acad. Sci., 

M-16 (245), 241-260.
Lasocki S., 1993. Statistical prediction of strong mining tremors. Acta Geophys., Pol. 41, 1993, 1197-234.
Lasocki S., Orlecka-Sikora B., 2008. Seismic hazard assessment under compl ex source size distribution of mining-induced 

seismicity. Tectonophysics, 456, 2008, 28-37.
Leśniak A., Isakow Z., 2009. Space-time clustering of seismic events and hazard assessment in the Zabrze-Bielszowice 

coal mine, Poland. International Journal of Rock Mechanics & Mining Sciences, 46, 918-928.
Marcak H., 1993. The use of pattern recognition method for predicting of the rockbursts. [In:] R.R Young, (ed.) Rockbursts 

and Seismicity in Mines. Balkema, Rotterdam, 222-226.
Migut G., Harańczyk G., 2011. Zastosowanie statystyki i data mining w badaniach naukowych i inne materiały. StatSoft 

Polska, Kraków.
Orlecka-Sikora B., 2008. Resampling methods for evaluating the uncertainty of the nonparametric magnitude distribution 

estimation in the Probabilistic Seismic Hazard Analysis. Tectonophysics, 456, 38-51.
Sikora M., 2011. Induction and pruning of classification rules for prediction of microseismic hazards in coal mines. 

Expert Systems with Applications, 38, 6748-6758.
StatSoft, Inc., 2011. STATISTICA (data analysis software system), version 10.
Stec K., 2008. Statystyczna zależność aktywności sejsmicznej górotworu od parametrów eksploatacji w kopalniach 

Górnośląskiego Zagłębia Węglowego. Przegląd Górniczy, 64, 4, 26-34.
Tadeusiewicz R., Gąciarz T., Borowik B., Leper B., 2007. Odkrywanie właściwości sieci neuronowych przy użyciu 

programów w języku C#. Wydawnictwo PAU, Kraków.

Received: 07 May 2014


