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Overview of Fading Channel Modeling
Krystyna M. Noga and Beata Pałczyńska

Abstract—VisSim and LabVIEW based approaches are pro-
posed and implemented to demonstrate fading in the commu-
nication systems. The introduction to fading, models for flat
fading like Rayleigh, Weibull, Nakagami-m and the results of
simulations are presented.
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I. INTRODUCTION

THE CHANNEL CHARACTERIZATION in mobile com-

munication systems is an important and fast growing

part of wireless communication. It plays a main role in the

transmission of information through a propagation medium

from the transmitter to the receiver. The propagation path

between the transmitter and receiver can vary from simple

line-one sight to one that is severely affected by buildings,

mountains and trees. Radio channels are extremely random

and do not offer easy analysis. Modeling radio channels has

been one of the most difficult parts of mobile radio system

design. It is typically done using statistical analysis. Without

knowledge of channel models, a wireless system could never

be developed. This knowledge is very important for designing

radio communication systems. The mobile radio propagation

channel introduces fundamental limitations to the performance

of any wireless communication systems. In digital communi-

cation theory the frequently assumed model for a transmission

channel is the additive white Gaussian noise (AWGN) channel.

However, for many communication systems the AWGN isn’t

an adequate model. A more precise and complicated channel

model should be used. In practice, the fading channel model

is frequently applied. Typical examples of such channels are

the Rayleigh, Nakagami-m , Rice channels [1]–[4]. They are

combined by different researchers in order to form a model

for describing a particular channel.

In this paper, VisSim and LabVIEW based approaches are

proposed and implemented to demonstrate the concept of

fading. Models for Rayleigh, Weibull, Nakagami-m fading are

presented and simulated.

II. FADING IN A WIRELESS ENVIRONMENT

Radio waves propagate from a transmitting antenna, and

travel through the space, undergoing reflections, absorption,

refraction, scattering and diffraction. The transmitted signal

arrives at the receiver via several paths with different time

delays creating a multi-path situation. At the receiver, these

multipath waves with randomly distributed envelopes and
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phases combine to give a resultant signal that fluctuates in

time and space. The mobile radio channel is characterized by

two types of fading. The short-term fluctuation in the signal

envelope, caused by the local multipath, is called a small-scale

fading. Such a situation is observed over distances of about

half of a wavelength. The term small-scale fading denotes

rapid variations of the envelope of a received signal. The

second type of fading is called a large-scale fading. The term

large-scale fading denotes the variations of the mean envelope

or mean power of a received signal. It is assumed to be a

slow process and is usually modeled as having lognormal

statistics. For example, the slow variation of the mean signal

level for outdoor and indoor environments can be described

by a lognormal statistics. This paper will be limited to the flat

multipath fading, as multi-path in the radio channel creates

small-scale fading effects. Usually the fading envelope of

the signal is modeled by a Rice, Rayleigh and Nakagami-

m distribution [1]–[5]. The Rice and Rayleigh distributions

describe multipath effects and Nakagami-m can replace them

both. Analyses based on Rayleigh or Rice fading is sufficient

to model the nature of many different mobile channels. But a

lot of recent publications, i.e. [3], [4], [6], [7], have suggested

the use of Nakagami–m, Weibull fading models to provide a

generalized description of fading in wireless systems.

III. GENERATION OF UNCORRELATED FADING

The random fluctuation in the received signal due to fading

can be modeled by treating C[τ(t), t] as a random process in

t, where τ is the propagation delay. The multipath channel can

be described by a time-varying, complex, lowpass-equivalent

impulse response C[τ(t), t]. Statistics of the received signal

in a mobile radio environment are obtained by using the

scattering model and the assumption of large number of

randomly phased components. Since the components of the

multipath signal arise from a large number of reflections or

scattering from rough or surface, according to the central limit

theorem, C[τ(t), t] can be modeled as a complex Gaussian

realization. The probability density function of the real and

imaginary parts, i. e. the in-phase and quadrature components,

are Gaussian. If C[τ(t), t] has a mean equal to zero, then the

envelope R(t) = |C[τ(t), t]|has a Rayleigh probability density

function (pdf) [3], [4].

pr(r) =
r

σ2
exp

(

− r2

2σ2

)

, r ≥ 0 (1)

where: 2σ2 = E(R2) and E(∗) denotes statistical averaging.

There are a number of methods used to generate different

(non-uniform) variables. Each method is applicable only to a

subset of distribution. Also, for a particular distribution, one

method may be more efficient than the others [8].
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a) b)

Fig. 1. The Rayleigh fading process – the envelope (a) and its histogram (b).

The generation of Rayleigh fading envelope

R =
√
X2 + Y 2 follows from the basic fact that the

envelope of a Gaussian process with independent quadrature

Y and in-phase X components, with mean value µ = 0 and

variance σ2 = 1, has a Rayleigh distribution. Moreover, the

phase θ = arctg(Y/X) has a uniform pdf. This fact can

be used to generate two samples of a Gaussian variable by

transforming a pair of Rayleigh and uniform variables. If U1

and U2 are two independent variables uniformly distributed

in the unit interval, i.e. U1 := rnd(1) and U2 := rnd(1)
where rnd(x) returns a uniformly distributed random number

between 0 and x, then

X = µ+ σ
√

−2 lnu1 cos(2πu2)

Y = µ+ σ
√

−2 lnu1 sin(2πu2) (2)

are independent Gaussian random variables. This algorithm

is known as the Box-Muller method [1], [8]. There is some

concern that if this method is used with mean value µ 6= 0
from an Linear-Congruential Generators (LCG), the resulting

X,Y may be correlated [8].

Another method for generating random variables is the

convolution technique. This technique can be used if the

random variable X can be expressed as a sum of n random

variables Zi

X =

n
∑

i=1

Zi (3)

If X is a sum of two random variables, then the pdf

of X can be obtained analytically by a convolution of the

pdf’s of Z1 and Z2. This is why the technique is called

convolution, although no convolution is required in random-

number generation. Using this method and, taking into account

that the sum of large number of uniform U [0, 1] variables has

a normal distribution, for normal variable with mean value µ
and variance σ2 it can be written [3]

X = µ+ σ

(

n
∑

i=1

ui

)

− n

2
√

n
12

(4)

This method is also known as the sum of 12 [1]. The

value n = 12 represent some compromise between speed and

accuracy. It should be noted that whereas a Gaussian random

variable has value ranging from −∞ to +∞, formula (4)

produced value of normal variable in the interval [−6,+6].

Fig. 2. The generator of the Weibull envelope.

It should be emphasized that in VisSim and LabView

environments used for simulation, Gaussian signal generators

are available.

Figure 1 shows the Rayleigh envelope waveform and its

histogram. The model of fading is simulated using VisSim

environment, created by the Regents of the University of

California.

Another distribution used to model fading in a multipath

environment is the Weibull distribution [3], [4], [6], [8]. This

distribution seems to exhibit good fit to the experimental

fading channel measurements, for indoor and outdoor envi-

ronments. The probability density function of the envelope R
is given by

pr(r) =
αrα−1

aα
exp

(

− r

a

)α

; r ≥ 0, α ≥ 0, a > 0

(5)

where a is a scale parameter and α is a shape parameter.

To generate Weibull variables, the inverse transformation

technique can be used [8]. We should generate the uniform

random variable U [0, 1] and then return a(lnu)1/α as Weibull

variable with parameters a, α.

The Weibull envelope can also be expressed as a function

of the in-phase and quadrature components, so that

R = (X2 + Y 2)1/α (6)

where X and Y are independent Gaussian processes with

mean value equal to zero and E(X2) = E(Y 2) = σ2. In

a) b)

Fig. 3. The envelope and the histogram of Weibull fading process for σ2
=

0.5 and a) α = 1, b) α = 3.
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a) b)

Fig. 4. The Nakagami–m fading envelope (a) and its histogram (b) for
m = 2.

this case the pdf of the envelope R can be written as

pr(r) =
αrα−1

r0
exp

(

− rα

r0

)

; r ≥ 0, α ≥ 0 (7)

where r0 = E(Rα) = |E(R2)/Γ(1 + 2/α)|α/2 and Γ(m)
is a gamma function [9]. In a special case, when α = 2
equation (7) describes the Rayleigh distribution and for α = 1,

it becomes an exponential distribution. If α = 3.602, then the

Weibull distribution is close to a normal [8]. Figure 2 shows

a block which generates the Weibull fading envelope. Figure

3 shows a waveform and a histogram of the Weibull envelope

respectively, using VisSim environment. Another generator of

Weibull distributed random variables, in Mathcad environment,

has been presented in [10].

One of the most versatile fading models is described by

the Nakagami-m distribution. It has a greater flexibility and

accuracy in matching some experimental data than Rayleigh,

log-normal, Weibull or Rician distributions. The Nakagami-m
fading distribution was first used for modeling ionospheric

and troposheric fast fading channels and has been widely

adopted for multipath modeling in wireless communications.

The Nakagami-m distribution gave the best fit to some urban

multi-path data. This distribution is a purely empirical model,

not phenomenological. The probability density function of

Nakagami-m distributed random variables R is [4]

pr(r) =
2

Γ(m)

(m

Ω

)m

r2m−1 exp
(

− m

Ω
r2
)

(8)

where Ω = E(R2) and the parameter m denotes the reciprocal

value of the variance of R2 normalized to Ω2, i.e.

m = Ω2/E(R2 − Ω2 ≥ 1/2

This is called central x2 distribution with m degrees of

freedom. The Nakagami-m distribution is often used to model

multipath fading because it can model fading conditions that

are either more or less severe than Rayleigh fading. When

m = 1, the Nakagami-m distribution becomes the Rayleigh

distribution. When m = 0.5, it becomes a one-sided Gaussian

distribution, and when m = ∞, it becomes a no fading

channel. For integer m, we can write the envelope of received

signal as

R =

√

√

√

√

m
∑

i=1

X2
i + Y 2

i (9)

where Xi and Yi are independent Gaussian processes with the

mean value equal to zero and E(X2
i ) = E(Y 2

i ) = σ2. Figure

4 shows the Nakagami-m fading envelope and its histogram.

Another model of Rayleigh fading are Jake’s and modi-

fied Jake’s models [3], [11], that are based on summing of

sinusoids. The Jake’s model produces a signal which has

the Doppler power spectrum. It is a deterministic method,

which simulates time-correlated Rayleigh fading waveforms.

The model assumes that a signal propagates through n equal-

strength paths and arrives at a moving receiver with uniformly

distributed arrival angles. Therefore this signal experiences a

Doppler shift.

The fading channel simulator, created using this model, was

built in LabVIEW environment. Its front panel is shown in

Figure 5. It contains several functional blocks for specification

of simulation, determination of fading channel model and

visualization of the results (waveform graphs, output data).

The presented Virtual Instrument (VI) generates the Rayleigh

and Weibull distributions fading profiles. The user specifies

input data like fading variance and shape parameter for Weibull

fading. The VI applies a user-defined profile to fade the com-

plex baseband modulated waveform. The simulator performs

QAM modulation. The user has to specify the QAM system

parameters, i.e. the M -ary number of modulation, which is the

number of distinct states that represent symbols in the complex

baseband modulated waveform, number of message symbols

and type of pulse shaping filters applied by the QAM. Simula-

tions can be carried out for determined values of a symbol rate

and the specific Doppler spread. Results of the simulation are

shown in form of waveform graphs. The VIs, contained in the

area of graphs, show a fading envelope, histograms of a fading

envelope and a instantaneous phase, In-phase and Quadrature-

phase (IQ) profile, waveforms of real and imaginary parts of

faded signal, constellations of transmitter and receiver, power

spectral densities of transmitter, receiver and faded profile,

instantaneous power for both transmitter and receiver.

IV. GENERATION OF CORRELATED RANDOM VARIABLE

The time-varying nature of the channel C[τ(t), t] is modeled

as a wide-sense stationary random process in t with an

autocorrelation function [1]

Rc(τ1, τ2,∆t) = E⌊C∗(τ1, t)C(τ2, t+∆t)⌋ (10)

where C∗(τ1, t) denotes the conjugate value.

A correlated Gaussian variable can be generated from an

uncorrelated Gaussian variable using a linear transformation or

filtering [1], [12], [13]. The coefficient of the linear transfor-

mation can be obtained from the specified correlation function

of the output.

The correlated complex Gaussian variables W with a cor-

responding normalized covariance matrix given by

Kg =











1 ρg1,2 . . . ρg1,N
ρg2,1 1 . . . ρg2,N

... . . .
ρgN,1 ρgN,2 . . . 1











(11)
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Fig. 5. The simulator of fading channel applied a QAM signal – the front panel of virtual instrument in LabVIEW.

can be generated from uncorrelated complex Gaussian vari-

ables V by employing Cholesky decomposition.

The cross-correlation coefficient ρgi,j between the complex

Gaussian samples vi and vj is given by

ρ2gi,j =
u2
1 + u2

2

u2
(12)

where E(X2
i ) = E(Y 2

i ) = E(X2
j ) = E(Y 2

j ) = u,

E(XiXj) = E(YiYj) = u1, E(XiYj) = −E(YiXj) = u2

and Yi, Xi are the quadrature and in-phase components of the

complex Gaussian sample respectively.

The procedure for generating the N correlated Gaussian

samples is summarized as follows [12], [13]:

• Determine the Cholesky matrix S corresponding to Kg

(the colouring matrix S is the lower triangular matrix

such that SST = Kg, where ST represents the transpose

of S).

• Generate N uncorrelated complex Gaussian vector

V = {v1, v2, . . . , vN} each with variance σ2
g .

• Calculate correlated complex Gaussian vector using

W = SV .

Using the desired normalized covariance matrix of the

Rayleigh envelopes expressed as

Kr =











1 ρr1,2 . . . ρr1,N
ρr2,1 1 . . . ρr2,N

... . . .
ρrN,1 ρrN,2 . . . 1











(13)

where ρri,j is the cross-correlation coefficient between the

Rayleigh samples, it is possible to determine the corresponding

correlation matrix of the complex Gaussian samples.

The exact analytical relationship between ρri,j and ρgi,j is

given by [12], [13]

ρri,j =
(1 + |ρgi,j |)Ei

(

2
√

|ρgi,j |

1+|ρgi,j |
, π
2

)

− π
2

2− π
2

(14)

where Ei(η,
π
2
) denotes the complete elliptic integral of the

second kind with modulus η [12].

Equality (14) can be calculated by the use of numerical

methods, namely polynomial approximation (to evaluate the

elliptical integrals). In this way, all elements of Kr can be

mapped to corresponding elements in Kg. The N envelopes

of the Gaussian samples in W correspond to Rayleigh ran-

dom variables (R′
1, R

′
2, . . . , R

′
N ) with normalized covariance

matrix Kr and equal variance

σ2
r =

(

2− π

2

)1

2
σ2
g (15)

The desired Rayleigh envelopes (R1, R2, . . . , RN ) are created

from the samples (R′
1, R

′
2, . . . , R

′
N ) by evaluating Ri = AiR

′
i

where Ai = σri

σr
. The correlated Rayleigh random variables

generated via the presented method can be used to generate

the multivariate Weibull random variables with arbitrary cor-

relation matrix [7]. The desired Weibull correlation coefficient

matrix is expressed as

Kw =











1 ρw1,2 . . . ρw1,N

ρw2,1 1 . . . ρw2,N

... . . .
ρwN,1 ρwN,2 . . . 1











(16)

Therefore, the correlation coefficient of any pair of Rayleigh

random variables in terms of the desired Weibull coefficient

is [7]

ρri,j =
π

4− π

[

(1 − ρwi,j)
2F
([3

2
,
3

2

]

, 1, ρwi,j

)

− 1
]

(17)
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Fig. 6. The generator of correlated Weibull fading envelopes – the front panel of virtual instrument in LabVIEW.

where F (a, d, z) is the ordinary Gaussian hypergeometric

function [9].

A simpler approximate relationship between ρri,j and ρwi,j

can be obtained using a least-squares polynomial fit to (16),

expressed as

ρri,j ∼= 0.10(ρwi,j)
2 + 0.89ρwi,j (18)

The Weibull random variables are obtained from the corre-

lated Rayleigh random variables with desired fading parameter

α using the transformation W = R2/α.

The front panel of the virtual fading generator, obtained

using above procedures is shown in Fig. 6. This VI gener-

ates the correlated Rayleigh and Weibull random variables,

applying the Monte Carlo Simulation (MCS). The simulation

was carried out for the arbitrary Weibull correlation coefficient

matrix specified by

Kw =









1 0.795 0.604 0.372
0.795 1 0.795 0.604
0.604 0.795 1 0.795
0.372 0.604 0.795 1









(19)

This correlation matrix is quite similar to that obtained from

empirical data [2]. The fading parameter vector is given as

α = [4, 3, 5, 2, 1.3] and r0 = [4, 3, 2, 1]. The Figure 7 presents

a) b)

Fig. 7. The Weibull fading envelope (a) and its histogram (b) for α = 4.

the correlated Weibull fading envelope and its histogram for

the chosen value of fading parameters.

V. CONCLUSION

Radio propagation characterization and modeling are very

important for the communications engineers. Without proper

knowledge of channel models, a wireless system would never

be developed. The mobile radio propagation channel intro-

duces fundamental limitations of the performance of any

wireless communication systems.

In this paper an overview of modeling the fading in com-

munication channel is presented. Especially, a simple and

efficient procedure for the generation of uncorrelated and

correlated Rayleigh, Weibull, Nakagami-m fading channels

are described. VisSim and LabVIEW software are simple and

straightforward tools used for investigation of the concept of

fading. Mathematical models make it easier to understand

the relationships between the different parameters involved in

fading process. The presented results can be applied to analyze

the performance of digital transmission over fading channels.
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[5] K. M. Noga and B. Pałczyńska, “Simulation of fading in communication
channel,” Polish Journal of Environmental Studies, vol. 16, no. 4B, pp.
146–150, 2007.

[6] J. Cheng, C. Tellambura, and N. C. Beaulieu, “Performance of digital
linear modulations on weibull slow-fading channels,” IEEE Transactions

on Communications, vol. 52, no. 8, pp. 1265–1268, August 2004.

[7] D. W. Matolak, I. Sen, and W. Xiong, “Generation of multivariate
Weibull random variates,” IEEE Transactions on Communications,
vol. 2, no. 4, pp. 523–527, 2008.



344 K. M. NOGA, B. PAŁCZYŃSKA
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