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Abstract 

The paper presents application of differential electronic nose in the dynamic (on-line) volatile measurement. 

First we compare the classical nose employing only one sensor array and its extension in the differential form 

containing two sensor arrays working in differential mode. We show that differential nose performs better at 

changing environmental conditions, especially the temperature, and well performs in the dynamic mode of 

operation. We show its application in recognition of different brands of tobacco. 
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1. Introduction  
 

The stability of operation of an electronic nose (e-nose) is an important problem in 

practical applications, since the temporal drift of operating characteristics of semiconductor 

sensors due to changes of environmental parameters or internal changes of the 

semiconductors, causes changes of their signals and, as a result, an improper recognition of 

volatiles. The important factors influencing the reaction of sensors are the temperature and 

humidity of the surrounding atmosphere [1‒2]. This change can be partly reduced by using an 

electronic thermostat or by applying a special arrangement of the measurement process.  

 

 
 

Fig. 1. The general scheme of a differential nose. 
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The differential e-nose [3−4] of the structure presented in Fig. 1 is an example of such an 

improvement. It employs two identical channels and identical sensor matrices working in the 

differential mode. The investigated material is placed in the measurement chamber. The 

reference chamber is empty. The use of the same ambient air in two channels of e-nose is 

practical and allows to considerably limit the effect of the instability of the humidity and 

temperature in the measurement process.  

Application of the differential e-nose allows to eliminate the problem of baseline 

calculation and use it in an on-line mode of operation. At stable environmental measurement 

conditions the results of the differential nose are equivalent to the classical (one sensor array) 

e-nose solution. At changing temperature or humidity the differential e-nose allows to make 

measurements in the on-line mode delivering acceptable results. This is not true in the case of 

the classical e-nose, since at changing environmental conditions we have to repeat the 

calculation of the baseline, interrupting the on-line measurement process. Thanks to the 

differential mode of operation it will be possible to extend the typical application of e-noses 

[5] to the cases, where a dynamic on-line measurement is needed. 

 

2. Extension of classical e-nose to differential mode  

 

The classical e-nose structure uses one array of few gas semiconductor sensors reacting 

in a different way to the presence of volatiles. The measured voltage signals of the sensors 

(proportional to their resistances) are used to generate the features which form the pattern 

used by a recognizing device (for example a neural network) to perform its classification or 

regression task. Let us denote the averaged temporal sensor resistance of j-th sensor in the 

array by R(j). In order to produce the consistent data for the pattern recognition process, we 

have to eliminate the baseline (the reference value). The baseline values are the measured 

signals of sensors in the synthetic air atmosphere. As a diagnostic feature we apply the 

relative variation rc(j) of each sensor resistance  
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where Rm(j) is the actual measured resistance of the j-th sensor in the array and R0(j) 

represents the baseline value for this sensor. Application of the expression (1) provides 

automatic normalization of the signals in a classical mode operation of the e-nose. In practice, 

the value of Ro(j) for the j-th sensor is determined by averaging many measurement points at 

the synthetic air, which are acquired within the measurement window at determined 

environmental conditions.  

The numerator in the expression (1) represents a difference between the actual resistance 

of the sensor in the presence of volatiles and the baseline value of this resistance. In this sense 

the classical (common) mode is close to the differential one. The main drawback of this mode 

of operation is that the measurements of the analyzed signals and the reference signals 

(baseline) are collected in different moments of time. In stationary processes this is not a 

problem. However, in a dynamic mode of operation, when the environmental conditions 

(temperature, humidity) are changing significantly, the baseline conditions differ from the 

actual ones. So, the predetermined reference value is not well suited for the actual 

measurement and leads to errors.  

The remedy to such a problem of the e-nose is the simultaneous application of two 

identical and independent arrays of sensors working in a differential mode. One of them is 

used as the measurement matrix and the second as the reference one [3]. The measurement 

array of sensors is exposed to the investigated volatiles and the reference array to the ambient 

air only. Both arrays are placed close to each other, so the environmental conditions 

(temperature, humidity, pressure) are approximately the same in both sensor chambers. The 
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streams of sample signals generated by both arrays are then subtracted. In this way the 

differential signal is produced: 
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for j=1, 2, …, N, where index m refers to the measurement and r – to the reference array. 

Taking into account that both arrays work in the same environmental conditions we observe 

that the differential signal reduces greatly the common interference effects, such as changes of 

temperature and humidity of the ambient air. In this system the reference signals correspond 

to the ambient air conditions used instead of the synthetic air in the classical mode.  

Observe that the differential e-nose is automatically calibrated at changing conditions of 

the ambient air, because the reference and measurement signals are acquired simultaneously 

in the same atmospheric environments. These features of the differential e-nose allow to use it 

as an instrument for the applications  in dynamically changing conditions.  

 

3. Comparison of classical and differential e-noses 

 

3.1 Theoretical relations 

 

The relations between the classical and differential mode of operation of electronic noses 

may be compared on the common basis. Let us assume that the measurement array of the 

differential nose serves in both modes (in the common mode the reference array is simply 

ignored). The measured signal Rm(j) of j-th sensor in the common mode is described by 
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where R0(j) represents the mean baseline value (the average of many measurements made in 

the synthetic air) and rc(j) is the normalized resistance in the common mode. On the other 

hand, the measured signal of the pair of sensors in the differential mode is described by 
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Since the same measurement array is used in both types of measurement we may combine 

both equations together and get  
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In steady state conditions, the mean value R0(j) is very close to the instantaneous 

measurement of the reference resistance Rr(j) in the differential mode. In such a case we can 

assume 
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It means that in steady state conditions both measurements (in the common and differential 

modes) are equivalent to each other with respect to the numerical results and the scale of 

similarity is equal R0(j). To get the corresponding results in both measurements we have to 

start from the common mode of operation of the e-nose, calculate the baseline and then switch 

the system to the differential mode. The advantage of using the differential nose is its 

operation in the on-line measurement mode (no need for the baseline calculation at changing 

environmental conditions). It means that the measurements can be done in the dynamic state 

of the process at changing temperature or humidity. 
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In the case of instantaneous measurements performed in highly changing environmental 

conditions (the temperature, pressure or humidity) the results of a classical arrangement of 

sensors will be inaccurate, since the baseline is calculated in different conditions. Contrary to 

this, the differential nose is not affected by such a limitation since the reference measurements 

are performed simultaneously with the acquisition of  signals in the  measurement chamber. 

 

a. Experimental set-up 

 

To verify this observation we have made experiments of recognition of Robusta and 

Arabica, the two botanical varieties of coffee. In the numerical experiments we have used the 

same differential system setup for the differential and common modes. The sensing system 

was composed of two chemo sensor arrays (the measurement and reference arrays) built of 

the same types of sensors [3], placed in two independent chambers located nearby. Both 

sensor arrays are identical and composed of 12 heated metal oxide gas sensors of Figaro 

series: 2xTGS2600-B00, 2xTGS2602-C00, TGS2610-C00, TGS2610-D00, TGS2611-C00, 

TGS2611-E00, 2xTGS2612-D00, 2xTGS2620-C00. The sensors of  26xx series were applied, 

since this family is known from its high stability of operation and small size. Because of a 

limited number of sensor types, some of them in both arrays have been duplicated at different 

loadings. The varied loading has been arranged through the potentiometer R wired in series 

with the sensor, used to tune the level of the sensor output signal in the clean air environment. 

The sensor resistance Rs in such an arrangement is equal to R
V

V
RR

R

c

s
−= , where Vc is the 

circuit voltage and VR the voltage of an additional resistor. Four sensors have been duplicated 

in this way using the additional resistances. Thus, the sensor signals have been changed up to 

25%.  

Two additional sensors: the temperature sensor LM35DH and humidity sensor                     

HIH-3610-02 have been applied to provide the information on the temperature and humidity. 

The detailed description of construction of the differential e-nose is given in [3]. 

Both sensor arrays work in practically the same environmental conditions. Inside the 

measurement channel there are volatiles of the investigated material coming from its sample 

amount. The reference channel is supplied only from the outside air and is free from the 

analyzed volatiles. In the differential mode only the difference of signals is stored and 

processed further. In the common mode operation of the e-nose only the signals of the 

measurement array are registered, whereas the reference signals are ignored. Instead, the 

additional measurements performed in the measurement chamber at the presence of the 

surrounding air are performed to calculate the baseline. 

The measurement array sensed the volatiles of 10g of either Arabica or Robusta placed in a 

cylindrical vial of the channel. The total volume of this vial was about 200 ml. The second 

array (the reference one) sensed only the ambient air. In both channels the ambient air was 

sucked with the flow rate of 0.5 SLPM by an induction pump. 

Two types of experiments have been performed. In the first case the temperature as well as 

the humidity inside the chambers were approximately constant and equal T=28oC and 

Rh=35% (the steady state ambient conditions). In the second set of experiments we have 

changed the temperature by heating the air around chambers from 28oC to 36oC. The 

measurements of the coffee specimen were done 100 times. The registration of the samples in 

the form of voltages proportional to the sensor resistances was performed every 0.4 seconds. 

The baseline calculation in the common mode of operation was done only once at the 

beginning of experiments, at the starting temperature. 
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b. The numerical results 

 

In the first set of experiments we have provided an approximately constant temperature of 

the air and made experiments in the differential and common modes of operation of the 

electronic nose. To compare both modes of operation of the e-nose we repeated measurements 

twice: first in the common mode, including the baseline calculation in the ambient air, and 

next in the differential mode. All measurements were carried out using the 10g samples of 

coffee (pure Arabica and pure Robusta). The measurements performed in the ambient air 

defined the baseline signals of the sensors for the common mode operation at the humidity of 

35% and the temperature of 28oC (the laboratory conditions). To get the correct results of 

comparison of both modes of operation it is important to preserve the order of measurements: 

first the calibration of the measurement sensor array, then the common mode measurements 

of the coffee and then the differential mode of measurements of the same aroma.  

Fig. 2 presents exemplary numerical results of comparison for the samples of Robusta 

coffee. Similar results have been obtained for Arabica. There are presented the signals of two 

chosen sensors in the common mode of operation (indicated by a solid line for sensor 3 and a 

dashed line for sensor 4) and the differential signals of the same two sensors in the differential 

mode. Then we have mapped the differential signals to the common mode by applying the 

relation (6) which is rewritten here in the form 
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The transformed values representing the mapped differential signals are indicated in Figure 2 

by the red dots. It is evident that the mapped differential samples match very well the curve of 

the signals in the common mode operation. 

 
 

Fig. 2. The results of measurements of Robusta in the common mode (green lines) and differential mode  of 

operations (magenta lines) for two sensor pairs S3=TGS2602 and S4=TGS2600. The red dots represent the 

mapped values of the differential signals according to the relation (7). The horizontal axis represents the number 

of  subsequent samples (each sample corresponds to 0.4s) and the vertical axis their sensor signals in Volts.  

 

The observed differences between the mapped differential signals and their values in the 

common mode of operation are negligible, confirming our statement that the common and 

differential modes of operation of the e-nose are equivalent. Similar results have been 

obtained in the appropriate measurements of Arabica aroma. 



 S. Osowski, K. Siwek, T. Grzywacz, K. Brudzewski: DIFFERENTIAL ELECTRONIC NOSE … 

An additional problem is the non-ideality of the same types of sensors forming the pairs. It 

results in a non-perfect compensation of signals while measuring the same headspace in 

varying environmental conditions. A typical illustration of this asymmetry is presented in Fig. 

3, in which  signals of the reference array are presented as negative values according to the 

equation (2). The signals of measurement and the reference sensor arrays have been registered 

at the presence of the clean air in both channels. On the basis of many experiments we can 

state that this effect disturbs the recognition results in a non-significant way. 

 

 
Fig. 3. The illustration of an initial asymmetric effect of the differential e-nose in the clean air measurement.  

The horizontal axis represents the subsequent sensors and the vertical axis their signals in Volts.                      

The reference signals are presented as negative values according to the equation (2). 

 

 

 The next set of experiments was done in the dynamic mode at quickly changing 

temperature of an ambient air in the measurement of coffee aroma. We have directly heated 

the air temperature around both chambers. In these experiments we have kept constant 

concentration of the coffee (the induction pump was turned off and the airflow in the 

chambers was blocked). The experiments have been done in the classical and differential 

modes of operation of the e-nose. The baseline calculation was done only once at the 

beginning of the experiments at the temperature of 28oC. The humidity level was maintained 

at a constant level during the whole experiment.  

Because of the increasing temperature the sensor signals in the common mode were 

varying significantly suggesting  a change of aroma concentration. In the differential mode of 

the e-nose operation  changes of sensor signals were very small and appropriate to slight 

differences of temperatures in the measurement and reference channels. The differential mode 

of operation has shown significant insensitivity of the e-nose to the changing temperature.  

Fig. 4 presents the change of temperature in the measurement chamber (the upper diagram) 

and the measured differences of temperatures in both chambers, observed in the dynamic 

mode of operation of the e-nose at the presence of Arabica aroma. A slight difference of 

temperature in both chambers resulted from an imperfect symmetry in heating of both 

channels in the dynamic mode.  
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Fig. 4. The change of temperature of the measurement chamber (the upper subplot) and the difference of 

temperatures in both chambers (the bottom subplot) in the dynamic mode of measurements of the Arabica.             

The vertical axes are scaled in Celsius degrees. 

 

Fig. 5 shows signals of 4 sensors at changing temperatures (as pointed in Fig. 4) in the 

common and differential modes of operation of the e-nose in the measurement of Arabica 

aroma. The upper subplot presents the differential signals and the bottom one - the common 

mode of operation. Only the differential mode reflects the true (constant) concentration of 

aroma. In spite of quickly changing temperature the differential signals of the sensor pairs 

remain on an almost constant level appropriate to the constant concentration of the coffee 

aroma.  

 
 

Fig. 5. The change of sensor signals in the differential mode of operation (the upper diagram) and in the common 

mode of operation (the bottom diagram) in the measurement of Arabica at the changing temperature. The results 

correspond to the temperature plot shown in Fig. 4. The horizontal axes represent the number of the subsequent 

samples of sensor signals (each sample corresponds to 0.4s) and the vertical axis the values of these signals in 

Volts. 
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Slight changes of the signal values are due to some observed differences of temperature in 

both chambers, which are inevitable in the dynamic mode of operation. The similar effects 

were observed also for Robusta. It can be seen that the common mode of operation of the e-

nose is useless in the dynamic mode, since it is impossible to verify the baseline at quickly 

changing temperatures without interrupting the measurements. This experiment proves the 

advantage of using the differential nose in changing environmental conditions. 

 

4. Application of differential e-nose in recognition of cigarette  
 

4.1 Materials 

 

The developed differential system was applied in recognition of cigarette brands (classes) 

on the basis of smell of their leaves [6]. The registered and normalized differential signals of 

the sensor arrays form the input to a support vector machine (SVM) used as the final 

recognition and classification tool. The leaves of 11 brands of cigarettes, each of the total 

mass of about 3g, were obtained from the local suppliers. They have been placed in the 

measurement chamber of the e-nose. The cigarette brands and the country of their production 

which took part in experiments are depicted in column 1 of Table 1, (EU - the European 

Union, Russia and Ukraine). Column 2 presents the notation of classes (in abbreviated form) 

representing different cigarette brands. 

 
Table 1. The cigarette brands and their short notation. 

 

Cigarette brand  Notation  

Chesterfield Blue (EU) C1 

Chesterfield Red (EU) C2 

Classic Red (Russia) C3 

Fest (Ukraine) C4 

LD Blue (EU) C5 

LD Red (EU) C6 

LD Silver (EU) C7 

Magnat (Ukraine) C8 

Viceroy Blue (EU) C9 

Viceroy Blue (Ukraine) C10 

Viceroy Red (Ukraine) C11 

 

The investigated brands of cigarettes were produced by different companies in different 

countries. For example Viceroy Blue was produced in EU and Ukraine and it is interesting to 

know whether the system is able to recognize them. The basic measurements were done at 

constant ambient temperature equal to 22oC and humidity 44%. The samples have been 

registered every 0.5 seconds. The total number of acquired samples was 200 (the total 

measurement time equal to 100 seconds). Because of the dynamic on-line mode of signal 

registration the concentration of the gas was changing within the measurement window. The 

changes of voltage signals of two sensor pairs in the measurement of 11 cigarette brands are 

shown in Fig. 6. 
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Fig. 6. The change of dynamic responses of two chosen sensor pairs in the measurement of 11 types                           

of smells. The horizontal axes represent the number of subsequent samples of sensor signals                                    

and the vertical axis the values of these signals in Volts. 
 

The observed changes of the signals result from the dynamic reactions of sensors to the 

presence of different tobacco smells. All sensor pairs form the patterns characteristic for the 

smell of each cigarette brand. Thanks to this each cigarette brand can be associated with the 

characteristic pattern at any point of time.  

 

4.2 Analysis of sensor signals 

 

An important point in the pattern recognition is to find if the measured values of sensor 

signals have differing distribution for different classes. We have applied here the test of 

independence based on the analysis of variance of sensor signals (ANOVA analysis [7]) for 

all brands of cigarettes. In each case we have got p-value very close to zero (p is the 

probability that the sensor signals representing different classes come from the same 

population – the so called null hypothesis). This small p-value means that the null hypothesis 

should be rejected. Fig. 7 presents the box plots corresponding to the differential sensor 

signals for 4 chosen pairs of sensors: S3, S6, S9 and S12.  

 

 
a) 

 
b) 
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c) 

 
d) 

 

Fig. 7. The box plots of the sensor signals in the measurement of 11 cigarette brands: a) sensor pair S3, b) sensor 

pair S6, c) sensor pair S9, d) sensor pair S12. The horizontal axes represent the subsequent classes of cigarettes 

and the vertical axes indicate the range of change of the differential sensor signals. 

 

Each box in Fig. 7 has lines at the lower quartile, median, and upper quartile values. Whiskers 

extend from each end of the box to the adjacent values in the data. By default the most 

extreme values within 1.5 times the interquartile range from the ends of the box. The points 

displayed with a red + sign denote outliers, that is the data with values beyond the ends of the 

whiskers. In most cases the signals of the sensors occupy different ranges of values, have 

different median, and we observe also outliers. If one sensor responses in the same way for 

the particular classes of volatile compounds (for example sensor S3 for classes 1 and 2) the 

other (for example S6 or S9) differentiate these classes in a significant way. Such a 

cooperation of all sensors enables to recognize different classes. The significant difference 

was observed also for the same type of cigarette (Viceroy Blue) produced in two different 

countries.  

 The important information on the separability of classes represented by the sensor signal 

patterns can be drawn from  mapping the 12-dimensional data of the smell pattern into the 2-

dimensional space provided by the two most important principal components in a principal 

component analysis (PCA). The PCA represents a classical statistical technique for analyzing 

the covariance of the multivariate statistical observations related to sensor signals [6],[8]. It 

reveals the structure behind the correlation of many variables and is described as the linear 

transformation y=Wx mapping the N-dimensional original feature vector x into the                   

K-dimensional output vector y of K<N. The vector y preserves the most important elements 

of original information and W is the PCA transformation matrix composed of the 

eigenvectors of the correlation matrix Rxx associated with the set of feature vectors                     

xi. Mapping the 12-dimensional vectors into 2-dimensional space allows to trace the trajectory 

of changing values of many sensor signals within the measurement process of all cigarette 

brands. Fig. 8 presents the 2-dimensional PCA plot of 200 samples representing each cigarette 

class. The horizontal axis represents the first principal component PC1 and the vertical the 

second one - PC2. The first component carries 95.2% of total information and the second 

3.26%.  
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Fig. 8. The dynamic trajectories of two most important principal components of the differential                           

sensor signal measurement of all 11 cigarette smells. 

 

It is evident that the data corresponding to different classes of cigarettes are grouped in the 

separate clusters forming the shape of a continuous trajectory reflecting the dynamic mode of 

measurements. The presented results show reasonably good separation of data in most of the 

space regions. However, there are some restricted areas of space where the data of different 

classes are mixing.  

 

4.3 Classification 

 

The 12-dimensional sensor signal pattern is used in the second step to recognize smells 

and associate them with the proper brand of cigarettes. As the classifier we use here the 

support vector machine (SVM) network of Gaussian kernel having the reputation of the most 

efficient classification tool [8]. 

The SVM is a one-output linear machine working in the high dimensional feature space 

formed by nonlinear mapping of the original N-dimensional input vector x into a                     

K-dimensional feature space (K>N) through the use of the kernel functions ),(
i

K xx . We will 

use here the Gaussian function ( )2exp),(
ii

K xxxx −−= γ . The most important advantage of 

the SVM over other neural solutions is the fact that its learning algorithm is based on the 

quadratic programming with linear constraints. The primary learning problem of the SVM is 

formulated as the task of separating training vectors xi into two classes of the destination 

values, either di=1 or di=-1, with the maximum separation margin between classes. The large 

width provides immunity of the system to the existence of noise and other artifacts in the 

testing samples.  

The constant value of the regularization parameter C, responsible for the minimization of 

errors on the learning data was applied. It is an important parameter, because it controls the 

tradeoff between the complexity of the machine and the number of non-separable data points 

used in learning. A small value of C results in acceptation of more not separated learning 

points. For a higher value of C we get a lower number of classification errors on the learning 

data points, but a more complex network structure and potentially worse generalization 

ability. The optimal values of C and parameter γ are determined after additional series of 

learning experiments through the use of the validation data set (10% of learning data). In the 

learning process many different values of C and γ were used. The optimal values are the ones 
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for which the classification error on the validation data set is the smallest. In this way we have 

got γ=1 and C=1000. 

In the case of many classes we use a strategy called “one against one” [8]. In this 

approach at M classes we train M(M-1)/2 individual SVM networks to recognize among all 

combinations of two classes of data. Then the vector x belongs to the class of the highest 

number of winnings in all combinations of 2-class SVM networks. For M=11 classes we have 

to train 55 SVM sub-networks. 

The input vector x in our classification problem was composed of the differential signals of 

the sensor arrays. Their values were normalized by dividing each column through the 

maximum absolute entry of this column. In the case of 12 sensors applied in the measurement 

the size of input vector x is also 12. The destination vector d associated with the input vector 

represents the class to which the appropriate data belongs. We recognized 11 classes of 

cigarettes, as is shown in Table 1.  

The available data used in the experiments were composed of 200 patterns corresponding 

to each class (altogether 2200 data pairs). To obtain the most objective assessment of the 

developed classification system we have applied the cross-validation approach. The randomly 

selected data were split into 2 equal parts. One of them was used in learning and the second in 

testing. The procedure of learning and testing was repeated 50 times and each time the 

learning and testing parts were randomly chosen.  

The testing error on the data not used in learning was calculated as their average in all 50 

runs on the testing data. Its observed mean value was 0.30% at the standard deviation equal to 

0.28%. This is a very good result, especially taking into account that all measurements have 

been obtained in the dynamic mode, without applying a lengthy baseline determination 

procedure. 

 
Table 2. The confusion matrix at recognition of 11 classes of cigarettes in the 10-fold cross-validation mode. 

 

Class C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

C1 99.8 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

C2 0.0 99.3 0.1 0.0 0.0 0.0 0.4 0.0 0.2 0.0 0.0 

C3 0.1 0.0 99.8 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 

C4 0.0 0.0 0.2 99.2 0.0 0.0 0.0 0.6 0.0 0.0 0.0 

C5 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 

C6 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 

C7 0.0 0.5 0.0 0.0 0.0 0.0 99.5 0.0 0.0 0.0 0.0 

C8 0.0 0.0 0.1 0.2 0.0 0.0 0.0 99.5 0.0 0.0 0.2 

C9 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 99.8 0.0 0.0 

C10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.9 0.1 

C11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 99.9 

 

Table 2 presents the confusion matrix obtained in 50 cross-validation experiments. It is 

represented in the relative terms. The diagonal entries represent the percentage of properly 

recognized classes of cigarettes. Each entry outside the diagonal means the relative error. The 

entry in the (i,j)-th position of the matrix means the false assignment of i-th class to the j-th 

one.  

From the analysis of this matrix it is evident that the nonzero values of the outside 

diagonal terms are very scarce. There is only a limited number of misclassifications indicated 

by the nonzero elements outside the diagonal. Classes C5 and C6 have been recognized 

perfectly in all runs. The highest percentage of misclassifications have been observed for class 

C4, but even in this case the relative mean error was equal only 0.8%. The confusion matrix 

confirms that practically all classes have been recognized with the acceptable accuracy. An 

interesting  fact is that the most often confused classes are C4 and C8. Both cigarette brands 
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are produced in Ukraine and it is quite probable that their producers used similar tobacco 

sources.  

The next experiments with the learned system have been conducted on the data registered 

in the new runs of the system at slightly different conditions (the ambient temperature 

changing from 20oC to 24oC and humidity changing from 30% to 40%). These experiments 

have been done on different days. Each day new samples of the measured materials have been 

supplied. We have noted slightly different sensor signals (the average relative difference in 

200 samples was below 15%). The system trained on the original data set was tested on the 

newly acquired data. The average results of 5 different measurements in the form of the 

confusion matrix are presented in Table 3. The total relative recognition error was equal to 

4.09%. 

 
 Table 3. The results of testing the system on the newly acquired data. 

 

Class C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

C1 98.6 0.0 0.6 0.0 0.0 0.1 0.8 0.0 0.0 0.0 0.0 

C2 0.1 93.4 0.5 1.0 0.1 0.4 1.3 2.7 0.5 0.1 0.0 

C3 0.0 0.0 96.6 0.0 0.0 0.1 0.0 1.3 0.9 0.9 0.2 

C4 0.4 0.8 0.5 94.8 0.0 0.1 0.1 2.6 0.1 0.3 0.4 

C5 0.1 0.0 0.1 0.0 97.0 2.7 0.1 0.0 0.0 0.0 0.0 

C6 0.1 0.0 0.1 0.0 3.8 95.8 0.1 0.0 0.0 0.0 0.0 

C7 0.7 0.5 0.2 0.0 0.1 0.7 97.7 0.0 0.1 0.0 0.0 

C8 0.1 2.3 1.0 1.6 0.0 0.1 0.1 93.3 0.4 0.4 0.6 

C9 0.2 0.0 0.8 0.0 0.0 0.0 0.1 0.1 95.6 3.1 0.0 

C10 0.1 0.0 0.8 0.0 0.0 0.0 0.0 0.1 2.8 95.2 1.0 

C11 0.3 0.0 0.7 0.0 0.0 0.1 0.0 0.5 0.1 1.2 97.1 

 
This time the highest misclassifications happened in recognition between C9 and C10 classes 

of cigarettes. They represent the same brand Viceroy Blue produced in two different 

countries. The lowest accuracy was observed in recognition of the classes C2 (93.4%) and C8 

(93.3%). The misclassifications for these two classes were distributed among all other classes. 

Another point that should be taken into account is the noise, which is inevitable in the 

automatic acquisition of data. Its source lays in independent changes of parameters of the 

sensors resulting from  changing the environmental conditions. We have performed the 

additional numerical experiments by corrupting the measured data using the random noise. 

Similarly to the results of [9] we have found our SVM recognition system  relatively noise-

resistant. 

 

5. Conclusions  
 

The analysis of the performance of the differential electronic nose in the dynamic mode of 

measurements has been studied in the paper. Application of sensors working in the 

differential mode increases the measurement system sensitivity and makes it less susceptible 

to the change of the environmental conditions, because these changes in the differential signal 

are to some degree compensated. Moreover, we avoid a lengthy procedure of the baseline 

determination which makes the system suitable for on-line measurement applications. 

The other benefits of using it are essential in the dynamically changing environmental 

conditions. The classical mode of operation needs baseline estimation in the actual conditions, 

which makes it impossible in on-line measurements. The differential nose has no such 

restrictions. We have proved its advantage over the classical arrangement of sensors at the 

temperature changing quickly in the process of measurement.  



 S. Osowski, K. Siwek, T. Grzywacz, K. Brudzewski: DIFFERENTIAL ELECTRONIC NOSE … 

 The differential nose has proved its advantages in  recognition of 11 brands of cigarettes. 

The measurements of tobacco volatiles made on-line in the dynamic mode have shown that 

the differential e-nose is capable to recognize the cigarette smells very quickly and with a 

high accuracy. 
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