
 

Metrol. Meas. Syst., Vol. XIX (2012), No. 3, pp. 459-470. 

 

________________________________________________________________________________________________________________________________________________________________________________ 

Article history: received on Apr. 19, 2012; accepted on July 17, 2012; available online on Sept. 28, 2012; DOI: 10.2478/v10178-012-0039-2. 
 

 

METROLOGY AND MEASUREMENT SYSTEMS 

Index 330930, ISSN 0860-8229 
www.metrology.pg.gda.pl  

 

ALGORITHMS AND METHODS FOR ANALYSIS OF THE OPTICAL STRUCTURE 

FACTOR OF FRACTAL AGGREGATES 

 

Janusz Mroczka
1)

, Mariusz Woźniak
1)

, Fabrice R.A. Onofri
2) 

1) Wroclaw University of Technology, Chair of Electronic and Photonic Metrology, ul. B. Prusa 53/55, 50-317 Wrocław, Poland 
 (janusz.mroczka@pwr.wroc.pl, +48 71 320 62 32, mariusz.wozniak@pwr.wroc.pl, +48 71 320 62 25)  

2) IUSTI-UMR CNRS 7343, Aix-Marseille University, 5 rue Enrico Fermi, 13453 Cedex 13, Marseille, France  

(fabrice.onofri@polytech.univ-mrs.fr, + 33 491 106 892) 

 

Abstract 

We introduce numerical methods and algorithms to estimate the main parameters of fractal-like particle 

aggregates from their optical structure factor (i.e. light scattering diagrams). The first algorithm is based on 

a direct and simple method, but its applicability is limited to aggregates with large size parameter and 

intermediate fractal dimension. The second algorithm requires to build calibration curves based on accurate 

particle agglomeration and particle light scattering models. It allows analyzing the optical structure factor of 

much smaller aggregates, regardless of their fractal dimension and the size of the single particles. Therefore, this 

algorithm as well as the introduction of a criterial curve to detect the different scattering regimes, are thought to 

be powerful tools to perform reliable and reproducible analysis.  
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1. Introduction 

 

Light scattering techniques are widely used to characterize aggregates of nanoparticles 

observed in, or produced by suspensions, aerosols, dusty plasmas, etc. (e.g. [1, 2]). For the 

characterization of fractal-like particle aggregates, the most powerful approach is based on  

recording, and afterwards on the analysis of their optical structure factor (OSF) [1]. However, 

in the literature, the method used to process the OSF is never detailed and evaluated, whatever 

the processing scheme (as will be shown later on) it strongly influences the quality and 

reliability of the analysis. Regarding the previous remarks, the aim of the present work was to 

develop reliable algorithms to estimate in a comprehensive and reproducible way the fractal 

parameters from the various OSF. The paper is organized as follows. Section 2 shortly 

reviews basic equations as well as the aggregation model developed to produce synthetic 

fractal aggregates. The basic relations between the OSF properties and the fractal aggregates 

parameters are also introduced in this section. Then, section 3 introduces and details the 

principle of the two newly-introduced algorithms to process the OSF of fractal-like 

aggregates. Section 4 presents the main results of the numerical study performed to evaluate 

the advantages and limits of both algorithms, when tested on two totally different particle 

systems: colloidal suspensions of optically transparent aggregates (silicon dioxide) and clouds 

of highly absorbing aggregates (carbonaceous soots). Section 5 is an overall conclusion. 
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2. Theoretical background 

 

2.1. Mathematical description 

 

To describe, by a limited number of parameters, the morphology of fractal-like aggregates, 

the following equation (sometimes called "fractal equation") [3, 4] is used: 
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where np is the number of particles (referenced here as monomers) in the aggregate, Df its 

fractal dimension, kf the fractal prefactor (also known as the structural coefficient), Rg the 

radius of gyration of the aggregate and rp the mean radius of the single monomers. The radius 

of gyration is the mean square distance of the monomers from aggregate’s centre of mass 

(which characterizes the spatial distribution of mass within the aggregate): 
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where rn and r0 are the vectors pointing to the n-th monomer and aggregate’s centre of mass 

respectively. The fractal prefactor kf  is a constant extensively discussed in the literature 

whose value significantly differs between various authors. As an example, for soot aggregates 

it can vary from 1.23 to 3.5 (e.g. [5-8]) depending on the particular combustion conditions and 

miscellaneous techniques used to analyze aggregates. In the present study, like Lapuerta [9] 

and Sorensen [10] did before, we set for the value of kf the one corresponding to an aggregate 

of monodisperse monomers with maximum compactness in a 3D space, i.e. an aggregate with 

compact hexagonal structure: 
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As an example, Fig. 1 (a) shows a 3D visualization (created with the POV-Ray software 

[11]) of aggregate defined by np = 100 monomers, fractal dimension Df = 1.80, fractal 

prefactor kf = 1.593, radius of gyration Rg = 9.97 and equivalent radius in volume Rv = 4.46. 

Fig. 1 (b) shows a 2D projection (the image of the aggregate as it is obtained in the zy  plane). 

 
Fig. 1. Numerically generated fractal aggregate having parameters: np = 100, Df = 1.80, kf = 1.593, Rg = 9.97, 

Rv = 4.64 (a) 3D rendering with POV-Ray software, (b) 2D projection of the aggregate. 
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2.2. Numerical code 

 

To generate synthetic aggregates used in this work, a fully adjustable (tunable) Diffusion-

Limited-Aggregation (DLA) code has been developed. It allows simulating fractal aggregates 

of polydisperse, multi-material and overlapping (i.e. partially melted) monomers. Fig. 2 (a) 

shows an overview diagram of the geometry of the DLA algorithm. In the aggregation process 

all the primary particles are generated successively at a large distance Rp (also called 

appearance sphere) from the centre of mass of the aggregating cluster: 
 

 
, ,

pp g nR R  (4) 

 

where 
, pg nR  describes the temporary radius of gyration of the growing aggregate. If during its 

random walk the new particle moves out of the external boundary sphere with radius Re, the 

particle is rejected and another particle is generated at the distance Rp. The definition of the 

boundary sphere with radius Re, with 
eR pR  (ideally 

eR pR ) is necessary to avoid 

particle’s roaming far from the aggregate since this will significantly increase computational 

time. It is important to notice that in the developed numerical code the radiuses of appearance 

and external boundary spheres are not fixed. These values are continuously optimized. To do 

so, they are calculated as the sum of the additional constants (p and b for the appearance and 

the boundary spheres respectively) and multiply by the radius of the minimum bounding 

sphere by a factor called “appearance sphere multiplier”. This procedure provides a wide 

range of possible relations between Rb, Rp and Re. For example, it is possible to turn off the 

multiplication and use only a constant difference between radiuses of the defined spheres. 

 
Fig. 2. (a) Schematic diagram of the Diffusion Limited Aggregation (DLA) steps and parameters and 

(b) Spherical Coordinate System. 

 

Fig. 2 (b) presents the Spherical Coordinate used in the DLA-type code created in this 

work. To avoid problems related with temporary position of the growing cluster at each step 

of the algorithm, the centre of mass of the aggregate is relocated at the centre of the 

coordinate system. When the aggregation procedure is completed it is necessary to convert the 

spherical coordinates , ,r     to the classical laboratory Cartesian Coordinate System 

, ,x y z  . 

To simulate the random motion of the primary particles, their trajectories were 

decomposed into small step increments (i.e. 2rp in this study) with a statistically true isotropic 

orientation. The latter was obtained by generating, at each step, random inclination and 

azimuth angles θ, φ  with a uniform spherical distribution (providing uniformly distributed 

points on the surface of a sphere) [12]: 
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where 𝛿1 and 𝛿 2 have uniform distributions on  0 1 . Finally, if collision between a 

marching monomer and the aggregate occurs, criteria for irreversible aggregation should be 

provided. Thus, after the impact between a single monomer and an aggregate of 1pn   

particles, the sticking process is effective only when the following conditions are satisfied: 
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where ε is an accuracy parameter on the fractal dimension. In the DLA software this value 

may be adjusted on demand. Nevertheless, in the present study it was fixed at 210   as the 

smaller values greatly increase computational time without noticeable improvements in 

morphological characteristics of the aggregates. Something important to understand is that 

Eq. (6) allows to ensure at each aggregation step that Eq. (1) is nearly satisfied and thus, that 

the scaling properties of all aggregates are conserved at all scales. During the aggregation 

process we assume that particles stick together like hard spheres in contact, i.e. exactly at one 

point and any additional displacement after their collision is impossible. This is not 

necessarily the case for nanoparticles, which are mostly sensitive to adhesion and short range 

forces (e.g. Van der Waals forces). Nevertheless, because of the complex description and an 

unknown physical basis, it is common to simplify this problem and neglect the other 

phenomena [3, 13]. A more detailed description of the technical functionalities of our tunable 

DLA code may be found in [14]. 

 

2.3. Light scattering models 

 

The optical characterization of nanoparticles requires a proper particle model and an 

accurate light scattering model. The Lorenz-Mie Theory (LMT, [15]) is still widely used to 

calculate the absorption and scattering properties of spherical homogeneous particles. Its 

applicability is nevertheless limited to the characterization of spherical particles [16, 17]. For 

particle aggregates there are other semi-analytical theories and numerical alternatives, like the 

T-Matrix method (or null-field method) and the Discrete Dipole Approximation [18]. In the 

present work, we used the T-Matrix method and more particularly the Fortran code developed 

by D. W. Mackowski and M. I. Mischenko [19]. This code has been paralleled to allow the 

calculation of the scattering properties of optically dilute systems of aggregates of 

nanospheres [20]. 

 

2.4. Light scattering properties  

 

With linear optics, one of the most fundamental approaches to characterize the size 

distribution of large particles is to analyze their scattering diagrams, i.e. the scattered intensity 

I versus the scattering angle θ (e.g. in the Fraunhofer, the rainbow or critical angle regions 

[17]). To characterize nano- and micro-aggregates the scattered intensity must be analyzed 

over a wide angular range and it is better to analyze its angular dependency with respect to the 

amplitude of the scattering vector q: 
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where λ is the incident wavelength. The quantity I(q) is usually referred as the "optical 
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structure factor (OSF)" [1]. Fig. 3 (a) shows the numerical simulation of the evolution of the 

OSF of a water suspension of silicon dioxide aggregates. Results have been averaged over 

500 different aggregates with parameters: 100pn  , 1.80fD  , 55 pr nm , 550 gR nm  and 

1.47 0pm i   (where pm  is the complex refractive index of SiO2 [21]). Three scattering 

regimes (or zones) may be indentified in this OSF: namely, the Guinier, the fractal (or power-

law) and the Porod zones. Behavior of the OSF in each zone is totally different and related to 

different aggregate properties. The OSF in the Guinier zone is essentially dependent on the 

overall size of aggregates (i.e. the length of this zone, with respect to the scattering vector, 

gives information about Rg). In the fractal zone, the power law decay of the OSF (and the 

associated slope) depends mostly on the aggregate’s morphology and thus, Df. The behavior 

of the OSF in the Porod zone is known to be mainly sensitive to monomers size [1]. 

 
 

Fig. 3. (a) Evolution of the optical structure factor (OSF) of silicon dioxide aggregates (np = 100, Df = 1.80,  

rp = 55 nm, Rg = 550 nm, 1.47 0pm i  ) and (b) criteria curve obtained with the FSE algorithm. 

 

3. Material and methods 
 

3.1. Estimation of the radius of gyration  
 

We basically use the Guinier equation [1] to estimate the radius of gyration from the 

normalized OSF (where I(q) is the scattered intensity): 
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In the previous equation the power-law term indicates that from the normalized OSF plotted 

versus q we can estimate directly the radius of gyration. To do so, the algorithm works in 

a two-step process. Firstly, the OSF is low-pass filtered and normalized. Secondly, a linear 

least square fitting method is used to estimate the related slope coefficient in the Guinier zone, 

symbolized here by the parameter a and its related accuracy Δa. Finally, the radius of gyration 

is evaluated as 3gR a , with: 
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3.2. Estimation of the fractal dimension 

 

3.2.1. Second Slope Estimation (SSE) algorithm 

 

In the fractal zone, the power-law decay of the OSF provides both quantitative and 

qualitative information about the fractal dimension of the aggregates. To get directly the value 

of the Df, only the data 5gqR   must be used [1]. In fact, below this limit a true power-law 

regime is not clearly observed. Like previously done for the radius of gyration, the fractal 

dimension can be obtained directly from the slope coefficient estimated with a linear least 

square fitting method. However, this procedure and the related algorithm are only valid for 

rather large aggregates, i.e.    5 / 4gR   . 

On the other hand to get correct estimation of Df, a minimum number of data points are 

necessary and they must also cover a minimum scattering angles range. Numerical 

simulations, not reported here, have shown that the latter criterion must be reinforced at least 

by a factor of two, (5 ) / (2 )gR    and that the predictions obtained are only satisfactory for 

fractal-like aggregates whose dimensions are restricted to the range 1.6 2.0fD   .  

  

3.2.2. First Slope Estimation (FSE) algorithm 

 

The "First Slope Estimation (FSE)” algorithm was developed to process OSF with a 

scattering vector that do not necessarily satisfies the 5gqR   condition. The biggest advantage 

of the second algorithm, which uses calibration curves, is its applicability to all kind of 

aggregates, regardless their fractal dimension, wavelength or radius of gyration. This 

algorithm works in a five-step process. 

 

A. Signal (optical structure factor) interpolation. 

To compensate the huge range of variation of the scattering vector and its non-linearity 

with respect to the scattering angle  (which both induce a non constant sampling rate of the 

optical structure factor), the OSF is resampled with a linear interpolation scheme. The number 

of points in the interpolation procedure is chosen arbitrarily, as a compromise between 

accuracy and algorithm execution time. Basically, it is set to 1000 points per one order of 

magnitude of q. So that, depending on the incident wavelength, the OSF is sampled in 2000-

3000 data points. 

 

B. Linear least square fitting. 

One of the most important parts of the FSE algorithm relies on the construction and 

analysis of a set of criteria curves. The latter uses a local linear least square (LLS) fitting 

procedure of the OSF. To do so, at each iteration step of the algorithm, a moving window 

with fixed length analyzes the local slope of the OSF. The LLS is performed according to the 

minimization procedure described by the equation: 
 

 
2
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x
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where x represents the experimental vector containing windowed data of the OSF and A, b 

are matrixes containing regression coefficients. At the beginning of the algorithm, the length 

of the initial window (usually 600 points) is set to a relatively large value and it may be 

changed depending on the criteria described at point C. 
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C. Criteria curve construction. 

For each fitting step, and as a measure of the solution quality, the norm of the overall 

residual is calculated. Looking for the minimum residual corresponding to each position of 

the analysis windows, a criteria curve is built. It gives information about fitting results in each 

part of the optical structure factor. Fig. 3 (b) shows the best fitting line and criteria curve 

corresponding to the analysis of the OSF displayed in Fig. 3 (a). It is easy to notice that the 

norm of the residuals of Eq. (10) varies depending on the window position with respect to the 

scattering vector, i.e. the scattering regimes. 

It is close to zero in the Guinier zone, and it is significantly increasing during transition 

between the Guinier and Fractal zones. In the same way, the central part of the fractal zone is 

well identified by a local minimum. This local minimum is defined as the one that just follows 

the first local maximum or increasing q. The latter maximum identifies the transition between 

the Guinier and fractal zones. Fig. (3) (b) shows also that in the Porod zone, the criteria curve 

is continuously increasing (i.e. the size parameter of these aggregates is too small to allow the 

observation of the Porod scattering regime). Note that, depending on the width used for the 

analysis windows, the shape and behavior of the criteria curve may be slightly different. The 

polarization state of the incoming plane wave influences also the shape of the criteria curve 

but, in all calculation presented here, we use the perpendicular one since it is more appropriate 

to detect the fractal regime. 

 

D. Analysis of the criteria curve 

To find the best solution from the fitting procedure, it is necessary to select the right local 

minimum of the criteria curve. An additional criterion is used for this purpose. This local 

minimum must satisfy the “absolute value criterion” i.e. the absolute value of the minimum 

point is at least two times smaller than the value of the first maximum. 

 

E. Algorithm iteration 

If the local minimum detected at the previous step does not satisfy the “absolute value 

criterion”, the entire procedure (points B-D) is repeated for smaller and smaller windows 

widths. If after several iterations this criterion is still not satisfied, the algorithm stops. 

It usually means that the OSF does not exhibit any characteristic fractal zone. This situation 

occurs for small size parameter aggregates (i.e. / 1/ 2gR   ). Typically, as a limit value that 

stops the algorithm, a length of the window 10 times smaller than the initial value is taken 

(i.e. 60 points of the OSF). 

 

4. Results and discussion 

 

For computational efficiency, we built an extensive database of numerical (synthetic) 

aggregates as well as of their scattering properties. To demonstrate the validity of the 

algorithm introduced above, two typical particle systems and parameters were considered:  

˗ An aqueous colloidal suspension of aggregates, composed of silicon dioxide (SiO2) 

nanobeads with radius 55 pr nm  and refractive index 1.47 0pm i   [21] and with 

110 550 gR nm   (with step equal to 11nm), fractal dimension 1.4,  1.6,  ..., 2.8fD  , 

4 1000pn    (according to the other parameters, see Eq. (1)). The probing beam is a local 

plane wave with perpendicular polarization and nominal wavelength 409 nm   (violet 

laser diode). 

˗ A gas flow of soot aggregates, composed of carbonaceous monomers with radius 

25 pr nm , refractive index 1.71 0.56pm i   [22], 188 1625 gR nm  , 1.4,  1.6,...,  2.8fD   
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and 450,  500pn   and 550. The probing beam is a local plane wave with perpendicular 

polarization and nominal wavelength 532 nm   (frequency doubled Nd-YAG laser).  

For all the numerical results presented here, to cancel out orientation effects, scattering 

diagrams have been averaged over 500 different aggregates with exactly the same fractal 

properties but with random orientation. 

   

4.1. Estimation of the radius of gyration 

 

To estimate the radius of gyration of the silicon dioxide and soot aggregates, the Guinier 

zone is first analyzed. Fig. 4 presents the results of the analysis of 5 colloidal suspensions 

containing aggregates with increasing radiuses of gyration. The estimated radiuses of gyration 

were found to be 236, 296, 356, 418 and 595 nm for the initial values 220, 275, 330, 385 and 

550 nm respectively. Note that linear regression fits really well the data points (regression 

coefficient equals 0.9985, 0.9986, 0.9986, 0.9984 and 0.9983 respectively), even if all the 

estimated values are slightly, but systematically, overestimated. 

 
 

Fig. 4. Guinier analysis of the selected SiO2 aggregates. 

 

Table 1 resumes the parameters estimated for different systems of soot aggregates. Here also 

the estimated values fit pretty well the nominal ones (i.e. initially imposed during the 

aggregation). The overestimation of the radius of gyration evolves from 1 to 9% for 2.0fD  . 

 
Table 1. Summary of the radiuses of gyration estimated for soot aggregates of np =500 monomers. 

 

Fractal dimension 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 

Initial Rg [nm] 1518 1155 909 736 610 515 443 386 

Estimated Rg [nm] 1541 1167 954 794 662 540 483 425 

Rg accuracy [nm] 73 53 50 41 34 26 23 20 

 

Fractal dimension 2.2 2.3 2.4 2.5 2.6 2.7 2.8 

Initial Rg [nm] 341 304 274 250 229 211 195 

Estimated Rg [nm] 380 343 312 288 270 255 241 

Rg accuracy [nm] 17 16 14 12 11 11 10 

 

 



 

Metrol. Meas. Syst., Vol. XIX (2012), No. 3, pp. 459-470. 

 

 

4.2. Estimation of the fractal dimension  

 

Fig. 5 presents results obtained for the fractal dimension of soot aggregates, with initial 

fractal dimension Df =1.8 and np=250 monomers. The fractal dimension estimated with the 

SSE algorithm, 1.82 0.01fD    is in a very good agreement with the expected one. However, 

as already mentioned, it must be kept in mind that  the applicability of the SSE method is 

limited to OSF with 5gqR  . 

 
 

Fig. 5. Comparison between the SSE and raw FSE (without calibration curves) algorithms for soot aggregates 

with initial fractal dimension Df=1.8, rp=10 nm and np=250. 

 

Table 2 summarizes the fractal parameters estimated with the SSE algorithm for the soot 

aggregates with increasing number of monomers. Note that with the SSE algorithm is was 

impossible to proceed smaller aggregates than those considered in this table (i.e. due to 

5gqR   limitation). In an opposite way, Fig. 5 shows also that the raw slope found in the 

fractal zone, by the FSE algorithm 2.74 ± 0.02, differs significantly from the expected fractal 

dimension. 

 
Table 2. SSE algorithm: estimation of the radius of gyration and fractal dimension of soot aggregates. 

 

Number of monomers np 160 180 200 220 240 242 

Radius of gyration Rg [nm] 127.6 137.4 146.1 155.5 163.6 172.1 

Initial Df  1.80 1.80 1.80 1.80 1.80 1.80 

Estimated Df   1.997 1.941 1.838 1.812 1.772 1.795 

 

Number of monomers np 246 246 248 249 250 

Radius of gyration Rg [nm] 172.1 173.9 174.8 175.3 175.7 

Initial Df  1.80 1.80 1.80 1.80 1.80 

Estimated Df   1.802 1.818 1.828 1.829 1.831 

 

Fig. 6 shows the fractal dimension estimated with the FSE algorithm for silicon dioxide 

aggregates with the radius of gyration increasing from 110 to 550 nm and initial fractal 

dimensions (a) 1.80 and (b) 2.20. From this figure and complementary results, we derived 
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calibration curves for the FSE algorithm that relate the raw slope associated to the fractal zone 

with the aggregates fractal dimension and gyration radiuses, see Fig. 7. 
 

 
 

Fig. 6. Typical results for the fractal dimension estimated for SiO2 particle aggregates with nominal fractal 

dimension: (a) 1.80,  and (b) 2.00. 

 

A 3rd order polynomial fitting improves the resolution of these calibration curves. Note 

that in Fig. 7 all the curves are almost superimposed for aggregates with a radius of gyration 

higher than 6rp, i.e. the fractal dimension of large aggregates can be determined without any 

prior knowledge (or analysis) of the radius of gyration. 

 
 

Fig. 7. Estimated slope as a function of the fractal dimension for silicon dioxide aggregates (the FSE algorithm). 
 

 
 
Fig. 8. FSE algorithm with calibration curves: automatic estimation of the fractal dimensions from noisy optical 

structure factors. Parameters: soot aggregates with fractal dimension from 1.40 to 2.80 and constant number of 

500 monomers. 
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Fig. 8 shows that by combining the FSE algorithm and the calibration curves (like the ones 

presented in Fig. 7), the estimation of the aggregates fractal dimension is significantly 

improved even when 0.1% and 1% of white noise is added to the OSF. In fact, the fractal 

dimension is estimated over a large range and with an accuracy 5% with 0.1% of additive 

white noise and about 10% for 1% of additive white noise. 

 

5. Conclusion 

 

We introduced a modeling procedure and numerical algorithms to estimate the fractal 

dimension (and radius of gyration) of fractal-like aggregates from the analysis of their optical 

structure factor. All numerical results provided here are based on the accurate particle 

agglomeration and light scattering models. The Second Slope Extraction (SSE) algorithm is 

rigorously based on the Guinier analysis. It provides a simple and direct estimation of the 

fractal dimension of the investigated aggregates. However, its applicability is limited to large- 

size parameter aggregates. The First Slope Extraction (FSE) algorithm can be used to analyze 

much smaller aggregates than the SSE algorithm, even for values of the optical structure 

factor below 5gqR  . Its application is more complicated than the SSE algorithm, as it 

requires to calculate look-up tables and to define calibration curves. However, the FSE 

algorithm is applicable to all kinds of aggregates, regardless of their morphology. Therefore, 

it is thought to be a much more powerful and universal solution. The criteria curves is also 

a useful approach to indentify the different scattering regimes and to obtain more reproducible 

results. 
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