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Abstract—This paper presents an innovative extention of the 

noise wave definition to mixed mode, differential – and common-
mode noise waves which can be used for noise analysis of 
differential microwave networks. Mixed mode noise waves are 
used next to define generalized mixed mode noise wave correlation 
matrices of microwave multiport networks. Presented approach 
may be used for noise analysis of microwave differential networks 
with differential ports as well as with conventional single ended 
ports. 
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I. INTRODUCTION 
ANY present day RF and microwave networks are 
implemented as differential networks. Such networks 

require appropriate tools for characterization, analysis and 
design. In 1995, D. Bockelman and W.R. Eisenstadt [1] 
introduced so-called mixed-mode waves (wave variables) and 
mixed-mode scattering parameters to extend the classical 
single-ended wave approach to the differential case. In 2006, 
A. Ferrero and M. Pirolla [2] introduced so-called generalized 
mixed-mode scattering matrix which may be used for hybrid 
networks having some ports differential and some ports single-
ended. Such theory may be used for characterization and signal 
analysis and design of differential RF and microwave networks 
containing differential amplifiers, baluns, transformers etc. 

 In this paper we introduce differential- and common- mode 
noise waves as wave variables which are used for noise 
analysis of differential microwave networks. Differential-and 
common-mode noise wave definitions are based on the 
pseudowave definition presented in [3] by R. Marks and D. 
Williams. We present the relation of mixed-mode, differential- 
and common-mode noise waves to the single ended, standard 
noise waves. We introduce the differential- and common-mode 
noise wave correlation matrices, discuss their properties and 
their relation to standard, single-ended noise wave correlation 
matrices. We introduce also the generalized mixed-mode noise 
wave correlation matrix for multiport microwave networks with 
mixed-mode, differential- and common-mode ports as well as 
with single-ended ports. We derive and discuss the mixed-
mode noise wave correlation matrices for passive multiport 
networks. Finally, we present some application examples  
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deriving mixed mode scattering matrices of passive single-
ended two-ports, passive single–ended four-ports, baluns and 
for differential amplifiers. 

 

II. DIFFERENTIAL AND COMMON MODE NOISE WAVES 
 As for a general n-port network excited by stationary signal 
we define the single-ended noise voltage and noise current state 
vector for port j as 

[ ]T
n n n jjj iv≡r      (1) 

where vn j  and in j are noise voltage and noise current at the 
port. 
 At single-ended port pair j,k  of the mixed-mode port set, we 
define the differential- and common-mode noise voltages and 
noise currents as 
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The state vector containing the mixed-mode noise voltages 

and noise currents of the port pair j and k is 
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 Relations (1) through (6) can be presented in matrix notation 
as 
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 By analogy to the single-ended port noise pseudowaves 
defined in [4] as 
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where Ri = Re{Zi}, and Zi is the reference impedance, we 
define the mixed-mode noise pseudowaves corresponding to a 
mixed-mode port as 
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where j and k indicate port pair of the mixed-mode port, vndjk 
and in jk are the differential-mode noise voltage and current 
defined by (2) and (3), vncjk and incjk are the common-mode 
noise voltage and current defined by (4) and (5), Zcjk, is the 
reference impedance for the common mode, Zdjk is the 
reference impedance for the differential mode, and Rcjk = 
Re{Zcjk}, and Rd jk = Re{Zdjk}. 
 Following matrix formalism presented in [1] for the 
deterministic signal pseudowaves, we can write similar 
relations for the noise pseudowaves. We have the port state 
vector in terms of the noise waves defined as 
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 By analogy to (16), we can write the mixed-mode noise 
wave state vector as 
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  We define the overall noise wave state vector for the j-k 
port pair as 
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and from (16) and (17), we have 
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 Finally, using (16) through (21), we receive the relationship 
between the standard single-ended noise pseudo-waves and the 
mixed-mode noise pseudowaves 
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    In (10) through (23), Rj = Re{Zj}, Rk = Re{Zk}, Rd jk = Re{Zd 

jk} and Rc jk = Re{Zc jk}. 
 The matrix Xjk given by (23) is the same as (16) in [1] which 
presents relationship between the deterministic sinusoidal 
signal single-ended pseudowaves and the mixed-mode 
pseudowaves. 
 Relations (21) and (23) are valid for the complex reference 
impedances Zj, Zk, Zd jk and Zc jk. If we assume that the single-
ended port reference impedances are the same and real: Zj = Zk 
= ZR, and that Zdjk = 2 ZR and Zcjk = ZR/2, than (23) simplifies 
to 
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and from (22), we get 
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 These relations are the same as (18) in [1] and (3-4) in [2] 
for the deterministic sinusoidal signal pseudowaves. It is 
important to notice here that only when reference impedances 
are real and when they satisfy relations Zj = Zk = ZR, Zdjk = 2 ZR 
and Zcjk = ZR/2, the ingoing differential-mode noise wave and jk 
and the common-mode noise wave anc jk depend only on the 
single-ended ingoing noise waves an j  and an k, and 
simultaneously the outgoing differential-mode noise wave bndjk  
and common-mode noise wave bncjk depend only on the 
outgoing single-ended noise waves bnj and bnk. In general case, 
relations (24) through (28) are not true [1]. 
 From this place of the text in this paper we will omit index 
“n” at symbols representing noise quantities. 
 

III. GENERALIZED MIXED-MODE NOISE WAVE CORRELATION 
MATRIX 

 
 Fig. 1 illustrates a noisy multiport network having the 
conventional single-ended ports and the mixed-mode, 
differential- and common-mode ports. 
 For this network we can write the matrix equation 
 

o
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where 
 

 
Fig. 1. Noisy multiport network with p mixed mode ports and n – p single 

ended ports. 
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n
o
a and n

o
b are the generalized mixed-mode noise wave vectors, 

in which we combine the p mixed-mode noise waves sets with 

the remaining (n – p) single-ended noise waves, and 
o
c is a 

vector of p equivalent mixed-mode noise wave sets and (n – p) 
equivalent single-ended noise waves representing noise 
generated inside the noisy multiport network. 

 The matrix 
o
S in (29) is the generalized mixed-mode 

scattering matrix defined by (26) in [1]. 
 Because the equivalent noise pseudo-wave source 
representing noise generated in a network is expressed as [3,4] 
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0 is 1 x 2 zero matrix, Zi, Zj, Zk are the reference impedances, 
Ri = Re{Zi}, Rj = Re{Zj} and Rk = Re{Zk}. 
 Using the definitions of the differential-mode and common-
mode noise voltages and noise currents, given by (2) through 
(5), we introduce the differential- and common-mode 
equivalent noise pseudo-wave sources representing noise 
generated in the network 
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where j and k indicate port pair of the mixed-mode port, Zc jk, - 
the reference impedance for the common mode, Zdjk - the 
reference impedance for differential mode and Rcjk = Re{Zcjk} 
and Rdjk = Re{Zdjk}. 

From (31) through (38) the port state vector of the mixed-
mode noise waves at the mixed-mode port j,k can be written as 
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and 0 is 1 x 2 zero matrix. 
 Using (8), (33) and (39) through (43), we can write 
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 Equation (45) is the generalized relation between the single-
ended equivalent noise wave sources and the mixed-mode 
equivalent noise wave sources representing noise generated in 
a multiport. Adopting a real and the same reference impedance 
for both ports Zj =Zk = ZR  and assuming Zdjk = 2 ZR and Zcjk = 
ZR/2, (46) simplifies to 
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 Generalized relation for all ports of the mixed-mode noisy 
network will have the form 
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o
u is the column vector of the equivalent noise wave sources at 
the mixed-mode ports and at the single-ended ports of a general 
differential multiport, u is the column vector of the equivalent 
noise wave sources at the single-ended ports of a multiport, and 
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is the coefficient matrix in which submatrices Yij are given by 
(46). In (52) I is the (n – p) x (n – p) identity matrix. 
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To determine the mixed-mode noise wave correlation matrix 
compatible with the generalized mixed-mode scattering matrix, 

elements of column vector 
o
u , given by (51), have to reordered 

to the form 
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This ordering may be done using a relation 
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in which P is the n x n permutation matrix. Submatrices Pd and 
Pc are of size p/2 x n, while submatrix PI is of size (n – p) x n. 
These matrices have all elements null apart a single 1 in each 
row: 
 

Pd(l,2l – 1) = 1;  l = 1, 2, …, p/2;        Pd = 0, elsewhere (55) 
 

Pc(l, 2l) = 1,  l = 1, 2, …, p/2;             Pc = 0, elsewhere (56) 
 

PI(l,l) = 1,  l = 1, 2, 3, … , (n-p);         PI = 0,  elsewhere (57) 
 

 Using (53) and (54) the generalized mixed-mode noise wave 
correlation matrix of a multiport can be derived as 
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 In (58) += uuCS  is the standard single-ended noise wave 
correlation matrix of a multiport discussed in [4]. Equation 
(58) represents the generalized form of the single-ended noise 
wave correlation matrix to the generalized mixed-mode noise 
wave correlation matrix transformation. 
 As all noise correlation matrices, the generalized mixed-

mode noise wave correlation matrices S
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C  are Hermitian 

matrices, what means that 
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the generalized mixed-mode correlation matrix S
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C  may be 

partitioned into nine submatrices 
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highlighting the correlation and cross-correlation between the 
differential-, common-, and single-ended mode equivalent 
noise wave sources representing noise generated in a mixed-
mode multiport. In (59) and (60), the “d”, “c” and “s” 
subscripts at submatrices refer to the differential, common and 
single-ended mode, respectively. 

If the network is a single-ended four-port and its ports 1 and 
2 are a pair forming the mixed-mode port, and similarly ports 3 
and 4 are a pair forming the second mixed-mode port, and it is 
assumed that  Zd12 = Zd34 = 2 ZR and Zc12 = Zc34 = ZR/2, where 
ZR is the real reference impedance, common to all four single-
ended ports of the network, then 
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 Using (61) and (62), we get the generalized mixed-mode 

noise wave correlation matrix S
o
C  in terms of the elements of 

standard, single-ended noise wave correlation matrix CS as (63) 
shown at the bottom of the previous page. 
 For a single-ended three-port with ports 1 and 2 forming the 
mixed-mode port, and assuming that  Zd12 = 2 ZR and Zc12 = 
ZR/2, where ZR is the real reference impedance of the  single-
ended ports, we have 
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The generalized mixed-mode noise wave correlation matrix 

S
o
C  of such network, expressed in terms of standard, single-
ended noise wave correlation matrix CS elements, is given by 
(65) presented at the top of this page. 

For a single-ended two-port network considered as a mixed-
mode one-port 
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and the mixed-mode noise wave correlation matrix S
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C  of such 

network, expressed in terms of the standard, single-ended noise 
wave correlation matrix CS elements, is 
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IV. MIXED-MODE NOISE WAVE CORRELATION MATRICES OF 
PASSIVE NETWORKS 

 
 As it was discussed in [5], the noise wave correlation matrix 
of a passive single-ended multiport with real port reference 
impedances ZR, equals 

( )+−= SSIC kTS      (68) 
 Using (62) and (68), and assuming that for all the mixed-
mode ports reference impedances are real, and that Zd jk = 2 ZR, 
and Zc jk = ZR/2, it can be proved that for passive mixed-mode 
multiport networks described by their generalized mixed-mode 

scattering matrices 
o
S , the generalized mixed-mode noise wave 

correlation matrix is expressed by the similar to (68) relation 
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where + indicates the Hermitian conjugate. 
 
A. Mixed-mode noise wave correlation matrix of a passive 
two-port network 
 
 Measurement of differential networks noise properties is still 
a complicated problem at microwave frequencies. A method 
based on a hot/cold differential load used as a differential noise 
source has been presented in [6]. 
 Figure 2 illustrates a passive single-ended two-port network 
considered as a differential load with differential-mode and 
common mode noise wave sources at its port. 

 
Fig. 2 Passive single-ended two-port considered as a mixed-mode one-port 

network and a source of noise waves 

 
Using (68), the wave correlation matrix of a single-ended 

two-port network can be written as 
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 (70) 
From (68), it can be seen that correlation between equivalent 

noise waves c1  and c2 disappears when there is no coupling 
between ports 1 and 2. This is the obvious conclusion. 
Equivalent noise waves c1  and c2 are also not correlated when 
a passive two-port network is matched at its port, that is, when 
S11 = S22 = 0. This result can be explained by examining, how 
noise power generated in a passive network is delivered to the 
reflectionless terminations in thermodynamic equilibrium. 
These considerations can be found in [5]. 

Now, using (62), (66) and (70), we find the mixed-mode 

noise wave correlation matrix S
o
C of a passive two-port as 
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where k is the Boltzmann’s constant and T is the physical 
temperature of the network. 

Considering a passive two-port as a source of the mixed- 
mode noise waves cd12 and cc12, we see from (71) through (73), 

that the noise temperatures kcTkcT 2
c12c

2
d12d   and == , 

for the differential-mode and common-mode noise waves 
generated by a single-ended two-port are different.  

For a symmetrical passive two-port, with S11 = S22 and S12 = 
S21, we have 
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From (74) through (76), we see that the common- and 

differential-mode noise waves are uncorrelated but the noise 
temperatures of the common- and differential-mode noise 
waves are still different. When ports of a two-port network are 
matched, S11 = S22 = 0, the noise temperatures Td and Tc are the 
same and equal [ ]2

121 ST − . 
 
B. Mixed-Mode Noise Wave Correlation Matrix of a Balun 
 

It is a common practice to use two baluns or two hybrid 
couplers at the input and at the output of a differential device 
under test (DDUT) in order to embed the differential DUT into 
a single-ended measurement setup [6-8]. Signal as well as noise 
properties of the DDUT then have to be de-embedded from the 
results obtained in a single-ended measurement environment. 

Figure 3 shows a balun with the equivalent noise wave 
sources at its ports. 

 
Fig. 3 A balun with the equivalent noise wave sources at its ports. Pair 2-3 

of the single ended ports creates a mixed-mode port. 

 
As it is a passive network, its standard noise wave 

correlation matrix is given as 
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where S is the standard, single-ended scattering matrix of a 
balun. 
 Using (77), we get 
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_____________________________________________________________________________________________________ 

 Assuming that the balun is matched at all ports, that is S11 = 
S22 = S33 = 0, from (78) 
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Considering the pair of ports 2 and 3 as a mixed-mode 

port with the equivalent differential- and common-mode noise 
waves, we can construct and derive generalized mixed-mode 
noise wave correlation matrix. It is 





















=































=

+

2
c23

*
d23c23

*
1c23

*
c23d23

2
d23

*
1d23

*
c231

*
d231

2
1

c23

23d

1

c23

23d

1

S
o

ccccc

ccccc

ccccc

c
c
c

c
c
c

C    

 (80) 
 Using (62), with 
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we receive (82), shown at the top of this page. In (82) Cij, i, j = 
1,2,3 are the elements of standard noise wave correlation 
matrix CS given by (78) or (79). 
 
C. Mixed-Mode Noise Wave Correlation Matrix of Passive 
Four-Port Networks 
 

Symmetrical single-ended four-port networks, presented in 
Fig. 4, are commonly used as a mixed mode two-ports in 
differential networks. For example, two symmetrical coupled 
transmission lines represent such network. 

 

 
Fig. 4. Symmetrical four-port network with symmetry planes SP1 and SP2. 

 
 Single-ended scattering matrix of such networks is 
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Using (61), (62), (68) and (83), we receive 
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where 
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In a case of two identical uncoupled lines (S12 = S21 = S34 = 

S43 = 0 and S13 = S31 = S24 = S42 = 0), relations (85) through 
(88) simplify to 
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V. MIXED-MODE NOISE WAVE CORRELATION MATRICES OF 

ACTIVE DIFFERENTIAL NETWORKS 
  

Figure 5 illustrates a pair of transistors which form a 
differential network with two mixed-mode ports. 

 
Fig. 5 Differential pair of transistors. 
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 Because the noise generated in both transistors is not 
correlated, the single-ended noise wave correlation matrix of 
this network is 
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Using (62) and (93), we derive the mixed-mode noise wave 
correlation matrix as 
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 Finally, if we assume now that the transistors used in the 
network are identical, what means that C11 = C22, C33 = C44 and 
C23 = C14, (94) simplifies to  
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 In (93) through (95), Cij are the elements of the standard 
single-ended noise wave correlation matrices of active two-
ports (transistors) forming the differential network. 
 
 

APPENDIX 
 

In (44) and (46) 1−
jkN  is the one-sided inverse, the right 

inverse of jkN , what means that INN =−1
jkjk , but 

.1 INN ≠−
jkjk
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