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Abstract 
 
The article describes the problem of selection of heat treatment parameters to obtain the required mechanical properties in heat- treated 
bronzes. A methodology for the construction of a classification model based on rough set theory is presented. A model of this type allows 
the construction of inference rules also in the case when our knowledge of the existing phenomena is incomplete, and this is situation 
commonly encountered when new materials enter the market. In the case of new test materials, such as the grade of bronze  described in 
this article, we still lack full knowledge and the choice of heat treatment parameters is based on a fragmentary knowledge resulting from 
experimental studies. The measurement results can be useful in building of a model, this model, however, cannot be deterministic, but can 
only approximate the stochastic nature of phenomena. The use of rough set theory allows for efficient inference also in areas that are not 
yet fully explored. 
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1. Introduction 
 
The research problem that the authors were expected to solve 

was a method for the selection of heat treatment parameters 
applied to the grade of bronze covered by experiments. 

The aim of the study was to discover correlations occurring in 
a set of the experimental data describing the process of heat 
treatment to build a model allowing an approximation of the 
unknown variables (tensile strength - Rm; yield strength – Rp0.2 
and elongation - A5) for results not included in the measurements. 
Previous studies of the authors in this field enabled creating the 
approximation models using fuzzy logic for decision trees [1-6]. 

The results obtained in previous studies allowed performing 
an analysis, owing to which it became possible to create a set of 
rules interrelating the choice of the heat treatment path with the 
expected values of the mechanical properties. 

The study began with a statistical analysis of the experimental 
data. Eighty four samples were available. Two samples were 
removed from the analysis. In the first case, the reason was the 
lack of measurements; in the second case, the measurements 
indicated by the experimenter were in an obvious way deviating 
from the remaining data in the group. Finally, the analysis 
covered  82 records. 

Due to the high cost of experiments, industrial research often 
uses small data sets. Studies of materials are based on several 
samples taken from a single melt. In the reported studies, samples 
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were taken from 7 melts subjected to different  modifying 
treatments. 

After the initial selection of features based on the knowledge 
of researchers, it was decided to choose the following variables: 
 Quenching {abs., P}, where abs . means no quenching and P  

means quenching at 950°C using microjet and water as a 
cooling agent; 

 Tempering {abs., S1, S2}, where abs . means no tempering, 
S1 - tempering at 350°C for 6h and cooling in air, S2 - 
tempering at 700°C for 6h and cooling in air. 

 It was decided to create a supporting variable describing 
the heat treatment path: 
 HT {L, P, PS1, PS2}, where L - as-cast state, P - sample 

subjected to quenching, PS1 - sample subjected to quenching 
and tempering at 350°C, PS2 - sample subjected to 
quenching and solutioning at 700°C. 

In this model, the dependent or decision variable will be the 
HT variable. Based on the results of the statistical analysis, the 
relationships existing between the heat treatment parameters (HT) 
and the expected properties Rm, Rp0.2 and A5 have been proved. 

Due to the qualitative nature of the dependent variable, the 
stated problem is a typical classification problem, in which the 
possible values of the classes are acceptable paths of heat 
treatment {L, P, PS1, PS2} described above. The authors dealt 
with the problems of classification also in other studies [7-9]. In 
these studies, they use their previous experience gained in this 
field of activity. 

 
 

2. Methodology and the description of 
experimental data 
 

To solve the problem of classification, in which the decision 
can be based on an incomplete knowledge only, i.e. incomplete in 
the sense of incomplete discernibility of objects in terms of the 
variables, one can use, among others, the theory of rough sets. 

The indiscernibility of objects, which is a key concept here, 
results, among others, from the too scarce information. This 
information covers the measurement data from the experiments. 
We can always assume that increasing the number of 
measurements and increasing the number of samples, as well as 
eventually increasing the number of controlled parameters will 
allow us to build a model much more accurate. Such studies, 
however, cost a lot and increasing the number of controlled 
parameters will increase the number of measurements in an 
exponential way. 

The increased number of controlled parameters (where the 
parameter is treated as a variable in the analysis) also increases 
the space of results. We shall never be able to fully cover with 
measurements the possible space of results – the space of results 
is continuous while the number of measurements is highly 
discreet. This makes the approximation of results necessary. In 
areas not covered by the measurements, the  unknown variables 
are approximated with the data currently available. 

The theory of rough sets is applicable wherever we have 
limited information about the tested object. In fact, any object (in 
this case the sample of material) is different, there are no two 
identical objects. The distinction between them is just a matter of 
knowing their full description, and in particular the designation of  

attributes (features, parameters, variables) that distinguish them. 
Of course not always so detailed description of phenomena is 
necessary, but if we reduce the accuracy of the description (the 
number of attributes), this will lead to a situation where some 
objects will become indiscernible. 

The elements about which we have identical information are 
indiscernible and form the, so-called, elementary sets. About the 
elements contained in the space of an elementary set we can only 
say that the values of their attributes are the same as the values of 
the entire elementary set. Hence it follows that the elementary sets 
are described by information about the attributes, contrary to the 
classical set theory, in which the sets are defined by the 
specification of objects belonging to a given set. This approach 
allows the rough set theory to be used wherever we are dealing 
with the attribute-based description of reality. 

The rough set is created by a pair of definable sets: lower 
approximation and upper approximation. The item may belong to 
both approximations, to none of the approximations, or to an 
upper approximation only [10-12]. 

Therefore, the object certainly cannot belong to a rough set  
(if it does not belong to any of the approximations), it can 
certainly belong to a rough set (if it belongs to both 
approximations), or a situation may exist when, based on the 
features indicated, we cannot rule out that the object can belong to 
a rough set (upper approximation). 

 
 

2.1. Test results  
 

The data on the tested materials obtained from the 
experimental studies included three variables in the form of 
mechanical properties and one variable describing the process of 
heat treatment (Table 1).  

 
Table 1.  
Descriptive statistics of selected mechanical properties  

  n avg min max s 
Rm 82 733.33 330.00 930.00 99.64 
Rp0.2 75 472.08 225.00 805.00 167.94 
A5 74 6.28 0.20 16.90 4.54 

 
The decision variable HT assumed the values of 

{L,P,PS1,PS2}. 
Based on the results of statistical analysis it has been found 

that the expected values of mechanical properties are dependent 
on the course of heat treatment. The graph of average quenching-
related Rm values in the group of samples quenched P and in the 
group of samples non-quenched dramatically changes as regards 
the strength distribution in both these groups. It can be concluded 
that quenching increases the average strength and decreases the 
standard deviation – the span of measurements in the group of 
samples undergoing quenching is more narrow. Quenching also 
improves the yield strength. On the other hand, samples subjected 
to quenching reveal lower elongation values. Hence it follows that 
quenching increases the tensile strength and yield strength but 
reduces elongation. 

Then, the effect of tempering on the measurement results was 
examined and it has been found that tempering S1 strongly 
increases the tensile strength while similar effect is not observed 
for the tempering S2. One can also conclude that tempering S1 
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reduces elongation, while tempering S2 causes quite the opposite 
effect - the elongation increases compared with the samples not 
undergoing this treatment. 

Examples of this relationship for the variable Rm are shown in 
Figure 1.  

 

 

 
Fig. 1. Average values of Rm and A5 plotted for the groups of 

samples undergoing different types of heat treatment 
 
Analysis shows that for the as-cast state (L) and heat 

treatment  PS2, the values of elongation are similar. Also for the 
heat treatment (P) - quenching  and PS2, these groups are 
indiscernible with respect to elongation. On the other hand, heat 
treatments P (quenching) and PS1 are indiscernible with respect 
to both elongation and yield strength. In short we can say that heat 
treatments P (quenching) and PS1 are indiscernible with respect 
to mechanical properties. In other words, samples that undergo 
quenching or quenching combined with tempering at 350oC will 
have similar mechanical properties. 

 
 

3. Application of rough set theory 
 
On the basis of the collected experimental data, a table of 

observations was built. A table of this type is an information 
system in which the decision variable is HT (heat treatment), 
while the explanatory variables (conditional attributes) are the 
mechanical properties Rm, Rp0.2 and A5. The information system is 
an aggregate: 

 
 VAUfVAUS →×= :,,,     
where:  
U – is non-empty and finite set of objects called the universe; 
A – is a set of attributes; 

V – is a field of attribute a∈A;  
 VAUf →×:  is an information function such that 

aVxafUxAa ∈∈∈∀ ),(,, . 
If we distinguish in the information system the disjoint sets of 

conditional attributes and decision attributes, then such a system 
will be called the decision table, where columns will correspond 
to attributes and rows - to objects. 

The basic operations conducted on rough sets are the same as 
the operations conducted on standard sets. Additionally, several 
new concepts are introduced that are not used in the case of 
standard sets. 

For each subset of features, the pairs of objects are in the 
relation of indiscernibility, if all the attributes from the set B have 
the same values, which can be written as: 

)},(),(,:,{)( bxfbxfBbUxxBIND jiji =∈∀∈=  
The indiscernibility relation between elements xi and xj is 

written as xi IND(B) xj. Each indiscernibility relation  divides the 
set into a family of disjoint subsets called classes of abstraction 
(equivalence) or elementary sets. The indiscernibility relation 
describes the phenomenon that the information system is not able 
to indicate an individual object that meets the values of given 
attributes under the conditions of uncertainty (the indeterminacy 
of some attributes not included in the system). The system returns 
a set of attribute values that match the indicated object and that 
are an approximation. 

 
 

3.1. Test results  
 
To generate a set of rules for a given set of data, an RSES 

packet was used [11]. The preparation of data involved  
transformation into the required format, and then filling the gaps 
in measurement data. 

The set was divided into two tables: a training set holding 
70% of data and a test set (30 % of cases). On the training set, an 
additional operation of discretisation was performed for a  future 
comparison of continuous and discretised data. 

Discretising of variables is done to enable future 
generalisation of the model - discrete variables allow for greater 
generalisation of the rules with respect to continuous sets. If a 
small training set is available, this procedure allows for greater 
abstraction of the model, and thus avoiding overfitting of the 
model which might result from a measurement error. The 
discretisation of a set was carried out along the defined lines of 
cuts, i.e. the established divisions into the ranges of variation. The 
variable Rm was divided into six classes, Rp0.2 into 5 classes, and 
A5 into 3 classes. This choice was dictated by the ranges of 
variation intervals. The divisions are presented in Table 2. 
 
Table 2. 
Divisions of attribute variability  

Attribute Size Description/Cuts 
Rm 6 679.5 692.0 702.5 720.0 804.5 819.5 
Rp0.2 5 352.5 376.5 484.5 568.0 707.5 
A5 3 1.7 2.05 12.5 

 
On the basis of discretised variables, a set of 25 rules was 

created. An example rule has the following form: 
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 (A5="(2.05,Inf)")=>(HT=PS2[14])  
The above can be read as: if the expected elongation is greater 

than 2.05, then the treatment PS2 should be used. This rule 
applies to 14 cases from the training set. 

On the developed set of rules, a classification with the help of 
RSES packet was carried out (Figure 2). 

 
Fig. 2. RSES window 

 
The following results of the classification were obtained. 
 

Table 3. 
Classification ratings 

 
number of 
tested objects total accuracy total coverage 

discretised 24 0.714 0.875 
generalised 24 0.667 1 
completed 25 0.714 0.28 

 
 

4. Conclusions 
 
The approach using the theory of rough sets in the 

classification of heat treatment methods applied to the 
investigated grade of bronze showed that this technique gives 
satisfactory results. It should be noted that building an inference 
model in the situation when we have a small number of 
measurements available and incomplete knowledge about the 
phenomena occurring in the new tested material is difficult and 
burdened with large errors. The testing process itself requires 
dedicating certain number of observations to testing, which means 
that they will not participate in the model learning process. The 
rules obtained under these conditions giving 71% efficiency 
should be considered  satisfactory. Applying this methodology, 
each new experiment can be used to build more rules thereby 
improving the accuracy of the model. 

The presented approach is innovative in the field of materials 
science and allows for automatic generation of rules which, in 
turn, allows for further integration and processing of knowledge 
for the needs of intelligent systems.   
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