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Tasks
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Abstract—The MTD method adaptive to current target speed,
in which suboptimal iterative algorithms for the reflected signal
parameters estimation are synthesized, is suggested. This method
allows to detect a slowly moving targets with radial speed 3-4
times less, than for pulse-pair subtraction (PPS).
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I. INTRODUCTION

MOVING target detection (MTD) on the background

of interferences is one of basic functions of different

modern detection systems: medical, hydro acoustic, guard, air

traffic controls, etc. The MTD radars use the Doppler Effect

of the current frequency shift of the radio signal reflected

from the target. This shift depends on target speed. Spectral

methods, which are based on fast Fourier transformation

(FFT), are most often used for measuring the Doppler-beat

frequency and moving target detection.

Development and use of new methods and algorithms of

signal processing lead to increase the MTD digital systems

efficiency. There are a plenty of scientific and technical

researches dedicated to this subject.

However, estimation of the slowly moving target speed as

well as its detection, when observation time of radar is com-

mensurable with the period of the reflected signal Doppler-beat

frequency, still is a problem. The slow motion target criterion

will be conditionally set as:

Tob < 2 /fd,

where Tob is the target observation time, which is in this case

called “limited”, fd is Doppler-beat frequency which is called

“infra-low”. Obviously, this criterion depends not only on the

actual target radial speed but also on the radar parameters;

term “speed” always implies a radial speed.

Classic approaches, including FFT methods, in this

case become useless, because considerable observation time

Tob >> 1 /fd is required. Therefore, there is a requirement

for creation of the new special methods of signal processing

in accordance with the applied essence of tasks.

II. ADAPTIVE MTD METHOD

Prospective directions to increase MTD methods practical

fitness must be based on deepening statistical analysis of all
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available radar data with the purpose of adaptation to the

current parameters of targets, interferences and noise. Thus,

from the different methods of overcoming a priori uncertainty

the most results were obtained by empiric Bayesian approach

according to which unknown parameters in the optimal detec-

tion algorithm are replaced with grounded estimations.

Under this statement the detection of one target with

constant speed by radar is related to the area of detec-

tion of unknown digitized complex harmonic signal with

Doppler-beat frequency on the output of transceiver quadra-

ture detector: ṡi = sxi + jsyi = ρ cos [γ (i− 1) + ϕ1] +
j ρ sin [γ (i− 1) + ϕ1], i = 1, N , where ρ is amplitude,

γ = 2πfd/fτ – the normalised frequency which depends on

sampling frequency fτ , ϕ1 is an initial phase of sample, N

is a size of sample. In future, under a term “frequency” we

always imply exactly normalised frequency.

The additive model of quadrature detector samples set

counts is accepted for further researches:

u̇i = ṡi + η̇i + ξ̇i = (sxi + ηxi + ξxi) + j(syi + ηyi + ξyi) =

= xi + jyi , i = 1, N,

where η̇i = ηxi+jηyi, ξi = ξxi+jξyi are complex constituents

of the uncorrelated Gaussian noise and correlated interference

in quadratures xi , yi of i-th sample.

Using the optimal coherent algorithm of the determined

signal detection for the known dispersion of noise σ2

N
∑

i=1

xi · si/σ > C,

where C is a decision-making threshold, and in accordance

with empiric Bayesian approach the adaptive MTD algorithm

will be written as:
∑N

i=1 (xi − ξ∗x) · s
∗
xi

(σ∗
x)

2 +

∑N
i=1

(

yi − ξ∗y
)

· s∗yi
(

σ∗
y

)2 > Cc, (1)

where (σ∗
x)

2
,
(

σ∗
y

)2
are estimations of noise dispersions in

quadrature channels, other estimations are also marked ∗.

Thus, we consider interference as constants ξxi = ξx , ξyi =
ξy , ∀i, that allow to simplify the signal processing proce-

dures, dividing them into independent by quadrature. There-

fore the further synthesis of the frequency estimation algo-

rithms is made for the scalar harmonic signal of only one

quadrature; the index of quadrature is not specified.

III. ANALYSIS OF LIKELIHOOD FUNCTION

It is obvious, that the harmonic signal estimations of a for-

mula (1) must be calculated on the basis of its parameters

estimations
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Fig. 1. Projections of likelihood function in the co-ordinates: a) frequency –
the initial phase; b) frequency – amplitude; c) amplitude – the initial phase.

s∗i = s ( ρ∗, ϕ∗
1, γ

∗) (2)

We write the logarithm of harmonic signal likelihood func-

tion as

lnL(ρ, γ, ϕ, σ,ξ|x0, ..., xN−1) =

= ln
σ−N

(2π)N/2 − Λ(ρ, γ, ϕ,ξ|x0, ..., xN−1)
2σ2

, (3)

where sufficient statistics are marked as

Λ(ρ, γ, ϕ, ξ|x0, ..., xN−1) =

N−1
∑

i=0

(xi − ρ sin(γi+ ϕ)− ξ)2.

(4)

Obviously, the likelihood function (3) gets the maximum

on the set of harmonic signal parameter’s estimates while

providing minimum sufficient statistics

{ ρ∗, γ∗, ϕ∗, ξ∗ } = argmin
ρ, γ,ϕ,ξ

Λ(ρ, γ, ϕ, ξ|x0, ..., xN−1),

which further use as function of parameters ρ, γ,ϕ, ξ with

known samples x0, ..., xN−1.

Thus, the problem belongs to a class of multidimensional

and multiextremal minimization [1]. To obtain the solution the

practically numerical methods are used. This work is devoted

to the development and research of the parameter estimation

search algorithm, adapted to the properties of harmonic signal

likelihood function.

Since the likelihood function (4) of harmonic signal depends

on four parameters, the analysis of its structure performed

by few two-parameter projections for possible pairwise com-

binations of parameters. Fig. 1 shows an example of such

projections, which are built with environment MatLab. For

some set of 32 samples, the signal / noise ratio SNR = 100
and parameters of the harmonic signal: ρ = 1, γ = 1, ϕ = 0.

We consider the likelihood function as function of two

parameters ( frequency and phase ). In this case amplitude

is fixed. This function has a pronounced recurrent character.

Because the structure of the likelihood function is repeated

with the phase period 2π. The graph shows only the area

around its true value.

The dependence on frequency is more complicated. It is

the alternation of different minima depth (gutters) that has

“resonance” nature.

As revealed by simulation, the length of intervals between

minima is depended on a sample size:

∆γ ≈ 2 π /N. (5)

Local minima gradually deepen toward the true frequency,

and near the point of zero phase and frequency deviation of

observed two-dimensional global minimum.

Likelihood function also has some distinctive characteris-

tics. All gutters are placed under the same angle to the axis of

phase, which, as shown with simulation results, approximately

are: α ≈ − arctan{ 1.1/N}. A near zero frequency is another

deep false minimum.

While the power of noise increases the global minimum of

likelihood function may be further away from the point of true

values. Effective parameters measurement are achieved only

under conditions of significant excess of signal over noise.

Some minor differences do not significantly alter the overall

structure of the likelihood function. So the example is suffi-

cient to qualitative determination of its basic properties.

The likelihood function projection in coordinates frequency

– amplitude highlights its resonance frequency character. It is

similar to the previous version, with the difference that the

gutters are placed parallel to the axis amplitude.

The latest projection shows the dependence of the likelihood

function on the pair amplitude – phase is also non-monotonic,

and its sensitivity to phase changes slightly larger than the

amplitude.

Additional projection for the constant amplitude is shown

in Fig. 2. The function is unimodal by these parameters.
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Fig. 2. Projection of likelihood function in the co-ordinates constant –
amplitude.

IV. ITERATIVE ALGORITHM OF PARAMETERS ESTIMATION

Although the problem of harmonic signal parameters esti-

mation are four-dimensional, the set above “resonance” char-

acter of likelihood function requires the allocation procedure

of frequency estimation as a separate one-dimensional. It

is because the multivariate simultaneous search can lead to

uncontrolled jumps between local minima. Higher sensitivity

of the likelihood function to frequency deviations than to the

phase, amplitude and constant interference deviation defines

the procedure of optimal frequency estimation as the primary

parameter estimation algorithm. Further we conditionally de-

fine the meaning of the term “optimal” parameter. It means

the point of likelihood function minimum for this parameter.

Given the monotonic relief likelihood function for constant,

amplitude and phase should also separate the search for their

optimum values for three one-dimensional procedure. And

the priority is the search for the phase sensitivity as to the

likelihood function it is slightly more than the amplitude and

constant interference. Thus, as a result of the reduction [1] the

algorithm of four-parameter minimization is built as a four-tier

hierarchical structure (Fig. 3).

At each level the minimization is performed iterative for

the different harmonic signal parameter: at the bottom I –

frequency; II – phase; III – amplitude; at the top IV – constant.

A characteristic of this nested search algorithm is that some

top-level procedure always uses the locally-optimal estimation

of other parameters that is defined as a result of the previous

iterative search on the lower levels.

Note that the additional research has shown the greater

stability of the proposed algorithm for parameter estimation

with respect to such algorithms that are used for simultaneous

multivariate optimization methods – step and gradient. This is

the result of significant likelihood function polymodality.

The search algorithm starts with the initial estimation of

all harmonic signal parameters. Taking into account [2]–[5],

the known value of frequency allows us easily calculate two

other parameters. The frequency estimation will continue in

accordance with the algorithm that was synthesized in [3], as

γ∗
s = arccos (α/2) , (6)

Fig. 3. General block diagram of the harmonic signal parameter estimation
algorithm.

where

α = (−B +
√

B2 − 4AC)/2A

is allowable root of square equation Aα2−Bα−C = 0, where

a coefficients A,B,C are calculated by the formulas:

A =

N−1
∑

i=3

[

(

xi−2 − xi−1

)2

−
(

xi−2 − xi−1

)

×

×
(

xi − xi−1 + xi−2 − xi−3

)]

B =

N−1
∑

i=3

[

2
(

xi−2 − xi−1

)2

−

−
(

xi − xi−1 + xi−2 − xi−3

)2
]

C =

N−1
∑

i=3

[

2
(

xi−2 − xi−1

)(

xi − xi−1 + xi−2 − xi−3

)

−

−
(

xi − xi−1 + xi−2 − xi−3

)2
]

When the initial value of harmonic signal frequency is

known, the initial values of its amplitude and phase will be

found by the method of maximum likelihood from equations

which obtained as differentiation of likelihood function (4) for
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variables ρ, φ, ξ:






























∂Λ
∂ρ

= −2
N−1
∑

i=0

sin(γi+ φ) [xi − ρ sin(γi+ φ)− ξ] = 0;

∂Λ
∂φ

= −2ρ
N−1
∑

i=0

cos(γi+ φ) [xi − ρ sin(γi+ φ)− ξ] = 0;

∂Λ
∂ξ

= −2
N−1
∑

i=0

[xi − ρ sin(γi+ φ) − ξ] = 0.

We use new variables:

Ax = ρ cos ϕ , Ay = ρ sinϕ, Az = ξ.

Then the system of equations can be transformed relatively

new variables in a linear form similar to [[3]]:


































Ax

∑N−1
i=0 sin2(γi) +Ay

∑N−1
i=0 sin(γi) cos(γi)+

+Az

∑N−1
i=0 sin(γi) =

∑N−1
i=0 xi sin(γi);

Ax

∑N−1
i=0 cos(γi) sin(γi) +Ay

∑N−1
i=0 cos2(γi)+

+Az

∑N−1
i=0 cos(γi) =

∑N−1
i=0 xi cos(γi);

Ax

∑N−1
i=0 sin(γi) +Ay

∑N−1
i=0 cos(γi)+

+Az ·N =
∑N−1

i=0 xi.

The calculated initial estimates of amplitude and phase for its

solution:

ρ∗s =
√

A2
x +A2

y, ϕ
∗
s = arctan (Ay/Ax) , ξ

∗
s = Az

which together with initial estimates of frequency determine

the three-dimensional starting point for further search of likeli-

hood function global minimum. According to the hierarchical

algorithm the procedure of minimization of the likelihood

function for the frequency has highest priority. Because the

values of phase and amplitude at this level are some fixed

parameters, which “launched” from the upper levels of min-

imization, the retrieved global minimum of functions of one

variable F (γ), is formed as the cross-section of likelihood

function values for these two parameters. For example Fig.

4 shows the frequency – phase projection section for initial

amplitude estimate ρ∗s = 1 (see Fig. 1, a) and the initial

phase estimate ϕ∗
s = −2 rad. Note that the existence of global

minimum shift function F (γ) regarding the true frequency

(γ = 1 Rad) errors resulting from the initial estimates are not

principle at this level of minimization.

An essential feature of the obtained one-dimensional func-

tions is polymodality. But the typical features previously

expressed likelihood function as a monotonous decrease the

values of local minima toward the global minimum and

alternation all around with a constant period (5) – enable

to build appropriate procedure multiextremal minimization.

One can consider it with example, when the initial frequency

estimate γ∗
s = 1.45 gets right into the second zone of local

minimum – point 1 (Fig. 4).

The procedure for finding the global minimum consists of the

following stages:

1) for a point 1 provides search near a local minimum (point

2), for example, using the classical method of golden

section;

2) for a known period of alternating minima (5) with respect

to the two neighboring zones is determined right and left

local minima;

Fig. 4. Section of likelihood function for constant values of phase and
amplitude.

3) the same stage a) specifies the coordinates of these

minima (points 3 and 4) further constructed and analyzed

bypass function F (γ), formed with the points of its

minima;

4) three found local minima determine the direction for

reducing them, if at least at the middle point (point 2) will

be minimal, it is defined as the point of global minimum

and then search stops;

5) then within the period (5) determine zone of following

minimum;

6) the same stage a) specifies a local minimum (point 5);

7) further search is carried out cyclically within stages 4),

5) and 6), which leads to a global minimum – a point 5

relative to points 4 and 6.

Thus, the signal frequency is found to minimize the likelihood

function for fixed values of amplitude ρr and initial phase ϕk:

γ
(k)
opt = argmin

γ
Λ(γ/ξn, ρr, ϕk, x).

It is obvious that the found optimal frequency point located

at the bottom of the main gutter ℑ of projection frequency

– phase, which is indicated with dots in Fig. 1 as well. This

fact, and unimodality of this gutter by phase in the zone which

limited ±π from its true value, enables to search the optimal

estimate of phase at level II by one-dimensional minimization

procedure: ϕ
(r)
opt = argmin

ϕ
Λ(ϕ/ξn, ρr, x, γ = γopt). For

this purpose, for example, the stated before a local minimiza-

tion procedure at point 2 can be used. At level II calculation

of the current value of likelihood function is not done, and

always used the result of the lower level.

Obviously, every step of the level II means a formation

of the appropriate section relatively level 1 by the current

frequency, so the gradual convergence of phase to the optimal

value also helps to reduce deviation of global minimum

function F (γ), processed at that level 1. The result of a second

level optimization of likelihood function by two parameters is

minimum located at the point 7.

Since the likelihood function for the amplitude and con-

stant interference is unimodal (see Fig. 1, b), c); Fig. 2),

the minimization on the third and fourth level is similar to

the level II with the difference that has used the results of

nested likelihood function optimization procedures for other

parameters. After completion of level IV we have the final

estimates of three unknown parameters ρ∗opt, γ
∗
opt, ϕ

∗
opt, ξ

∗
opt.
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V. ITERATIVE ALGORITHM EFFICIENCY

Multifaceted search procedures of proposed harmonic signal

parameter estimation algorithm contribute to the fact that the

process of handling a particular sample can be completed in

several events that have different characteristic.

If the process of calculations appear clearly incorrect current

results, a decision on the existence of a “failure of the

algorithm”, resulting in lack of parameter estimates should

be taken. One can select two events of failures. One of these

– “Event A” (or initial failure) – can appear at the stage of

calculating the initial frequency estimation when the arc cosine

argument (6) is outside the limits of existence [-1, 1]. The fea-

ture of the second failure – “Event B” (or a final failure) – this

algorithm after receiving some negative value of frequency,

indicating the inability to reliably estimate of the signal under

the given conditions. This happens when the search procedure

finds itself in some of the likelihood function gutters side,

which has monotonous slope. A sufficient numerical criterion

for both events is the failure probability of their occurrence.

Another characteristic event – “an event D”, as shown

by statistical studies – is stop of the frequency evaluation

procedure in the local minimum, i.e. we have shift of the

frequency estimation. The parameters estimation algorithm

can’t recognize such an event and a rough estimate can

be communicated without control to other algorithms for

data processing of the measurement system. On the stage of

a general analysis of the properties of parameter estimation

algorithm one should separately examine characteristics of

such event. The probability of appearance is the general

criterion; more thorough description is the histogram with cal-

culated estimates of the moments, for example, mathematical

expectation and dispersion.

The latest event in the full group is “Event C” (or accurate

estimation), when frequency estimate gets into the area of

global minimum. The width of this area is set equal to the

minimum period of alternation (5). Event C probability is

the probability which we define as reliability assessment. To

estimate the conditional accuracy of reliable signal parameters

estimation we use conditional histogram with the required

moments.

Thus, a significant diversity of parameter estimation algo-

rithm quality criteria allows us to detail its specific properties.

This knowledge is used for a decision on the applicability of

this algorithm in the technical measurement systems.

Analysis of the parameter estimation algorithm efficiency is

based on the statistical simulation method. Calculated charac-

teristics are presented in the table for different harmonic signal

parameters and noise power. The size of the sample is N =

32, and the number of same statistical tests for one experiment

was 500. Since research has shown that the accuracy of the

initial phase estimation does not depend on its true value, the

results are for only one of its values ϕ = 0.

Results of statistical researchers have found the next prop-

erties of harmonic signal parameter estimation algorithm. Its

efficiency depends largely on the length of the interval of

observation. If it process a few periods of the signal, the

accuracy and precision of parameter estimates is sufficiently

high.

TABLE I
PERFORMANCE INDICATORS PARAMETER ESTIMATES

No. PS/Pη Pξ/Pη Freq. Freq. est. Event A: Event B:

shift, % prob. of prob. of

failure failure

1 10 10 1.00 -0.10 0.00 0.00

2 5 10 1.00 -0.50 0.00 0.03

3 20 10 0.50 2.40 0.03 0.11

4 20 100 0.50 17.40 0.07 0.39

5 50 100 0.50 6.00 0.01 0.19

6 100 20 0.20 85.50 0.30 0.36

7 50 20 0.20 136.50 0.33 0.45

Continuation of table

Event C – reliable estimates Event D – wrong estimates

No. Prob. of Freq. est. Freq. est. Prob. of Freq. est.

Event C shift, % STD, % Event D shift, %

1 1.00 -0.10 1.36 0.00 -100.00

2 0.96 -0.30 2.28 0.01 -99.50

3 0.80 -0.40 -0.13 0.06 5.80

4 0.43 -1.20 -1.88 0.11 -29.00

5 0.74 0.00 -4.08 0.06 -40.80

6 0.34 -2.50 3.67 0.00 -100.00

7 0.20 -3.00 4.45 0.02 205.50

When the signal is available for measurement only during

the one period time interval , then the algorithm efficiency

drops sharply, and for improving the estimates reliability it is

necessary to ensure the signal / noise ratio in the amount of

several tens of units.

Above all significantly worse is accuracy of the initial fre-

quency estimation, and, consequently, increases the probability

of failures and errors. It was found that parameter estimation

algorithm is more sensitive to the positive error of the initial

estimate from about 20%, and negative errors to -50% can still

be adjusted for an iterative process of further estimation.

When parameter estimation algorithm still leads to accurate

zones (event C), even at small signal power, parameter esti-

mates bias is very low. Moreover, the relative error of the final

frequency estimate is slightly lower than for the initial phase

and amplitude.

Also we research failure of the algorithm when its output

frequency has negative value. Established that this behavior

is caused by a significant deviation from the true value of

the initial evaluation phase more than in π , resulting in the

incorrect search finish in the region of negative values. To

get rid of this, the output of phase search cycle checked for

negative value. If the condition is satisfied, a sign of the initial

frequency estimate changes to the opposite, and the phase is

shifted by −π. Studies have shown that this artificial procedure

slightly improves the efficiency and accuracy of parameter

estimation.

From the practical point of view, failure detection allows to

protect user-information system from their influence. Much

more unpleasant is the appearance of uncontrolled rough

frequency estimate error, even with lower probability because

its effects can lead to catastrophic consequences.
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It is remarkable that the final frequency shift usually exceeds

the period of alternation of local minima (5), so for protection

against such events should be conducted censoring procedure

for estimation results.

Also conducted research for improving efficiency of search-

ing parameters estimation algorithm. As you know, theoreti-

cally the best method for finding an extremum of unimodal

functions of one variable is the method of golden section,

however, studies have shown that this method for finding

extreme values of the parameters does not give the desired

results because the gain in accuracy does not exceed a few

percent of the estimations values received by regular step

descent, and sometimes is absent. In addition, when using

the golden section at all levels of optimization, amount of

iterations is increased several times, which directly reflected

in the performance of the algorithm as a whole. By increasing

the initial finding step and reducing the localization interval of

golden section procedure for reducing the number of iterations

is also ineffective. This can be explained by several reasons:

– Initially, the extremum search area is unknown, so to find the

zone in any case still applies stepped descent algorithm. And

after the minimum point is found between two neighboring

points, these points are considered as the extremum area

bounds and are used in the golden section procedure. It

leads to a redundancy in the number of search cycles.

– Increase the search step on the one hand promotes rapid

detection of a local minimum area for term of the big

error of initial estimation, on the other – extends it for

term of accurate enough estimate. Therefore, statistically

the number of iterations in this case even with maintaining

accuracy is still higher than without the golden section.

– The main reason for the error of final frequency estimation

is actually data distortion in samples of signal and noise

mix. Therefore using of the golden section method leads

only to a slight increase of accuracy.

At all known parameters estimations the estimation of noise

dispersion is determined as

(σ∗)
2
= (N − 1)

−1
N
∑

1

(xi − s∗i − ξ∗i )
2

(7)

VI. COMPARATIVE ANALYSIS OF THE ADAPTIVE MTD

METHOD AND PULSE-PAIR SUBTRACTION

Consequently the adaptive MTD method requires execution

of such set of operations: frequency estimation, determination

of other parameters, iterative search and calculation of signal

values according to a formula (2), calculation of noise dis-

persion by equation (7) and decision-making in accordance to

expression (1).

The practical value of the offered adaptive MTD method is

proved by the results of statistical researches by comparison

with the pulse-pair subtraction (PPS) method. The special

attention was paid on the slowly moving target detection. The

interference was modeled as random process with autocorre-

lation coefficient r.

From adduced, as an example, the speed detection charac-

teristics of both methods in the Fig 5 are presented.
One can see that offered adaptive MTD algorithm enables

to detect the slowly moving target in the frequencies range,

where PPS procedure represses them fully.

Fig. 5. Speed regulation characteristics of both methods: 1 – Adaptive, r=1;
2 – Adaptive, r=0.95; 3 – PPS, r=1; 4 – PPS, r=0.95.

VII. CONCLUSION

The use of empiric Bayesian approach allows us to create

the adaptive MTD method.

The use of ARMA models allows us to synthesize effective

harmonic signal frequency estimation, by which all other

adaptation parameters are determined.

The proposed iterative algorithm, which synthesized with

information about structure of likelihood function, allows

improving efficiency and accuracy of parameter estimation in

comparison with known methods.

The offered adaptive MTD method allows us to detect

slowly moving targets, which have radial speed 3-4 times

less, than possible for PPS procedure. The application of the

synthesized algorithms will allow us to increase precision of

other equipment for harmonic signals parameters measuring.
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