
Theoretical and Applied Informatics
ISSN 1896–5334

Vol.23 (2011), no. 1
pp. 3–20

DOI: 10.2478/v10179-011-0001-0

On the search of efficient AQM for large delay networks

AGNIESZKA BRACHMAN, ŁUKASZ CHROST

Institute of Informatics
Silesian University of Technology

ul. Akadmicka 16, Gliwice, Poland

Received 2 October 2010, Revised 13 December 2010, Accepted 2 December 2010

Abstract: The main idea of all Active Queue Management algorithms, is to notify the TCP sender
about incoming congestion by dropping packets, to prevent from the buffer overflow, and its negative con-
sequences. However, most AQM algorithms proposed so far, neglect the impact of the high speed and long
delay links. As a result, the algorithms’ efficiency, in terms of throughput and/or queue stability, is usually
significantly decreased. The contribution of this paper is twofold. First of all, the performance of the well
known AQM algorithms in high speed and long delay scenarios is evaluated and compared. Secondly, a
new AQM algorithm is proposed, to improve the throughput in the large delay scenarios and to exclude the
usage of random number generator.

Keywords: active queue management, large delay network, throughput

1. Introduction

In the current Internet, congestion control is accomplished by TCP sender, who re-
acts to packets losses by reducing the transmission rate. When packet loss is caused due
to the buffer overflow, it is also an indication of a network congestion. The Internet con-
gestion occurrence has many disadvantages such as wasting network resources and long
delays in packet delivery. Proactive congestion management applied at routers could
successfully alleviate these problems. Therefore, the main idea of all Active Queue Man-
agement algorithms, is to notify the TCP sender about incoming congestion by dropping
packets, to prevent from the buffer overflow. Indication of incoming congestion protects
from multiple packets losses, and allows decreasing queuing delays.

AQM is a very active research area in the Internet community. The most commonly
referred AQM scheme is RED (Random Early Detection) [14], which is also the only al-
gorithm recommended for AQM in RFC 2309 [4]. Since the introduction of RED, many



4

enhancements have been proposed to improve the link utilization, fairness, dropping
rate and stability. Nevertheless, two main problems remain with the family of RED al-
gorithms. First of all, it is difficult to configure their parameters, to provide an universal
configuration for all traffic scenarios. Secondly, they relay on the long term queue size
averages, which makes them unstable in the face of varying arrival and departure rates.
The alternative family of algorithms is called load-based AQMs. This group of algo-
rithms aims at handling with varying intensity of network traffic. The family embraces
algorithms such as PI, REM, AVQ, ANAQM.

Queue management is a major element of the network infrastructure, and the high
link utilization is one of the most important requirements, concerning Active Queue
Management (AQM) algorithms, applied at routers. High link utilization, along with
short and low varying queuing delays are provided with low and stable queue in the
first place. Satisfying the stringent delay and jitter requirements, is very important for
the Quality of Service-sensitive, multimedia applications and other real-time interactive
applications. There is also more capacity to accommodate sudden traffic bursts without
dropping packets. Avoiding oscillations is equivalent to proper response to perturbations,
caused by emerging and retiring flows as well as to varying transmission rates of TCP
sources. Achieving high link utilization is beneficial for network providers and end
users.

Many proposed AQM algorithms neglect the impact of the high speed and large
delay links. Large delays, i.e. large round-trip times (RTT), cause unstable operation,
which results in huge oscillations, that cause the low link utilization and introduce the de-
lay jitter. The contribution of this paper is twofold. First of all, the well known AQM al-
gorithms are evaluated and compared under large delay scenarios. The second objective
is to propose a new queue management algorithm, to achieve a very good performance.
A new method called LINDROP is proposed. LINDROP uses a non decreasing, linear
function f applied at the average queue size, to estimate the dropping rate of incoming
packets. The algorithm is intended to improve the bottleneck link throughput in long de-
lay scenarios. The proposed solution is validated, and its performance is compared with
other AQM schemes through simulation. The metrics used to assess the performance
include: a) the bottleneck link utilization, b) the average queue length.

The rest of the paper is organized as follows. Section 2. reviews the related research
work. In section 3., the LINDROP congestion controller is introduced, along with some
guidelines for parameter settings. The performance of LINDROP is compared with that
of DT, RED, ARED, REM, PI and ANAQM in Section 4. Through simulation, we
evaluate the impact of large delays on the performance of LINDROP and other popular
AQMs. Finally, we conclude our research in Section 5.



5

2. Background and related work

Congestion control heavily depends on end-to-end mechanisms at the transport layer.
TCP sender probes the available bandwidth, and adjusts the transmission rate accord-
ingly. The commonly used implementations of TCP (TCP New Reno, TCP SACK)
trigger the congestion response algorithm after the receipt of three duplicated ACKs or a
timeout of the retransmission timer. If this TCP response is caused by buffer cramming,
it results in significant reduction of transmission rate, which results in reducing the link
utilization. Since congestion occurs at the routers, it is preferable, that the routers play
active role in preventing buffer overflow.

In the present Internet, AQM algorithms are not widely deployed. As a matter of
fact, despite many flaws, the FIFO queues are the most commonly encountered solution.
FIFO queue with the drop tail strategy (referred as Drop Tail algorithm) are simple to
implement, however they are prone to global synchronization of TCP sources, which re-
sults in bandwidth underutilization, relatively high transmission delays and high packet
drop rates. Nevertheless, the answer why AQMs have not been implemented so far, is
simple. Their designers put special emphasis on resolving different problems, but there
is lack of a comprehensive solution that can deal with the various conditions. AQMs are
very successful in the scenarios they were designed for, however usually suffer perfor-
mance degradation when the conditions vary.

AQMs are highly supportive for the congestion control and are also essential, when
it comes to Quality of Service. The QoS requirements embrace low packet loss rate,
short and stable queuing delays from flow perspective as well as the high link utilization
and the fair link sharing from more global perspective. AQMs should detect incoming
congestion. For this purpose, they can use the following information: per aggregate or
per flow arrival rate, the instantaneous or average queue size or combination of these
variables. The AQM algorithms can be divided, with regard to control type, into load-
based and queue-based.

Almost all existing AQM algorithms neglect the impact of large delay on the per-
formance of AQM. The problem is addressed in [27, 22]. Ren et al. design a robust
AQM controller with the ability to compensate for delay, using internal mode control
theory. The main limitation of this algorithm is that they assume the RTT as known and
constant, which is impossible for real network environment. Solution proposed in [27]
has similar shortcoming. For their model, authors adopted the internal model control
theory, to restrict the negative impact on algorithm’s performance, which is a result of
the queue instability caused by large delays. The conclusion is that AQM algorithms
designed for queue stabilization perform well only if they know the mean or maximum
RTT. Estimating RTT is not a simple issue, the problem is addressed in [19, 20, 17] and
the solution is still not satisfying.



6

The first introduced AQM was RED. It can prevent global synchronization, reduce
packet loss rates, and minimize bias against busty sources. Since then, numerous variants
of RED and novel schemes have been proposed including: adaptive RED (ARED) [12],
stabilized RED (SRED) [19], gentle RED (GRED) [13] and many others [26, 21, 15].

RED uses the Exponentially Weighted Moving Average (EWMA) of the queue size
– avg. If avg is smaller than the minth threshold, all the packets are enqueued, if
avg > maxth all the packets are dropped. When avg is between the two thresholds,
packets are dropped with linearly increasing probability. The control parameters include
the weight parameter wq used for average queue size calculations, the two threshold pa-
rameters (minth,maxth) and the maximum drop probability pmax . The guidelines con-
cerning RED tuning, suggest using small weight parameter wq. It makes RED sensitive
to the different congestion characteristics, which results in instantaneous queue oscilla-
tions, and ipso facto low bandwidth utilization. Problem of proper RED configuration is
widely described in [10, 7, 25], the conclusion is, that there is no universal configuration,
that provides good efficiency of the algorithm. The problem of proper RED configura-
tion is described in [28]. Authors of [21] analytically investigate the shape of non-linear
RED drop function and compare obtained results with other versions of RED. Similar
approach is presented in [15]. Guo et al. believe that the good performance of most of the
AQM is obtained, by modifying drop probability function. They introduce the dynamical
model of exponential RED (E-RED) and TCP Reno sources. They suggest the condition
for E-RED to achieve good performance under different scenarios, for example, round
trip time independent. Despite obtaining rather good results, authors admit that E-RED
oscillates more severely as delay increases. In [7], Christiansen et al. concluded that
adapting RED for efficient operation is difficult. Firoiu and Borden [11] presented the
relationship between queue size and dropping probability, which illustrates reason, why
RED queue acts unstable. Network load i.e. number of flows and the physical link
throughput are main causes for RED instability. Stabilized RED (SRED) [19] uses a list
called zombie, to estimate the number of active TCP connections, and update the drop-
ping probability accordingly. Although its insensitivity to the network load is increased,
the estimation about active sessions is too coarse. Another modifications of RED is
SPI-RED [28]. SPI-RED is based on a self-tuning proportional and integral feedback
controller, which additionally considers the past queue lengths during RTT, to smooth
the impact of short lived flows. Algorithm has not been studied in large delay scenario.

The adaptive RED (ARED) uses link throughput to adjust wq and pmax. The ARED
keeps the average queue size halfway between the two thresholds (minth,maxth), using
the additive-increase-multiplicative-decrease policy (AIMD). The results obtained with
ARED are more satisfying, than the results achieved using RED, however the queue
oscillation and low link utilization are still a problem, especially in low congestion sce-
narios.



7

Except for RED, there are many other AQM techniques, namely PI, REM, AVQ,
ANAQM ([3, 6, 16, 18, 24, 9]). The PI (Proportional Integral) controller uses the knowl-
edge of the instantaneous queue size, to maintain the steady value of the queue size, to
the specified reference value. It applies the well known idea from the control theory: a)
the proportional (P)-control that uses the instantaneous queue size, to improve respon-
siveness and b) the Integral (I-control), to stabilize the queue size around the reference
point, regardless of the load level. The main flaws of the PI controller are [5]: a) lags
introduced by the integral control, b) fixed controller gains related to the network condi-
tions, which results in either large oscillation but fast responsiveness or small oscillation
however at the cost of sluggish response to the traffic changes. A stable queue-based
adaptive proportional-integral controller (Q-SAPI) is introduced in [5]. Through sim-
ulation authors depict that the algorithm maintains its steady state performance over a
wide range of uncertainties in round trip time and the number of active flows. The main
flaw of this algorithm is that it needs some global information concerning the number of
active flows and the maximum RTT, therefore it heavily depends on the correctness of
estimating algorithms.

AVQ and REM belong to the AQM algorithms with optimization-based approach
i.e. TCP/AQM dynamics is formulated from an optimization standpoint directed to ob-
taining optimal source rates. REM (Random Exponential Marking) tries to regulate the
queue length to a desired value qref as well. It updates periodically the probability of
dropping packets with step γ. The probability is calculated using parameter Φ. AVQ
(Adaptive Virtual Queue) uses the idea of the virtual queue. A router with AVQ algo-
rithm maintains a virtual queue, whose capacity is less than or equal to the capacity of the
link, c. To configure AVQ, the two parameters are required, namely γ and α which are
the desired utilization and damping factor respectively. Optimization-based approaches
lead to steady-state equilibrium [18].

AN-AQM is rather novel Active Queue Management algorithm aiming at fast queue
length stabilization, which is crucial for maintaining rational drop rate to buffer delay ra-
tio. Various AQM strategies purport to reduce packet delay in routers through advanced
management of the internal packet queue. Queue stabilization impacts not only the re-
tardation of network traffic, but also other parameters such as fairness and bandwidth
utilization.

AN-AQM is based on estimation of dropping probability of incoming packets by
an adaptive neuron. The neuron uses both integrated Hebbian Learning and Supervised
Learning based on two main error factors – queue length error (e(k)) and normalized
rate error (y(k)) described respectively by following equations:

e(k) = q(k)−Qt (1)

y(k) =
r(k)
C

− 1 (2)



8

where q(k) is the queue length and Qt is target queue length, r(k) is the input rate at
the bottleneck link and C is the capacity of the bottleneck link. There are 6 inputs of
the AN-AQM scheme embracing both the error factors and their historical values. The
values of parameters describing the adaptive neuron and the learning strategies used for
latter simulations are the same as the ones proposed in [24].

3. The proposed solution

The idea of the proposed approach is to drop the incoming packets, with the esti-
mated drop rate (dr). The drop rate denotes, that every dr-th packet should be dropped.
The dr variable is continuously adapted, according to the varying conditions.

The initial value of dr is set to drinit. Subsequently, a non decreasing function f
has been chosen and with every incoming packet, the f(avg) is calculated, where avg
denotes the Exponentially Weighted Moving Average (EWMA) of the queue size. The
alterations of the f values induce changes of dr variable. The newly calculated value
of f is compared, to the value calculated at the previous packet arrival. If the ∆f > 0,
the dr is decreased, otherwise it is increased. Therefore when the function f grows,
the number of packets’ drops increases in the time course. The queue overflow doesn’t
influence the dropping scheme. The drmax and drmin are the maximum and minimum
values of the dr. The dropping rate changes exponentially. It grows with the growth
factor npd, where npd > 1 and decreases with the decay factor npu, where 0 < npu < 1.
The npu mainly influences the average queue size, higher value results in shorter queue.
The npu slightly influences the queue stability.

A linear function, depicted in Fig. 1, has been selected for proposed LINDROP
algorithm. The pseudo code of LINDROP algorithm is presented in the listing below.
The values of all parameters were set, basing on the simulation results. The simulations
were performed for LAN topology (2ms delay on bottleneck link), under low congestion
scenario (for details see section 4.2.). The initial value of dropping rate drinit is set to
500000, drmax = 1000000 and drmin = 5. Setting proper value of avgmin and avgmax

is also very important. If avgmin is to high, the queue oscillates between 0 and avgmin,
which results in low bandwidth utilization. Higher avgmax induces slower changes in
dropping rate, which also causes queue instability. Parameter avgmin is set to 0. The
results for different settings of avgmax, concerning average throughput, average queue
size and standard deviation are presented in Fig. 5. The best results are achieved when
avgmax >= 30 and 50 <= avgmax. Simulation results for different values of npu and
npd are presented in Figures 3 and 4. The results in Fig. 3 concern configuration where
avgmax = 150, results in Fig. 4 are for configuration avgmax = 50. From these facts
we can conclude that the lower value of avgmax reduces the influence of npu and npd,
however it also affects the algorithm stability.



9

Fig. 1. Dropping function for LINDROP

Algorithm 1 The pseudo code of the LINDROP algorithm
Require: npd > 1, 0 < npu < 1, 0 <= avgmin < avgmax, avgmax < BufferSize

dr(0) ← drinit

avg ← 0
f(avg) ← 0
ndrops = 1
for for i-th packet do

avg ← CalculateEWMA(queue)
fi ← f(avg, avgmin, avgmax)
if fi − fi−1 > 0 then

dri = dri−1 ∗ npu

else
dri = dri−1 ∗ npd

end if
if dri > drmax then

dri = drmax

else if dri < drmin then
dri = drmin

end if
if ndrops > dri then

DropPacket(packets(i))
ndrops = 1

else
ndrops + +

end if
end for



10

URL Average RTT [ms]
Europe (Oxford - www.oxford.ox.ac.uk) 47.521
Europe (Paris - www.paris-sorbonne.fr) 58.395
Europe (Moscow - www.msu.ru) 79.782
USA (Chicago - www.ccc.edu) 147.135
USA (California - www.ucla.edu) 216.234
Asia (Hong Kong - www.cuhk.edu.hk) 310.338
Asia (Tokyo - www.u-tokyo.ac.jp) 326.622
Australia (Sydney - www.usyd.edu.au) 354.550

Table 1. Measured mean RTT values

4. Performance of AQM schemes in large delay networks

4.1. Distribution of RTT

According to the Internet measurements presented in [23], roughly 75 – 90% of
flows have RTTs less than 200 ms. In [17] authors show that the average RTT is dis-
tributed around 180 ms. Table 1 shows the round trip time to different overseas and
continental websites. Measurements were performed using ping tool from IP address
157.158.55.120 (Poland). Rather large delays have been selected to simulate the over-
seas transmission rates.

4.2. Simulation setup

The ns-2 simulator was used to study AQM performance [1], release 2.34. The
single bottleneck, dumbbell topology is used, see Fig. 2). All nodes are connected to the
routers with 100Mbps links. The propagation delays vary according to the list below:

• N1-RA: 0ms,

• N2-RA: 12ms,

• N3-RA: 25ms,

• N4-RB: 2ms,

• N5-RB: 37ms,

• N6-RB: 75ms

The link from router RA to router RB is a bottleneck for each connection. The link
has the bitrate 100 Mbps. The mean distribution of RTT for all possible connections
is 100ms without the delay on the bottleneck link. Three values of the bottleneck link
delay are used, namely 2ms, 100ms and 300ms. First scenario, further reffered as LAN
scenario, is a basic scenario for an AQM comparison. Second and third scenarios are



11

Fig. 2. A dumbbell topology

considered large delay and are further referred as WAN_100 and WAN_300 scenario.
The longest RTT are 300ms and 700ms accordingly.

Three traffic scenarios described in [8] are used:

• The uncongested network scenario – 10 TCP connections,

• The moderate congestion scenario – 100 TCP connections,

• The heavy congestion scenario – 1000 TCP connections,

The TCP SACK senders are located in nodes N1-N3 and transmit data to nodes N4-
N6. All nine transmission paths are used, TCP connections are uniformly distributed
among the transmission paths. 90% of TCP connections use 1500 bytes long packets,
the remaining 10% use 536 bytes long packets. All 536-bytes-long connections and 75%
of the 1500-bytes-long connections are FTP flows, the flows are active throughout the
whole simulation. The remaining 25% flows are short lived flows imitating the HTTP
traffic. The short lived flows are configured as follows. Each flow is initiated randomly
according to the Poisson process and is assigned the fixed number of bytes to transmit.
The number of bytes are generated using Pareto distribution with the average value of
50kB and the shape parameter of 1.3. The Poisson process rates are set to 12.5, 1.25 and
0.125 in considered scenarios.

Additionally, to simulate the reverse direction traffic, UDP (CBR) flows in backward
direction, with 1000-bytes long packets are used. Their sending rate is set to fulfil 10%
of the available backward bandwidth.

Six AQM are evaluated along with classic FIFO queue referred as DT. The AQM
algorithms are: RED, ARED, PI, REM, AVQ, ANAQM. Simulation scenarios’ parame-
ters are set according to [8], which is based on [2]. The AQM configuration parameters
are set according to Table 2. All AQM algorithms are configured to maintain queue size
around 100 packets in LAN secnario, namely with 2ms delay on bottleneck link.

The following metrics on the bottleneck link are collected: the link utilization and
the average queue size.



12

DT Buffer Size = 100
RED Buffer Size = 300, minth = 50, maxth = 150

ARED Buffer Size = 300, minth = 50, maxth = 150

AVQ Buffer Size = 300, γ = 0.98

PI Buffer Size = 300, qref = 100

REM Buffer Size = 300, qref = 100

ANAQM Buffer Size = 300, Target ratio = 0.3
LINDROP Buffer Size = 300, avgmin = 0, avgmax = 50, npu = 0.98, npd = 1.05

Table 2. Simulation parameters

Congestion
AQM low moderate heavy

L
A

N
DT 92.75 99.86 99.95

RED 90.54 99.64 99.91
ARED 99.19 99.97 99.94
AVQ 75.90 99.96 99.98

PI 95.60 99.95 99.98
REM 98.92 99.98 99.98

ANAQM 89.39 99.73 99.93
LINDROP 97.33 99.96 99.98

Table 3. The average throughput on bottleneck link in LAN scenarios [Mbps]

4.3. Simulation results for LAN scenarios

Firstly, we evaluate the proposed solution under the LAN scenario, to verify the
LINDROP properness. The average throughput of the bottleneck link for LAN topology
and all traffic scenario are gather in Table 3.

The throughput concerns the bottleneck link, the number of bytes departed at the
router A throughout the simulation course was measured. Results are presented in
Megabits per second (Mbps). The average queue size was estimated on the router B.

In the low congestion scenario, almost all AQM algorithms, along with DT, achieve
high link utilization, i.e 90% and more. The exception is AVQ, which uses 75% of the
available bandwidth. The more connections, the better performance, in terms of the
achieved throughput. In moderate and heavy congestion scenarios, the differences are
negligible for all algorithms, in terms of the link utilization.



13

Fig. 3. The influence of npu and npd on the performance of LINDROP in low congestion scenario,

maxth = 150



14

Fig. 4. The influence of npu and npd on the performance of LINDROP in low congestion scenario,

maxth = 50

Fig. 5. The influence of thmax on the performance of LINDROP, npu = 0.98, npd = 1.05



15

Congestion Congestion
AQM low moderate heavy AQM low moderate heavy

W
A

N
_1

00

DT 32.95 84.04 92.51

W
A

N
_3

00

DT 15.32 45.56 81.42
RED 40.36 80.71 92.11 RED 17.16 50.44 79.68

ARED 64.04 91.34 92.97 ARED 20.09 63.88 84.98
AVQ 63.63 91.51 93.62 AVQ 19.24 63.50 86.56

PI 40.71 91.09 93.61 PI 16.21 56.99 86.35
REM 64.11 91.35 93.57 REM 18.85 62.52 86.99

ANAQM 33.70 80.04 92.26 ANAQM 17.22 42.83 80.45
LINDROP 59.97 95.64 98.19 LINDROP 20.00 66.74 90.89

Table 4. The average throughput on bottleneck link in WAN scenarios [Mbps]

Congestion Congestion
AQM low moderate heavy AQM low moderate heavy

W
A

N
_1

00

DT 1.40 24.01 77.00

W
A

N
_3

00

DT 0.37 4.41 44.04
RED 2.06 20.53 75.29 RED 0.48 6.85 39.18

ARED 18.79 97.57 106.74 ARED 0.68 31.78 111.36
AVQ 19.76 143.57 267.88 AVQ 0.60 28.98 169.05

PI 2.00 82.10 161.37 PI 0.45 13.05 108.61
REM 20.22 131.72 184.91 REM 0.63 28.80 159.40

ANAQM 1.51 17.66 66.82 ANAQM 0.46 3.85 35.90
LINDROP 5.41 94.06 282.66 LINDROP 1.38 20.52 138.98

Table 5. The average queue size in WAN scenarios [pkts]

4.4. Simulation results for WAN scenarios

The simulation results for both WAN topologies and all traffic scenario are gather in
the following tables:

• the average throughput of the bottleneck link (Table 4),

• the average queue size at the bottleneck link (Table 5),

Best results in every congestion scenario are featured. The throughput concerns the
bottleneck link, the number of bytes departed at the router A throughout the simula-
tion course was measured. Results are presented in Megabits per second (Mbps). The
average queue size was estimated on the router B.

It is striking, that for large delay networks, link utilization is rather low, especially
in low congestion cases. In WAN_300 scenario, none of the AQM algorithm is able to
utilize the available bandwidth more than 20% and in WAN_100 scenario, the link uti-
lization is around 50-60%. In WAN_100 scenario with 10 active connections, the best
link utilization (around 60%) is achieved when ARED, AVQ, REM and LINDROP is
used. The remaining algorithms have throughput between 30 and 40%. When the delay
at the bottleneck link grows, the differences are no longer so visible. When the num-
ber of connection grows, the link utilization gets better, however when the bottleneck



16

link delay is 300ms, the link utilization is only 80-90% even under heavy congestion
scenario. When the number of active connections increases, LINDROP achieves the
highest throughput among all algorithms. The results are up to 5% better than for any
other algorithms. In large delay WAN_300 scenario, regardless of the congestion inten-
sity, LINDROP provides the highest link utilization.

LINDROP maintains low average queue size only in low congestion scenarios.
When the number of connections increases, the average queue size grows. In WAN_100
and low congestion level scenario, the average queue size of LINDROP is four times
smaller, than for other AQMs with similar performance. Under heavy congestion sce-
nario, the queue is utilized almost in 100%, which unfortunately introduces large delays.
In WAN_300 scenario, the trend is preserved, i.e. the highest congestion level, the higher
average queue size of LINDROP algorithm, however in general, the average queue size
is smaller in comparison to other AQM algorithms of lower performance.

Comparison of average queue size of LINDROP to average queue size of other,
exemplary AQM algorithms is depicted in Figures 6, 7, 8.

Fig. 6. The average queue size, moderate congestion scenario, LAN topology

Fig. 7. The average queue size, low congestion scenario, WAN_100 topology



17

Fig. 8. The average queue size, moderate congestion scenario, WAN_300 topology

5. Conclusions and future work

In this paper, we studied the influence of large delays on the AQMs’ performance in
terms of the bottleneck link utilization, for most popular AQM algorithms and newly de-
signed LINDROP solution. It has been shown, that the large delays, highly influence the
algorithm efficiency and result in significant link underutilization. Moreover, in addition
to low congestion level, all algorithms suffer serious performance degradation.

The LINDROP algorithm has been proposed to improve the bandwidth utilization in
large delay networks. LINDROP provides high link utilization, in comparison to other
solutions and in low congestion scenarios, it maintains short and stable queue. Un-
fortunately improving the overall throughput, has not been accomplished in all network
scenarios so far. Providing good performance in low congestion scenario and large delay
network remains an open issue.

Acknowledgements

This work is supported by the Ministry of Science and Higher Education under grant
N N516 381134

References

1. The network simulator ns-2.

2. L. L. H. Andrew, S. Floyd, W. Gang: Common TCP evaluation suite, 6 Jul 2008.

3. S. Athuraliya, S.H. Low, V.H. Li, Q. Yin: REM: active queue management. Network,
IEEE, 15(3):48 -53, May 2001.

4. B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson,
G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, L.
Zhang: RFC 2309: Recommendations on Queue Management and congestion avoidance
in the Internet, April 1998. Status: INFORMATIONAL.



18

5. X. Chang, J. K. Muppala: A stable queue-based adaptive controller for improving AQM
performance. Comput. Netw., 50:2204-2224, September 2006.

6. W.-C. Feng, K.G. Shin, D.D. Kandlur, D. Saha: The BLUE active queue management
algorithms. Networking, IEEE/ACM Transactions on, 10(4):513-528, August 2002.

7. M. Christiansen, K. Jeffay, D. Ott, F. D. Smith: Tuning RED for web traffic. In in Pro-
ceedings of ACM SIGCOMM 2000, 139-150, 2000.

8. L. Chrost, A. Chydzinski: On the evaluation of the Active Queue Management mecha-
nisms. In Evolving Internet, 2009. INTERNET ’09. First International Conference on,
113-118, 2009.

9. G. Di Fatta, F. Hoffmann, G. Lo Re, A. Urso: A genetic algorithm for the design of a
fuzzy controller for active queue management. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on, 33(3):313-324, 2003.

10. W.-C. Feng, D.D. Kandlur, D. Saha, K.G. Shin: A self-configuring RED gateway. In
INFOCOM ’99. Eighteenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings. IEEE, 3, 1320-1328, March 1999.

11. V. Firoiu, M. Borden: A study of active queue management for congestion control. In
INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings. IEEE, 3, 1435-1444, March 2000.

12. S. Floyd, R. Gummadi, S. Shenker: Adaptive RED: An Algorithm for Increasing the
Robustness of RED, 2001.

13. S. Floyd: Recommendation on using the "Gentle" variant of RED algorithm, March 2000.

14. S. Floyd, V. Jacobson: Random early detection gateways for congestion avoidance.
IEEE/ACM Trans. Netw., 1:397-413, August 1993.

15. S. Guo, X. Liao, Ch. Li, D. Yang: Stability analysis of a novel exponential-RED model
with heterogeneous delays. Comput. Commun., 30:1058-1074, March 2007.

16. C.V. Hollot, V. Misra, D. Towsley, W. Gong: Analysis and design of con-trollers for AQM
routers supporting TCP flows. Automatic Control, IEEE Trans-actions on, 47(6):945-959,
June 2002.

17. H. Jiang, C. Dovrolis: Passive estimation of TCP round-trip times. ACM Computer Com-
munication Review, 32:75-88, 2002.

18. S.S. Kunniyur, R. Srikant: An adaptive virtual queue (AVQ) algorithm for active queue
management. Networking, IEEE/ACM Transactions on, 12(2):286-299, 2004.

19. T. O. Lakshman, T. V. Lakshman, L. Wong: SRED: Stabilized RED. In Proceedings of
INFOCOM, 1346-1355, 1999.

20. S.H. Low, F. Paganini, J. Wang, S. Adlakha, J.C. Doyle: Dynamics of TCP/RED and a
scalable control. In INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, 1, 239-248, 2002.

21. E. Plasser, T. Ziegler: A RED function design targeting link utilization and stable queue
size behavior. Comput. Netw., 44:383-410, February 2004.



19

22. F. Ren, Ch. Lin, B. Wei: A robust active queue management algorithm in large delay
networks. Comput. Commun., 28:485-493, March 2005.

23. S. Shakkottai, R. Srikant, N. Brownlee, A. Broido, K.C. Claffy: The RRT distribution of
TCP flows in the internet and its impact on TCP-based flow control, 2004.

24. J. Sun, M. Zukerman: An adaptive neuron AQM for a stable internet. In Proceedings of
the 6th international IFIP-TC6 conference on Ad Hoc and sensor networks, wireless net-
works, next generation internet, NETWORKING’07, 844-854, Berlin, Heidelberg, 2007.
Springer-Verlag.

25. L. Tan, W. Zhang, G. Peng, G. Chen: Stability of TCP/RED systems in AQM routers.
Automatic Control, IEEE Transactions on, 51(8):1393-1398, 2006.

26. Ch. Wang, J. Liu, B. Li, K. Sohraby, Y. T. Hou: Lred: A robust and responsive AQM algo-
rithm using packet loss ratio measurement. IEEE Transactions on Parallel and Distributed
Systems, 18:29-43, 2007.

27. J. Wang, L. Rong, Y. Liu: Design of a stabilizing AQM controller for large-delay networks
based on internal model control. Comput. Com-mun., 31:1911-1918, June 2008.

28. N. Xiong, Y. Pan, X. Jia, J.- H. Park, Y. Li: Design and analysis of a self-tuning feedback
controller for the internet. Comput. Netw., 53:1784-1797, July 2009.

Algorytm AQM dla sieci z dużymi opóźnieniami

Streszczenie

W obecnym Internecie odrzucanie bądź znakowanie pakietów ma na celu
powiadomienie nadawcy o przeciążeniu. Ten fakt jest wykorzystywany przez źródła
TCP w celu ograniczenia prędkości nadawania.

Rozwiązaniem problemu pełnej kolejki jest prewencyjne odrzucanie pakietów, aby
nie dopuścić do zapełnienia bufora i powstania przeciążenia. Prawdopodobieństwo
prewencyjnego odrzucenia pakietu rośnie wraz ze wzrostem poziomu przeciążenia.

Idea ta jest wykorzystywana w aktywnych algorytmach zarządzania kolejką.
Prewencyjne odrzucanie pakietów wprowadza mechanizm sprzężenia zwrotnego infor-
mując nadawców o zbliżającym się przeciążeniu. Informacja jest wykorzystywana przez
nadawców w celu zwolnienia szybkości nadawania. Losowe odrzucanie wybranych
pakietów pozwala uniknąć sytuacji, w której wszystkie źródła zwalniają jednocześnie,
co eliminuje problem globalnej synchronizacji.

Większość obecnych algorytmów AQM pomija wpływ cech charakterystycznych dla
łączy szkieletowych, tj. dużej przepustowości i dużych opóźnień propagacji. W rezulta-
cie sprawność algorytmów AQM rozumiana jako przepustowość łącz i stabilność kolejki
jest znacznie mniejsza niż w sieciach dostępowych.



20

W pracy zaprezentowano badania wydajności popularnych algorytmów AQM
w sieciach szkieletowych o dużych przepustowościach i dużych opóźnieniach propa-
gacji. W dalszej części przedstawiono propozycje algorytmu, który ma na celu poprawić
przepustowość transmisji na tych łączach i który pozwala wykluczyć użycie genera-
tora liczb losowych. Zaproponowana metoda – algorytm LINDROP – wykorzystuje
niemalejącą funkcję liniową, w zależności od średniej długości kolejki, do oszacowa-
nia współczynnika odrzucania nadchodzących pakietów. Algorytm poprawia przepus-
towość w łączu szkieletowym.


