
Theoretical and Applied Informatics
ISSN 1896–5334

Vol.23 (2011), no. 1
pp. 21–35

DOI: 10.2478/v10179-011-0002-z

Development and Implementation of IEC 61131-3 Virtual Machine

BARTOSZ TRYBUS

Department of Electrical Engineering and Informatics
Rzeszów University of Technology

ul. W.Pola 2, Rzeszów, Poland
btrybus@prz.edu.pl

Received 19 November 2010, Revised 2 January 2011, Accepted 23 February 2011

Abstract: Virtual machine described in the paper is a runtime program for controllers in small dis-
tributed systems. The machine executes intermediate universal code similar to an assembler, compiled in
CPDev engineering environment from source programs written in control languages of IEC 61131-3 stan-
dard. The machine is implemented as a C program, so it can run on different target platforms. Data formats
and commands of the machine code are presented, together with the machine’s Petri-net model, C im-
plementation involving universal and platform-dependent modules, target hardware interface, input/output
programming mechanisms, and practical applications.

Keywords: multi-platform virtual machine, assembler, IEC 61131-3, programmable controllers

1. Introduction

CPDev (Control Program Developer) is an engineering environment1 for program-
ming controllers in small distributed systems according to IEC 61131-3 standard [3].
Main goal of the standard is to increase quality of control software by defining dedi-
cated programming languages and implementation procedures. CPDev integrates tools
for programming, simulation, hardware configuration, on-line testing and running con-
trol applications on different platforms. Programs can be written in ST and IL textual
languages (Structured Text, Instruction List) and in FBD graphical one (Function Block
Diagram) [8,9].

CPDev compiles control programs into intermediate, universal code executed by
runtime interpreter at the controller side. Following Java nomenclature, the interpreter is
called virtual machine (VM), and its intermediate language, Virtual Machine Assembler

1Developed at Rzeszów University of Technology with support from MNiSzW R02 058 03 grant.

22

(VMASM). The VM machine is written in C, so it may run on different hardware plat-
forms, from 8-bit microcontrollers up to 32/64-bit general purpose processors. So far,
the CPDev VM has been used in control systems from LUMEL, PL [12] and Praxis A.I.,
NL [7], and in lab computers with a few versions of Windows [9]. FPGA implementation
of VM has appeared recently [2].

Similar approach has been used earlier in ISaGRAF environment [4], where the in-
termediate code is called TIC (Target Interpreted Code). It can run on platforms support-
ing Windows, Linux, VxWorks, QNX and RTX. Much simpler CPDev does not impose
such requirements, however. Another environment called Beremiz [13] compiles IEC
programs into C/C++, translated further into processor code. Execution of such code
is quicker than VMASM or TIC, however any change in IEC source program requires
another translation.

Publications of the team working on development of CPDev so far do not contain
extensive description of the VM virtual machine (see e.g. [11,9]). Hence the purpose of
this paper is to describe the VM with sufficient details, beginning from initial assump-
tions, thorough data formats and VMASM commands, Petri-net model of operation,
structure of C/C++ implementation with universal and platform-dependent modules, in-
terface to target hardware, data input and output, up to some remarks on applications. At
first however, CPDev programming interface is briefly characterized.

2. Programming in CPDev

Main window of CPDev interface is shown in Fig. 1. Project tree is on the left,
program code in the center (here in ST), and message window at the bottom. Tree of
the START_STOP project being presented consists of POU section (Program Organi-
zation Unit) with the program PRG_START_STOP, five global variables from START
to PUMP, task TSK_START_STOP, and two function blocks TOF, TON (timer-off, -on)
from IEC_61131 library. IN and PT (Preset Time) are the blocks’ inputs, Q and ET
(elapsed time) the outputs.

PRG_START_STOP program is written according to ST language rules. First part,
from VAR_EXTERNAL, declares the use of global variables. Local declarations (VAR)
of the block instances DELAY_ON, DELAY_OFF are the second part. Program body
consists of four statements, where the first one turns MOTOR on if START is pressed,
provided that STOP and ALARM are not set. MOTOR continues running after releasing
START. Next three statements turn PUMP on and off by the two timers, 5 seconds after
the MOTOR (PT:=t#5s).

Global variables and the task are defined in separate windows (not shown). Task can
be executed cyclically with a given period, continuously (begins anew as soon as previ-
ous execution is completed) or just once. There is no limit on the number of programs
in POU section assigned to the task.

23

In addition to the timers the IEC_61131 library includes other blocks of IEC stan-
dard, i.e. flip-flops, edge detectors and counters [3]. Besides programs, the POU section
may involve function blocks and functions (FUNCTION_BLOCK and FUNCTION dec-
larations). CPDev allows the user to create his own library with reusable POUs.

Fig. 1. User interface of CPDev environment

3. Basic assumptions on CPDev virtual machine

The concept of virtual machine has been introduced to CPDev following two essen-
tial assumptions [11,9]:

• relatively simple adaptation for different hardware platforms

• common execution layer for different IEC languages.

Recall that JavaME and .NET Compact Framework are general purpose solutions based
on virtual machine concept. The specific CPDev VM is focused in IEC languages, with
strong orientation towards microcontrollers.

24

Stages of translation of ST, FBD and IL programs into form executable by VM are
shown in Fig. 2. During compilation (Project→Build in the main menu of Fig. 1)
the programs are first converted into common form involving mnemonics of VMASM
assembler. Next the VMASM code is assembled into binary VM code. The VM code is
transferred to a target controller, where it is executed by virtual machine as a single task.
As indicated above, the task consists of POU units executed in prescribed order. Some
POUs may be imported from libraries.

Fig. 2 shows that programs created as FBD diagrams are first converted into ST
language and then compiled into VMASM.

ExecutionCompilation

Translation

FBD

diagram

ST

code

VM

code

Virtual

machine

AssemblingVMASM

code

Compilation

IL code

Virtual

machine

Virtual

machine

Mnemonics Binary form Target platforms

Fig. 2. Translation stages of IEC programs for CPDev virtual machine

4. VMASM data formats and commands

CPDev virtual machine is an automaton processing data of IEC types using com-
mands of VMASM assembler. Functionality of VM involves the following issues:

• Handling IEC data types: Boolean BOOL, integer BYTE, SINT, INT, WORD,
DINT, LINT, DWORD, LWORD, real REAL, LREAL, time and date TIME,
DATE, TIME_OF_DAY, DATE_AND_TIME; Tab.1 presents VM implementation
of these types.

• Execution of functions (examples): arithmetics ADD, SUB, MUL, DIV, MOD,
numerical SQRT, LOG, SIN, ASIN, EXP, Boolean NOT, AND, OR, XOR, bit
shift SHL, ROL, comparison GT, GE, LT, EQ and others.

• Program flow control by means of jumps JMP, JZ, JNZ, calls of function
block CALB and function CALF, early exit RETURN, memory handling MCD,
MEMCP (Move from Code to Data, Memory Copy).

The notion of accumulator does not exist in VM. Results of commands are stored in
variables, temporary or declared. Temporary variables are created automatically by the
compiler.

25

Name Implementation Name Implementation
BOOL 1B (0, 1) LINT 8B (-263 .. 263-1)
SINT 1B (-128 .. 127) LWORD 8B (0 .. 264-1)
BYTE 1B (0 .. 255) LREAL 8B (IEEE-754)
INT 2B (-32768 .. 32767) DATE 4B
WORD 2B (0 .. 65536) TIME_OF_DAY 4B
DINT 4B (-231 .. 231-1) DATE_AND_TIME 8B
DWORD 4B (0 .. 232-1) TIME 4B
REAL 4B (IEEE-754) STRING Variable length string

Tab. 1. Elementary data types of virtual machine

The IEC standard (61131-3 dropped for brevity) also defines multi-element variable
types, i.e. arrays and structures (one-dimensional arrays are available in CPDev). VM
handles these two types by means of a few dedicated commands, e.g. AURD/AUWD
read/write data from/to indexed array.

To become more familiar with what VM actually does, translation of the four ST
instructions from Fig. 1 into VMASM code is presented in Tab. 2. The code consists
of command mnemonics (JNZ, MCD, NOT, etc.), declared (START, MOTOR) and tem-
porary variables (?LR? at the beginning), constants (#01, #00), and labels (:? at the
beginning). Execution of the first ST instruction begins with testing values of START
and MOTOR. If they are nonzero, JNZ jumps to :?OR0046 label, where MCD command
sets ?LR?AND0045 temporary variable to 1 (#01). Otherwise ?LR?AND0045 is set to
0 (#00 in MCD after second JNZ), followed by JMP to :?EOR004A. From this label, if
?LR?AND0045 is nonzero, NOT, JZ and MCD set another ?LR?AND0043 variable to
0, provided that STOP is 1. In such case the first JZ on the right side in Tab. 2 jumps to
:?AND0042, where MCD sets MOTOR to 0. If STOP is 0 but ALARM is not, NOT, JZ
and MCD (on the right side) also set MOTOR to 0. Otherwise, i.e. when both STOP and
ALARM are 0, MOTOR is set to 1 (at MCD MOTOR, #01, #01).

Note that the compiler has replaced OR, AND instructions by conditional jumps JZ,
JNZ and dropped calculation of AND NOT ALARM in the ST instruction after finding
that the first part gives 0 when STOP is 1 (lazy evaluation feature).

26

ST instructions
MOTOR := (START OR MOTOR) AND NOT STOP AND NOT ALARM;
DELAY_ON(IN:=MOTOR, PT:=t#5s);
DELAY_OFF(IN:= DELAY_ON.Q, PT:=t#5s);
PUMP := DELAY_OFF.Q
VMASM commands

JNZ START, :?OR0046
JNZ MOTOR, :?OR0046
MCD ?LR?AND0045, #01, #00
JMP :?EOR004A
:?OR0046
MCD ?LR?AND0045, #01, #01
:?EOR004A
JZ ?LR?AND0045, :?AND0044
NOT ?LR?AND004B, STOP
JZ ?LR?AND004B, :?AND0044
MCD ?LR?AND0043, #01, #01
JMP :?EAND004E
:? AND0044
MCD ?LR?AND0043, #01, #00
:?EAND004E

JZ ?LR?AND0043, :?AND0042
NOT ?LR?AND004F, ALARM
JZ ?LR?AND004F, :?AND0042
MCD MOTOR, #01, #01
JMP :?EAND0052
:?AND0042
MCD MOTOR, #01, #00
:?EAND0052
MEMCP DELAY_ON.IN, MOTOR, #0100
MCD DELAY_ON.PT, #04, #88130000
CALB DELAY_ON, :?TON?CODE
MEMCP DELAY_OFF.IN, DELAY_ON.Q, #0100
MCD DELAY_OFF.PT, #04, #88130000
CALB DELAY_OFF, :?TOF?CODE
MEMCP PUMP, DELAY_OFF.Q, #0100

Tab. 2. ST program and its VMASM translation

From :?EAND0052 label, MEMCP and MCD set IN and PT inputs of the blocks DE-
LAY_ON, DELAY_OFF (#88130000 denotes 5 seconds). CALB is followed by block
instance and label to its code. The last MEMCP assigns DELAY_OFF.Q output to vari-
able PUMP.

As seen, the VMASM translation looks rather lengthy. This is in fact the price for
multi-platform functionality of CPDev generated code.

5. Petri-net task execution model

CPDev virtual machine can be modelled by a Hierarchical Time Coloured Petri net
(HTCP) [5,14], whose upper level specifies activities performed within task cycle loop
(superpage) and lower level describes details of those activities (subpages). The upper
level for VM implementation in small controllers is shown in Fig. 3.

27

Fig. 3. Petri-net model of CPDev virtual machine cycle (superpage)

Substitution transitions PreCycle, Executing a task and PostCycle involve subpages
Input_read, Executor and Output_write, respectively. Token (x,ct) of the type XT pass-
ing through the net represents activity flow. The token holds extra integer variable ct for
collection of time delays introduced by successive activities. The amount of time left
till the end of the cycle is modelled by time stamp @+(task_cycle–ct). The transition
Waiting till the end does not pass the token until task_cycle–ct time elapses. While wait-
ing, some other activities can be performed, for instance communications or testing. In
Fig. 3 the former is triggered by a token e of type E. A Petri-net communications model
for VM implementation has been described in [10].

A simplified model of Executing a task substitution transition is shown in Fig. 4
(subpage). Task consists of programs executed sequentially. Execution begins when
the token is passed from the superpage (Fig. 3) via the input port Start execution. Pro-
grams place holds tokens (pn, pt) with the number pn and execution time pt. The model
of Fig. 4 contains a sample initial marking with three programs on the left. For sim-
plicity, their execution times are given apriori as 10, 20 and 10 abstract units. In more
realistic scenario the values of pt would not be constant, but should be determined on-
line during the model simulation (they may also vary from cycle to cycle depending on
some conditions). Token of the fourth dummy program with pt=0 indicates end of the

28

task. Collected time ct is adjusted in the expression (x, ct+pt)@+pt at the transition
Run program. The expression also increases time stamp @+pt, keeping the token at the
Processor place until pt time elapses. Programs done collects tokens of executed pro-
grams. The token with zero execution time is a guard [pt=0] of the transition Completing
task. The output port Executed returns the token back to the superpage of Fig. 3.

Fig. 4. Petri-net model of task execution (subpage)

After some extensions, the HTCP model described above has been simulated using
CPNTools [1]. The model determines time aspects of task execution and may be used to
examine interactions between VM and other components of controller software.

6. Structure of the virtual machine

Following the original assumption on simple adaptation for different hardware plat-
forms, the VM machine has been written as a program in C. Most of this program is
universal, independent of platforms, some parts need adjustment however.

Simplified structure of the VM is shown in Fig. 5, with universal and platform-
dependent modules indicated. The former consists of command interpreter responsible
for execution of VMASM code, elementary and multi-element data type handling and
stack emulation. There are over 200 commands, although some of them differ only in
data types and number of parameters (e.g. ADD_INT, ADD_REAL). While designing
a VM machine for simple microprocessor some types (and functions) may be dropped,
e.g. LREAL, LWORD, STRING, using a configuration file. Two stacks, i.e. data stack
and call stack, are implemented. The latter supports calls of programs, functions and
function blocks (POUs).

Platform-dependent modules connect VM with particular hardware through a set of
low-level functions. Details are described in Secs.7 and 8.

29

Fig. 5. Basic modules of virtual machine

The VM needs three areas of memory, i.e. code, data and internal memories. The
area involving program code is logically separated from data area, as in processors with
Harvard architecture. It is read-only memory, so no VMASM command can alter its
content. Data area can be addressed directly or indirectly via registers. Internal memory
contains registers, stacks and command interpreter (firmware).

Basic registers (logical) of VM are listed in Tab. 3. As indicated before, accumulator
does not exist, so the commands store results in variables (as in Tab. 2). Task cycle
(configured) is used by VM (Fig. 3). Actual task cycle (last value) is particularly useful
for on-line testing (commissioning). Status1 stores exception flags, therefore appropriate
reactions can be programmed.

Register name Function
Program counter Indicates next VMASM command
Data offset Index to data area being used
Call stack pointer
Data stack pointer

Pointers to call stack (POUs)
and data stack

Task cycle
Actual task cycle

Configured and measured
task cycle

Cycle counter Counts cycles (with reset)
Status1 VM status word (array index faulty, time cycle exceeded,

cold start, etc.)
RTC clock Absolute time

Tab. 3. Basic registers of virtual machine

7. Target hardware interface

Platform-dependent modules of Fig. 5 connect VM with particular hardware by im-
plementing interface of low-level functions. Such functions can be written by hardware
designers and consolidated with universal part of the C program. Naturally, a C compiler
for the target processor is needed.

Interface to Virtual Machine Platform (VMP) involves a set of functions, most im-
portant of which are given below:

30

• VMP_LoadConfiguration – loads task parameters (cycle, number and order of
POUs, etc.), binary code of POUs, and allocates memory for data; memory size is
determined by the compiler.

• VMP_PreRunConfiguration – initializes hardware and stores its initial state (time,
parameters).

• VMP_PostRunConfiguration – relieves hardware and resources used by the task.

• VMP_PreCycle – updates program variables from signal input readings (Sec.8),
stores initial value of system clock.

• VMP_PostCycle – sets values of signal outputs according to variables with results,
determines actual task cycle; if time is left, triggers another activities (communi-
cations, tests).

• VMP_ReadRTC – returns reading of real-time clock (if available); the reading
may be used in the program.

• VMP_CurrentTime – returns actual value of system clock (in milliseconds begin-
ning from the start; RTC is not involved).

Memory access module in Fig. 5 is also platform-dependent. Some architectures other
than x86, for instance ARM, impose restrictions on accessing data from any address.
Flash memory in industrial controllers stores program code and some parameters of
function blocks (e.g. PID settings). Special algorithm is required to write into flash.

8. Data input and output

Reading signal inputs and writing outputs depends on hardware solutions. To incor-
porate related low-level functions into VM, two mechanisms are available in CPDev:

• configurer of hardware resources

• native blocks.

The configurer assigns program variables to inputs and outputs, or to communication
interfaces. The assignment is performed during configuration and is independent from
the program. Operation of Input/output subsystem of the VM (Fig. 5) depends on the
assignment. Separation of control program from hardware configuration is typical for
multi-module PLCs and DCS systems.

Contrary to the configurer, native blocks are components of the user program, i.e.
POUs, providing hardware dependent functions internally. They may be also called
hardware blocks. Native blocks are usually written in C/C++ and linked to CPDev by
a library. They are used in the program in standard way, i.e. as timers TOF, TON in

31

Fig. 1. Java Native Interface and Platform Invoke in .NET technology involve similar
mechanisms. Small multifunction instruments for measurement and control also employ
native blocks (e.g. Sipart 24 from Siemens).

Native blocks available in CPDev provide read/write of program variables into non-
volatile memory (flash), communicate over serial and CAN busses [6], handle LCD
displays. Tab. 4 shows declaration and use of GPS_GGA block which reads data from
a GPS module using NMEA serial protocol (GGA is a command in NMEA). The block
has two inputs, PORT number and DATA_RATE, declared as constants. The outputs
provide UTC time (absolute), LATitude, LONgitude, ALTitude of actual position, to-
gether with QUALITY of readings. The user program (right side) assigns outputs of the
block instance to program variables.

Symbol Declaration Use in ST
FUNCTION_BLOCK GPS_GGA
(*$HARDWARE_BODY_CALL
ID:0003*)
(*$COMMENT The block is
implemented in C *)
VAR_INPUT
PORT (*$CONST*) : BYTE;
DATA_RATE (*$CONST*) : INT;
END_VAR
VAR_OUTPUT
UTC : TIME_OF_DAY;
LAT : LREAL;
LON : LREAL;
ALT : LREAL;
QUALITY : BYTE;
END_VAR
END_FUNCTION_BLOCK

PROGRAM GPS_PRG

VAR
GPS_POS : GPS_GGA;

END_VAR

GPS_POS(PORT:=BYTE#9,
DATA_RATE:=9600);

UTC_TIME:=GPS_POS.UTC;
LONGITUDE:=GPS_POS.LON;
LATITUDE:=GPS_POS.LAT;
ALTITUDE:=GPS_POS.ALT;

END_PROGRAM

Tab 4. GPS_GGA native block

9. Applications

The CPDev virtual machine has been implemented first in SMC industrial controller
from LUMEL, Zielona Góra, PL (Fig. 6a) [12]. SMC is equipped with Atmel AVR 8-bit
microcontroller and operates as a central unit in small DCS systems involving distributed
I/Os, intelligent transmitters, displays, etc., with PC or HMI panel as a host (Fig. 6b).
Modbus RTU protocol is applied at both sides (up to 230.4 kbaud). Since SMC does
not have I/Os of its own, so communication subsystem is especially important part of
CPDev software. Hardware configurer described above defines Modbus transactions.
Native blocks handling communications with particular field devices are also available.

So far SMC controller has been used in several prototype applications involving
measurements, control, monitoring and diagnostics. Function block developed by the

32

user has turned out particularly useful. Two dedicated mini-systems are currently being
prepared by LUMEL for off-the-shelf applications. They consists of SMC controller,
distributed I/O modules (SM series) and an HMI touch-panel. The first mini system
controls heating substation.(“hot spot”) in a municipal heating network. Besides temper-
ature measurements, DATE_AND_TIME variable affects PID control. The other system
belongs to simple Manufacturing Execution Systems (MES). On, off and alarm signals
from machine tools, casters, injection moulding machines, etc., are monitored, recorded,
displayed at plant floor, and used for statistics. It is oriented towards production lines in
small and medium scale enterprises.

Mini-Guard Ship Control and Positioning System from Praxis A.I., Leiden, NL is an-
other application [7] (tested first on a Chinese ship). Mini-Guard consists of seven types
of dedicated controllers (Fig. 6c) involving NXP ARM7 16/32-bit microcontrollers. The
controllers communicate over Ethernet, external devices are connected through serial
port (as GPS_GGA in Tab. 4) or OPC interface. Other native blocks handle LCD dis-
plays.

Some lab, diagnostic and teaching applications require VM machine operating as a
soft-controller, i.e. PC equipped with I/O boards. NI-DAQ USB 6008 and RT-DAC/USB
boards from National Instruments and InTeCo, Cracow, respectively, have been inter-
faced to VM so far [9]. CPDev VM has been also implemented on computers with
Windows Embedded, CE. NET and QNX6. FPGA Verilog version has been developed
recently [2].

Fig. 6. a) SMC controller in b) distributed system; c) one of Mini-Guard controllers

33

10. Conclusions

CPDev environment is available for programming controllers in small distributed
systems according to IEC 61131-3 standard. The environment is considered open be-
cause the compiled code can be executed by different processors, low-level software
may be written by hardware designers, and control programmers can create their own
libraries with reusable program units. VMASM universal code produced by CPDev
compiler is executed by runtime virtual machine operating as an interpreter. The ma-
chine is a C program composed of universal and platform-dependent modules. It has
been implemented in AVR, ARM and x86 processors, and applied in two small DCS
systems and in PC-based soft-controller with I/O boards.

Details of VM development and implementation has been described here, including
VMASM data formats and commands, Petri-net model of task execution, structure of
C implementation, function interface to target hardware, programming mechanisms of
data input/output, and practical applications. Future work will concentrate on extension
of VM to multitasking, beginning from Windows CE and a simple RTOS system (e.g.
FreeRTOS).

References

1. CPN Tools: Computer Tool for Coloured Petri Nets, http://www.daimi.au.dk/cpntools/.

2. Z. Hajduk, B. Trybus, J. Sadolewski: Hardware implementation of virtual machine for
programmable controllers (in Polish), In: Metody wytwarzania i zastosowania systemów
czasu rzeczywistego, WKŁ, pp.327-336, Warszawa, 2010.

3. IEC 61131-3 Standard: Programmable Controllers. Part 3. Programming Languages,
IEC, 2003.

4. ISaGRAF User’s Guide, ICS Triplex Inc., 2005.

5. K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use,
Springer –Verlag, 1997.

6. W. Mikluszka, B. Trybus: Modelling and implementation of CAN bus in CPDev environ-
ment (in Polish), In: Metody wytwarzania i zastosowania systemów czasu rzeczywistego,
WKŁ, pp.293-302, Warszawa, 2010.

7. Mini-Guard Ship Control & Positioning System, Praxis Automation Technology B.V.,
http://www.praxis-automation.com, 2010.

8. D. Rzońca, J. Sadolewski, A. Stec, Z. Świder, B. Trybus, L. Trybus: Mini-DCS System
Programming in IEC 61131-3 Structured Text, Journal of Automation, Mobile Robotics
& Intelligent Systems, Vol.2, No.3, 2008.

34

9. D. Rzońca, J. Sadolewski, A. Stec, Z. Świder, B. Trybus, L. Trybus: Open environment for
programming small controllers according to IEC 61131-3 standard. Scalable Computing:
Practice and Experience, Vol.10, No.3, pp.325-336, 2009.

10. D. Rzońca, B. Trybus: Application of coloured Petri net for design of SMC controller
communication subsystem, Studia Informatica, Vol.27, No.1, pp.1-12, 2008.

11. J. Sadolewski, B. Trybus: Multiplatform virtual machine for control systems (in Polish),
In: Modele i zastosowania systemów czasu rzeczywistego, WKŁ, pp.293-302, Warszawa,
2008.

12. SMC programmable controller, Lumel S.A., http://www.lumel.com.pl/en, 2010.

13. E. Tisserant, L. Bessard, M. Sousa: An Open Source IEC 61131-3 Integrated Development
Environment, 5th Int. Conf. Industrial Informatics, Piscataway, NJ, USA, 2007.

14. B. Trybus: Introduction to Conversion of Control Software Structured Models into
Coloured Petri Nets, Theoretical and Applied Informatics, Vol. 19, No.1, pp.57-70, 2007.

Projektowanie i implementacja maszyny wirtualnej normy IEC 61131-3

Streszczenie

W artykule przedstawiono projekt i implementację maszyny wirtualnej będącą ele-
mentem środowiska wykonawczego dla sterowników. Przeznaczona jest przede wszys-
tkim do małych, rozproszonych systemów sterowania. Maszyna współpracuje z pakie-
tem CPDev, opracowanym na Politechnice Rzeszowskiej, który służy do programowa-
nia w językach normy IEC 61131-3 (PN-EN 61131-3) (Rys.1). Programy w ST, IL lub
FBD są kompilowane do kodu pośredniego VMASM, który w postaci binarnej może
być wykonywany przez maszynę na platformie docelowej (Rys. 2 i Tab. 2). Zestaw
instrukcji maszyny wirtualnej oraz obsługiwane przez nią typy danych zostały dos-
tosowane do normy IEC (Tab. 1).

Działanie maszyny zostało zamodelowane za pomocą hierarchicznej czasowej
kolorowanej sieci Petriego. Elementami tego modelu jest strona przedstawiająca
cykl zadania (nadrzędna, Rys. 3) oraz podrzędna, reprezentująca moduł wykonawczy
(Rys. 4). Symulacja modelu pozwoliła zweryfikować przyjęte założenia projektowe.

Maszyna wirtualna została zaimplementowana jako program w języku C. Jej struk-
turę wewnętrzną przedstawiono na Rys. 5. Część modułów jest uniwersalna, pozostałe
zależą od platformy docelowej sterownika. Dzięki takiemu układowi, maszyna może
być przystosowana do różnego sprzętu. Dostosowanie maszyny polega na przygotowa-
niu funkcji wchodzących w skład interfejsu sprzętowego, określających m.in. sposób
ładowania programu, obsługę cyklu zadania i zegara czasu rzeczywistego. Współpraca
ze sprzętem obejmuje także odczyt wejść i zapis wyjść procesowych. Konfigurator za-
sobów sprzętowych pozwala przypisać zmienne programu do określonych wejść/wyjść.

35

Mechanizm bloków sprzętowych pozwala natomiast bezpośrednio korzystać z mecha-
nizmów niskopoziomowych w kodzie programu. W ten sposób zrealizowano m.in. ob-
sługę protokołu NMEA (Rys. 4).

Dwa pierwsze zastosowania maszyny wirtualnej ze środowiskiem CPDev to
sterownik SMC polskiej firmy Lumel, będący centralnym węzłem małego rozproszo-
nego systemu sterowania (mini-DCS, Rys. 6a,b) oraz system Mini-Guard z Praxis
Automation (Holandia) stosowany do monitorowania systemów na statku i jego pozy-
cjonowania (Rys. 6c).

Dzięki maszynie wirtualnej programy tworzone w środowisku CPDev w językach
normy IEC 61131-3 (ST, IL, FBD) mogą być uruchamiane na różnych sterownikach,
wyposażonych w procesory AVR, ARM, x86 i inne. Przedmiotem dalszych prac
będzie możliwość jednoczesnego wykonywania przez maszynę kilku zadań sterujących
(wielozadaniowość).

