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Some Principles of Network Calculus Revisited
Andrzej Borys, Mariusz Aleksiewicz, Dariusz Rybarczyk, and Katarzyna Wasielewska

Abstract—Network calculus is a mathematical theory dealing
with queueing problems in packet-switched computer networks.
It provides algorithms to determine resource requirements of
traffic flows using arrival and service curves and describes delays
and backlogs in network systems. Network calculus framework is
based on a min-plus algebra which allows to transform complex
network optimization problems into analytically tractable ones.
Recently, a fundamental book on principles, tools, techniques,
and applications of network calculus, entitled: Network Calculus.
A Theory of Deterministic Queuing Systems for the Internet,
has been published by J. Y. Le Boudec and P. Thiran. Here, we
refer to it in our refinements of proof of one important theorem
and its extension. The objective of this paper is twofold. First,
we complete one of basic results regarding a network element
that is called in network calculus a greedy shaper. Second, we
present also the results of some illustrative calculations and
measurements of network service curve. They aim in better
understanding of its properties.
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I. INTRODUCTION

NETWORK calculus is a system theory for queueing

systems which is based on min-plus algebra. This tech-

nique is used for analysis and optimization of flow control

in computer networks. Network calculus analysis focuses on

obtaining bounds for performance metrics instead of an exact

traffic and service characterization. There are deterministic

and stochastic approaches to network calculus. This technique

is used for bandwidth estimation in both wired and wireless

networks.

First experiences with network calculus can be found in

work of Cruz [1]. In his seminal papers [1], the difficulty of

bounding end-to-end delay in computer networks is discussed

and the use of so-called regulators to increase the throughput is

proposed. Extended description of network calculus theory can

be found in [2]. In our paper, we give more precise explanation

of the greedy shaper definition and we present a detailed

proof of a basic theorem regarding this network element.

Additionally, we illustrate the service curve properties.

Some results of this paper were presented by the authors

at the conference [3], [4]. It is organized as follows. Section

II presents the main network calculus operations. In Section

III, the role of the traffic causality property in considerations

leading to formulation of the notion of a greedy shaper is

explained in detail. Furthermore, the necessary and sufficient
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conditions for a shaper to be a greedy shaper are given

in a form of theorem. The next section is devoted to the

illustration of service curve properties. And finally, the last

section contains summary and conclusions.

II. NETWORK CALCULUS

Network calculus introduces concepts that can be used to

characterize elements in communication networks. It describes

cumulative functions for input and output data flows and

is useful to calculate network delays, backlogs and other

Quality of Service parameters. We consider a data flow passing

through a network. In network calculus a node behaviour is

characterized by a function called the service curve which

denotes how long a packet must be serviced after an arrival

to a node. The input traffic is characterized by a wide-sense

increasing function of time and it is so-called the arrival curve.

This function quantifies constraints on the number of bits of

packet flow in the time interval at service node.

A. Some Definitions

Let F be a class of real-valued and wide-sense increasing

functions for t ≥ 0 with t meaning a time variable and

having values identically for t < 0 equal to zero. In particular,

let R(t), S(t) ∈ F be cumulative input and output flows,

respectively. The cumulative traffic stands here for the sum

of bits (packets) arrived at the input or output in the period

from 0 to t.

For given functions f and g network calculus defines a

convolution operator ⊗ by

(f ⊗ g)(t) = inf
0≤τ≤t

{f(τ) + g(t− τ)},

and a deconvolution operator ⊘ by

(f ⊘ g)(t) = sup
τ≥0

{f(t+ τ) − g(τ)}.

In network calculus, R(t) can be upper bounded by an

arrival curve. It means that for all 0 ≤ s ≤ t we have

R(t)−R(s) ≤ α(t− s),

where α is called the arrival curve of R. Equivalently, for all

t ≥ 0 we have

R(t) ≤ (R ⊗ α)(t).

We also say that R is α-smooth. We say that service node

offers a service curve β to the flow if and only if for all t ≥ 0
there exists some s such that

S(t)−R(s) ≥ β(t− s).

Equivalently, for all the input functions R(t) and its corre-

sponding output functions S(t) we have
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S(t) ≥ (R⊗ β)(t).

A function f ∈ F is sub-additive iff for all s, t ≥ 0

f(s+ t) ≤ f(s) + f(t).

If flow has arrival curve f ∈ F then it also has sub-additive

arrival curve

f̄(x) ≤ f(x) for all x.

Let f ∈ F . If f(0) = 0 then f ≥ f ⊗ f ≥ 0. By repeating

this operation we will obtain a sequence of functions that are

every time smaller and which converges to some function that

is limited and the largest sub-additive function smaller than f

and having zero in t = 0. This function is called sub-additive

closure of f . More formal definition is as follows. Let f will be

a function or sequence of F . Denote f (n) the function obtained

by repeating (n − 1) convolutions of f with itself, that is

f (0) = δ0 (where δ0 is a fixed function defined by δ0(t) = ∞
for t > 0 and δ0(0) = 0), f (1) = f , f (2) = f ⊗ f , etc. Then

the sub-additive closure of f , denoted by f̄ , is defined by

f̄ = inf
n≥0

{

f (n)
}

.

A function f is named ’good’ function if anyone of the

following equivalent properties is satisfied [2]:

1) f is sub-additive and f(0) = 0,

2) f = f ⊗ f ,

3) f ⊘ f = f ,

4) f = f̄ .

In [2] it has been shown that the sub-additive closure of a

function f is the largest ’good’ function f̄ such that f̄ ≤ f

and that f̄ ∈ F if f ∈ F .

B. Input-Output Characterization of Greedy Shapers

If we want to ensure in a network some QoS guarantees,

we must, first of all, constrain its input flows. This is done

by arrival curves. This condition can be achieved by shaping

the input traffic with shaping curve σ. A shaper forces that

the packets which are entered to the queue are constrained by

an arrival curve σ. A greedy shaper is a shaper that shapes

a flow of an input bits in a buffer with the constraint σ and

outputs them as soon as possible. In [2] we can find important

theorem associated with the greedy shapers (Theorem 1.5.1 in

[2]):

Theorem 1: Consider a greedy shaper with shaping curve

σ. Assume that the shaper buffer is empty at time 0, and that

it is large enough so that there is no data loss. For an input

flow R, the output S is given by

S = R ⊗ σ̄,

where σ̄ is the sub-additive closure of σ.

III. REFINEMENT OF GREEDY SHAPER DEFINITION

In the proof of theorem 1.5.1 in [2], a virtual system

satisfying the conditions of traffic causality and σ̄-smoothness

is considered. That is a traffic system of which input R(t)

and output S(t) cumulative traffics, where t is a time variable,

fulfill the following set of inequalities

{

S(t) ≤ R(t)

S(t) ≤ (S ⊗ σ̄)(t)

(1a)

(1b)

for each value of t ≥ 0. Moreover, it is assumed that the

functions S(t), R(t), and σ̄(t) belong to the so-called F class

of functions. The function σ̄ in (1b) is assumed to be a “good”

function [2] that is satisfying the sub-additivity property [2]

and having the value zero for t = 0 (σ̄(0) = 0).

The interpretation of inequalities (1a) and (1b) is as follows.

Consider first (1a). It expresses the constraint imposed by

traffic causality on the virtual system considered, saying that

the bits transmitted in it can not appear at its output earlier

than at its input. Further, the second condition, expressed by

(1b), says that the system output traffic S(t) is constrained by

an arrival curve σ(t), being a function belonging to F and of

which sub-additive closure is denoted here as σ̄(t). That is,

according to the definition of an arrival curve [2], we have

S(t)− S(s) ≤ σ(t− s). (2)

Moreover, note that (2) can be equivalently rewritten as

S(t) ≤ (S ⊗ σ)(t). (3)

Furthermore, it has been shown in [2] that σ in (3) can be

always replaced by its sub-additive closure, that is by σ̄. This

follows from the result proved that if σ is a system arrival

curve then its sub-additive closure σ̄ is, too. In what follows,

we use (3) with σ̄ instead of σ, that is

S(t) ≤ (S ⊗ σ̄)(t). (4)

And finally, observe that (4) is exactly the same inequality as

(1b).

The theorem 1.5.1 proved in [2] is fundamental for the

theory of greedy shapers. It says that the output traffic R∗(t) of

a greedy shaper is equal to (R⊗ σ̄)(t), where R(t) represents

its input traffic. That is every greedy shaper possesses the

input-output representation in the form

R∗(t) = (R⊗ σ̄)(t). (5)

Denote now S∗ = R⊗σ̄. In [2] (in proof of lemma 1.5.1), it

was only mentioned that since σ̄ is a “good” function S∗ is a

solution of the set of inequalities (1). We prove this statement

here in detail; it is not obvious. To this end, we introduce S∗

in (1b) in place of S. It means that

R⊗ σ̄ ≤ (R ⊗ σ̄)⊗ σ̄ = R⊗ (σ̄ ⊗ σ̄) = R⊗ σ̄. (6)

So S∗ is really a solution in (1b). Note also that the associa-

tivity of the ⊗ operation and the fact that σ̄⊗ σ̄ = σ̄ [2] were

exploited on the right-hand side of (6).

A little bit more difficult task is to prove that S∗ is also a

solution of (1a). To begin, let us rewrite S∗ = R⊗ σ̄ as

S∗(t) = (R ⊗ σ̄)(t) = inf
0≤s≤t

{R(s) + σ̄(t− s)}. (7)

Then, note that the expression of which infimum is calculated

in (7) equals

R(t) + σ̄(0) = R(t) + 0 = R(t) (8)
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for s = t. In (8) we have applied the property of the sub-

additive closure of a function of possessing the zero value for

t = 0. So if the infimum of (7) would occur for s = t then

the inequality (1b) would be satisfied because we would have

R(t) ≤ R(t). Furthermore, if the infimum in (7) would occur

for some other s, different from t, it had to be equal or less

than R(t). The reverse inequality

inf
0≤s≤t

{R(s) + σ̄(t− s)} > R(t) (9)

would contradict the notion of infimum operation. So, con-

cluding, we really have

S∗ = R⊗ σ̄ ≤ R, (10)

and this means that S∗ satisfies also (1a).

In the lemma 1.5.1 underlying the proof of theorem 1.5.1

in [2], it is shown that the solution S∗ = R ⊗ σ̄ is maximal.

That is any other solution, say S
′

, must satisfy the following

inequality

S
′

≤ S∗ = R⊗ σ̄. (11)

The proof of (11) given in [2] needs also some refinement.

We present it in what follows below, starting with

S
′

≤ R, (12)

which is true because, after our assumption, S
′

is the solution

of the system of inequalities (1), in particular of (1a).

Adding σ̄(t− s) on both sides of (12) gives

S
′

(s) + σ̄(t− s) ≤ R(s) + σ̄(t− s) (13)

for all s and t. Therefore, (13) will be also true when the

infimum operation is applied on the right-hand side of (13).

That is

S
′

(si) + σ̄(t− si) ≤ (R ⊗ σ̄)(t) (14)

holds, where si means the value of s for which the infimum of

R(s)+ σ̄(t− s) occurs. Obviously, according to the definition

of infimum operation, we have

(S
′

⊗ σ̄)(t) ≤ S
′

(si) + σ̄(t− si). (15)

Applying the result (15) in (14) gives finally

S
′

⊗ σ̄ ≤ R ⊗ σ̄. (16)

Now we recall the fact that S
′

satisfies also (1b). That is we

can write

S
′

≤ S
′

⊗ σ̄. (17)

Using then (17) in (16), we get

S
′

≤ R⊗ σ̄ = S∗. (18)

and (18) is identical with (11). That is any other solution of

(1) different from S∗ satisfies (11).

We remark now that the fact of having by the greedy shaper

the input-output representation in the form given by (5) can

be also used in formulation of an equivalent definition of

the greedy shaper. So, we can define it as such a shaper of

which output response is the maximal solution to the set of

inequalities (1) determining its behaviour. In other words, this

can be formulated in a more formal form by the following

theorem.

Theorem 2: A traffic shaper is a greedy shaper if and only

if its output traffic R∗ is related to its input traffic by

R∗ = R⊗ σ̄,

with σ̄ meaning the sub-additive closure function of its shaping

curve σ.

Proof: We start with the necessary condition first, and

remark that, in fact, the theorem 1.5.1 in [2] is its proof. Really,

if this was not the case, we would have R∗(t) 6= S∗(t). Let us

now check whether it would be possible. Certainly, R∗(t) ≤
S∗(t) would be satisfied because R∗(t) had to fulfill the set of

inequalities (1) as a shaper. However, the assumption R∗(t) 6=
S∗(t) for all or for some times t could not hold because then

this shaper would not release bits from the buffer as early as

possible. So, therefore, it would not be a greedy shaper.

Now we prove that R∗ = R ⊗ σ̄ is the sufficient condition

of being a greedy shaper. To this end, observe first that S∗ is

maximal, that is the best solution for a traffic shaper described

by (1). And whence, it describes behaviour of a shaper that

sends out bits from its buffer as early as only possible. So it

describes a greedy shaper, and this ends the proof.

It is very important for researchers to understand all the-

oretical basis of network calculus. In [3] Borys et al. have

discussed and explained another complicated terms and state-

ments in the area of the greedy shapers and some traffic

metrics.

IV. SERVICE CURVE ILLUSTRATION

This section illustrates properties of the service curve in the

time domain on two examples of simple teletraffic networks,

possessing peak-rate or rate-latency service curve. We are

presenting detailed calculations of a network output traffic for

different rates of service curve, and then we are summarizing

the results in figures. All the main outcomes are verified

experimentally.

A. Systems Possessing Peak-Rate Type Service Curve

Consider a linear time-invariant causal teletraffic system

(network). Such a system has an input-output representation

in the form of so-called infimum convolution

y(t) = (β ⊗ x)(t) = inf
0≤τ≤t

{β(τ) + x(t− τ)},

β(τ) ≡ 0 for τ < 0 (19)

where inf means the mathematical operation of taking in-

fimum value. Moreover, y(t) and x(t) in (19), being the

functions of time t, are the cumulative output and input traffics,

respectively, in the system. The cumulative input or output

traffic stands here for the sum of bits (packets) arrived at the

input or output, respectively, in the period from 0 to t. The

function β(τ) is a service curve of a given teletraffic system.

The simplest service curve is the peak-rate function [2]

given by

β(t) =

{

rt if t > 0
0 otherwise

(20)



282 A. BORYS, M. ALEKSIEWICZ, D. RYBARCZYK, K. WASIELEWSKA

where r is a constant (independent of time) and means the

rate.

Consider now a system possessing the service curve of the

form (20) with the input traffic applied to it described by a

similar function, that is

x(t) =

{

Rt if t > 0
0 otherwise

(21)

where R means the rate of the transmitted traffic. We shall

consider the following values of the rate r in β(t) given by

(20)

r = r1 < R ⇒ (r1 −R) < 0,

r = r2 = R ⇒ (r2 −R) = 0,

r = r3 > R ⇒ (r3 −R) > 0.

(22a)

(22b)

(22c)

Moreover, we denote here β1 for r1, β2 for r2, and β3 for

r3, accordingly. Using now (20-22c) in (19) for i =1,2,3 we

get

y(t) = inf
0≤τ≤t

{(ri −R)τ +Rt}. (23)

Observe that Rt in the inner expression in the operation inf

in (23) is constant for a given time t. Taking into account the

results given on the right-hand sides of (22a-22c), we obtain

y(t) =











y1(t) = r1t

y2(t) = Rt = r2t

y3(t) = Rt

(24a)

(24b)

(24c)

The system output traffic given by (24a-24c) is visualized in

Fig. 1.

Fig. 1. Illustration of the output traffic of a teletraffic system possessing a
peak-rate type service curve for three characteristic values of the rate ri.

Observe from Fig. 1 that the whole input traffic goes through

a system in the cases 2 and 3 without any delay and backlog.

In opposite to this, in the case 1, the too small value of r1
causes the delay and backlog of the transmitted data increasing

to infinity.

B. Systems Possessing Rate-Latency Type Service Curve

The second simple and most typical service curve occurring

in teletraffic systems is the rate-latency function [2] given by

βT (t) = r[t− T ]+ =

{

r(t− T ) if t > T

0 otherwise
(25)

where r means the rate and T the delay (both independent of

time). Moreover, the notation [x]+ denotes max of {x, 0}.

Consider now a system possessing the service curve of the

form (25) with the input traffic applied to it which is given,

similarly as before, by a function (21). We shall consider

also in the case of the rate-latency service curve the three

characteristic values of the rate r given by (22a-22c). For these

values, we shall denote βT1 for r1, βT2 for r2, βT3 for r3,

accordingly.

Introducing (21) and (25) into (19) gives

y(t) = inf
0≤τ≤t

{

ri[τ − T ]+ +R(t− τ)
}

. (26)

The infimum convolution is cumulative [2], therefore, we can

rewrite (26) in an equivalent form as

y(t) = inf
0≤τ≤t

{

ri[t− T − τ ]+ +Rτ
}

. (27)

In our further analysis, we shall use the formula (27) and

consider in it the times t ≤ T first. This allows us to write

t− T − τ ≤ 0 for τ ≥ 0, what applied in (27) gives

y(t) = inf
0≤τ≤t

{0 +Rτ} = R · 0 = 0. (28)

Next we consider the times t > T , that are the ones for which

t− T > 0 holds. We must consider two cases: t− T − τ ≤ 0
and t − T − τ > 0. In the first case, we get the possible

change of τ restricted to t − T ≤ τ ≤ t. In the second

case, we obtain the change of τ restricted to 0 ≤ τ ≤
t − T . Further, note that the sum of these sets is identical

with the set {τ : 0 ≤ τ ≤ t}, that is {τ : 0 ≤ τ ≤ t− T } ∪
{τ : t− T ≤ τ ≤ t} = {τ : 0 ≤ τ ≤ t}. This allows us to

apply, in what follows, the following formula

inf
S=S1∪S2

{·} = inf
2

{

inf
S1

{·}, inf
S2

{·}

}

, (29)

where the set S is a sum of subsets S1 and S2, and number 2
under the second inf symbol in (29) means taking infimum

of a set consisting of two elements.

Consider now the case (22a) in (27) for times t > T . We

get then

inf
0≤τ<t−T

{r1(t− T − τ) +Rτ} =

inf
0≤τ<t−T

{(R− r1)τ + r1(t− T )} = r1(t− T )
(30)

because R− r1 > 0, and

inf
t−T≤τ≤t

{0 +Rτ} = R(t− T ). (31)

Applying next (29) with the results (30) and (31) gives

y1(t) = inf
0≤τ≤t

{

r1[t− T − τ ]+ +Rτ
}

=

inf
2
{r1(t− T ), R(t− T )} = r1(t− T )

(32)

because r1 < R.

Consider now the case (22b) in (27) for the times t > T .

We get then

inf
0≤τ<t−T

{r2(t− T − τ) +Rτ} =

inf
0≤τ<t−T

{0 · τ + r2(t− T )} = r2(t− T )
(33)
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because R− r2 = 0, and

inf
t−T≤τ≤t

{0 +Rτ} = R(t− T ). (34)

Applying next (29) with the results (33) and (34) gives

y2(t) = inf
0≤τ<t

{

r2[t− T − τ ]+ +Rτ
}

=

inf
2
{r2(t− T ), R(t− T )} = r2(t− T ) = R(t− T )

(35)

because r2 = R.

Consider now the case (22c) in (27) for the times t > T .

We get then

inf
0≤τ<t−T

{r3(t− T − τ) +Rτ} =

inf
0≤τ<t−T

{r3(t− T ) + (R− r3)τ} = R(t− T )
(36)

because R− r3 < 0, and

inf
t−T≤τ≤t

{0 +Rτ} = R(t− T ). (37)

Applying next (29) with the results (36) and (37) gives

y3(t) = inf
0≤τ≤t

{

r3[t− T − τ ]+ +Rτ
}

=

inf
2
{R(t− T ), R(t− T )} = R(t− T ).

(38)

The system output traffic given by (28) with (32), or with

(35), or with (38) is visualized in Fig. 2.

Fig. 2. Illustration of the output traffic of a teletraffic system possessing a
rate-latency type service curve for three characteristic values of the rate ri.

Observe from Fig. 2 that the delay and backlog are constant,

that is they do not change with time, in the cases 2 and 3. In

opposite to this, in the case 1, as before, the too small value

of r1 causes the increase of the delay and backlog of the

transmitted data going to infinity with the time increase.

C. Measurement-Based Service Curve Estimation Scheme Ex-

ploiting Deconvolution

The deconvolution operation for input and output functions,

defined as

(y ⊘ x)(t) = sup
τ≥0

{y(t+ τ)− x(τ)}, (39)

can be used in a measurement-based estimation of the system

service curve. More precisely, it has been proved in [5] that

for linear, causal, and time-invariant teletraffic systems the

calculated function

β̃(t) = sup
τ≥0

{y(t+ τ)− x(τ)} (40)

is a lower bound of the service curve β(t) of the system for

which y(t) = (β ⊗ x)(t) holds. That is for this system, we

have

β̃(t) ≤ β(t). (41)

Moreover, it has been also shown in [5] that β(t) given by

(40) with y(t+ τ) and x(t) representing the measured values

of the cumulative output and input traffic of the system for

the corresponding times in the best possible estimate of β(t)
which can be obtained from measurements.

The method of estimation of the service curve as outlined

above, the calculation scheme and estimation algorithm using

(40) have been chosen in this paper.

Choosing the estimation method described shortly above,

we were aware that it was not ideal, and has some dis-

advantages. Some of them have been already reported in

[5], however, one important has been omitted. It regards the

following: there are times t, ranging from 0 to some t0, for

which y(t+τ) < x(τ) for all τ ’s, giving sup
τ≥0

{·} < 0. Because

the service curve must fulfill β(t) ≥ 0, it is reasonable to

require that β̃(t) does not assume negative values. So, in the

algorithm, every time, when we get sup
τ≥0

{·} < 0, we should

set β̃(t) = 0. We must remember this.

D. Practical Verification

To verify our observations made with regard to the service

curves of the peak-rate and rate-latency types, which enable

better understanding the notion of the service curve used for

teletraffic systems, we carried out measurements of the input

and output traffic in a measuring setup shown in Fig. 3.

Fig. 3. A scheme of a measuring setup used.

The measuring setup of Fig. 3 works in the following way:

the sending host is connected to the router via the switch

working in accordance with the standard 1000base-T, and

sends the datagrams UDP. The router registers the arrival times

of datagrams (interface eth1), and afterwards sends them to

the receiving host through the interface eth2. Switch on the

right-hand side of Fig. 3, working in accordance with the

forced standard 10base-T. The data sent by this switch to

the receiving host are sent at the same time to the interface

eth3 too. In the interface eth3, the times of their arrivals are

registered, and they are identical with the arrivals times of the

above data at the interface eth1 at the receiving host. So, in

this time measuring scheme used here, both the arrival and

departure times are measured on the same system element

(router). Thereby, we avoid the possible errors which would

occur as a result of lack of time synchronization between the

different hosts.
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The data have been sent in the measuring setup of Fig. 3

in two series:

1) with the rate 1050 dat(datagrams)/s, each datagram

consisting of 1120 B (what gives 9392 bits, inclusive

96 bits of interframe period), in consequence giving the

following rate in bit/s: 9861600 bit/s;

2) with the rate twice of that from point 1, that is 19723200

bit/s.

Note that in point 1 above the data rate was a little bit less than

the maximal rate allowed by connection router eth2-switch-

eth1 of the receiving host in Fig. 3 equal to 10 Mbit/s. But, in

point 2, the data rate was greater than the maximal rate allowed

by the connection router eth2-switch-eth1 of the receiving host

in Fig. 3. The data from the two series of measurements carried

Fig. 4. The cumulative input and output traffic, and the estimated service
curve in the case 1.

out have been gathered in memory and processed later, using

the algorithm of the service curve estimation described in

subsection C. The results of these calculations are visualized

in Figs. 4, and 5, for the corresponding cases listed in points

1, and 2 above.

Fig. 5. The cumulative input and output traffic, and the estimated service
curve in the case 2.

Comparison of the curves shown in Figs. 4, and 5 with the

theoretical ones presented in subsections A and B leads to

the conclusion that the measured curves look like similar as

predicted by the theory. More results of experiments can be

found in [4].

V. CONCLUSION

Good understanding of network calculus theory is very im-

portant for use of this method by network designers. In this pa-

per, we have reviewed some of its fundamentals. Specifically,

we have discussed in detail the definition of a greedy shaper,

and refined it by completing it with a new theorem, being an

extended version of the existing one. In the second part of the

paper, we have presented very illustrative examples of network

service curve calculations and measurements carried out on a

simple teletraffic system. We have analysed and compared the

results achieved, specifically concentrating on their agreement

with the theory, and concentrating on better understanding of

the notion of service curve, too.
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