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DYNAMIC RESPONSE CONTROL OF THREE-LAYERED ANNULAR
PLATE DUE TO VARIOUS PARAMETRES OF

ELECTRORHEOLOGICAL CORE

The paper presents dynamic responses of annular plate composed of three layers.
The middle layer of the plate has electrorheological properties expressed by the
Bingham body model. The plate is loaded in the plane of facings with time-dependent
forces. The electrorheological effect is observed in the area of supercritical plate
behaviour. The influence of both material properties and geometrical dimensions of
the core on plate behaviour is examined. The problem is solved analytically and
numerically using the orthogonalization method and the finite difference method.
Comparison of the results obtained using the finite difference and the finite element
methods for a plate in critical state is shown. The numerical calculations are carried
out for axisymmetric and asymmetric plate modes. The presented diagrams show
the plate reaction to the changes in values of plate parameters and indicate that the
supercritical control of plate work is possible.

Main notations

ri, ro – inner and outer radii of the annular plate
r, θ, z – cylindrical coordinates
r, ρ – plate radius and dimensionless radius
u, v – displacements in radial and circumferential directions, respec-

tively
δ, γ, δ̄, γ̄ – differences of radial and circumferential displacements of the

points in middle surfaces of facings and dimensionless differ-
ences, respectively

h1 = h3 = h′, h2 – equal thickness of facings and core thickness, respectively
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h = h1 + h2 + h3 – total thickness of plate
t, t∗ – time and dimensionless time
p = f (t) – compressive stress
s – rate of loading growth
pcr , pcrdyn – critical, static and dynamic stress
m – number of circumferential waves corresponding to the form of

plate buckling,
τrz2 , τθz2 – core shear stresses in radial and circumferential directions, re-

spectively
τr max, τθmax – core static yield stress in radial and circumferential directions,

respectively
γ̇rz2 , γ̇θz2 – core shear rate in radial and circumferential directions, respec-

tively
w, wd , wo – total, additional and preliminary plate deflection, respectively
ζ , ζ1, ζo – dimensionless total, additional and preliminary plate deflection
E, G, ν – Young’s and Kirchhoff’s moduli and Poisson’s ratio of the fac-

ings material, respectively
G2, η – core Kirchhoff’s modulus and viscosity constant
µ, µ2 – facing and core mass density, respectively
Qr , Qθ – radial and circumferential transverse resultant forces
σr , τrθ – radial and shear stress in facings
Φ, F – stress function and dimensionless stress function
ηo = f (ρ) – form of plate predeflection
tcr , wdcr , τcr ,
τcr max

– critical time, additional deflection, core shear stress and maxi-
mum shear stress determined at the moment of the loss of plate
stability

(),x – partial derivative

1. Introduction

The possibility of controlling the behaviour of construction element sub-
jected to dynamic loads is an important issue of expanding application range.
The problem of dynamic response of a smart structure is still the subject to
investigations. It is a complex task, which physical knowledge and ability to
effectively solve are still current issues. Creating a layered structure with the
electrorheological (ER) layer is one of many ways for controlling the ele-
ment response. The possibility of using the electrical field strength to change
electrorheological material properties from elastic solid body to rheological,
viscous suspension is a well known phenomenon. The basic physical model,
which describes the electrorheological effect also called the Winslow effect
[1] is the model of the Bingham body. The change in material properties
between an elastic body and the properties of a viscous fluid depended on
electrical field intensity takes place for a determined level of shear stress.
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The values of static shear stresses and viscosity constants express the physical
relation of the Bingham model.

The influence of changes in viscosity constant describing the properties
of rheological suspension of the Bingham model as the material of the plate
core on the plate behaviour has been evaluated in this paper. The supercritical
response of an annular plate composed of three layers symmetrically arranged
and loaded in the plane of facings has been specially highlighted. The pos-
sibility of controlling supercritical work of such a structure has inspired
the author to undertake a numerical analysis. The investigations of dynamic
behaviours of sandwich annular plates with ER fluid core are presented in
works the by Yeh [2, 3]. The effects of electric fields on the frequencies of
the sandwich annular plates with different thickness of ER layer and with
different radius ratio are shown in work [2]. Work [3] presents the instability
regions changed with various thickness of electrorheological plate layer. The
results show the possibility of active dynamic control. The parametric res-
onance problems of axisymmetric sandwich annular plate with an ER fluid
core are presented in work [4]. The stability and instability regions for plates
with different structure parameters, intensity of electric fields, thickness of
ER layer were analysed there. Also, in work [5] the effect of ER fluid on
the stability of a rectangular, sandwich plate is found. The ER materials
have rheological properties such as viscosity, plasticity and elasticity which
change with electric field. The authors noticed that the natural frequencies
of sandwich plate decrease with an increase in thickness of ER layer. The
control of the structural damping was confirmed. A rectangular elastic plate is
the subject of the analysis in work [6], too. It is an interesting investigation
where ER fluid with constraining layer don’t cover the plate. They are in
the form of a patch, whose dimensions and location change. The effects of
electric field intensity and ER patch parameters on frequency response and
modal loss factors are examined. The investigations of sandwich elements
with ER core presented in works [7, 8, 9] are worth attention. The problem
of sandwich plates with ER fluid core subjected to supersonic airflow is
analysed in [7]. A sandwich beam with ER core resting on Winkler’s elastic
foundation under harmonic axial loads and a laminated composite beam with
ER layer expressed by Bingham’s model are analysed in works [8] and [9],
respectively. Among other things, there was shown the significance of ER
layer, which affects damping properties of structures, increases the critical
loads and improves the dynamic stability. It was also noticed that the results
depend on the ratios between thicknesses of plate layers.

The authors of work [10] have noticed that the applications of ER ma-
terials have many limitations. In spite of them, the ER technology exists in
electronics, automatics, medicine, building engineering, nanotechnology and
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control systems. The main aims of application of ER materials are vibration
control and damping of structure response. The same applies to annular
layered plates which can be used, for example, in: mechanical and nuclear
engineering or aerospace industry.

In this work, the method of analytical and numerical solution to the
problem is presented. Many calculation results of plates with various struc-
ture geometry have been shown. The influence of geometrical dimensions of
electrorheological core layer on sensitivity of plate dynamic responses has
been examined. The obtained results indicate that the control of supercritical
plate work is possible. The structure exhibits high sensitivity to small value
fluctuations of plate material parameters and geometrical parameters. Some
observations were also presented in [11].

2. Problem formulation

The three-layered, annular plate is the subject of the consideration. The
plate structure is symmetrically arranged. It is composed of thin, elastic
facings and thin, middle layer with electrorheological properties treated as
the plate core. The core material is expressed by the physical relations of
the Bingham material (see, Eq. (2)). The plate is loaded on facings with the
stress uniformly distributed on perimeter, increasing in time according to the
linear formula:

p = st. (1)

The plate edges are slideably clamped. The scheme of the plate is presented
in Fig.1.

Fig. 1. Scheme of analysed plate
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As a criterion of the loss of the plate dynamic stability the criterion
presented in work [12] by Volmir was adopted. According to this criterion,
the loss of plate stability occurs at the moment of time, when the speed of
the plate point of maximum deflection reaches the first maximum value.

At the moment of the loss of plate stability, expressed by critical time
tcr , the change in core material behaviour reveals via switching from the
properties of elastic material to properties of electrorheological, Bingham
material. The approach to the problem enables the evaluation of the super-
critical behaviour of a electrorheological structure. The analyses are focused
on the influence of the geometry, particularly thickness of a plate core and the
values of rheological quantities (value of viscosity constant η – see, Eq.(2))
on the plate dynamic reactions. The second components in the equations of
the Bingham body (see, Eq.(2)) i.e. the shear stresses τr max, τθmax have been
accepted as equal to values of critical radial and circumferential stresses τcr
calculated at the moment of the loss of plate dynamic stability.

3. Problem solution

In analytical and numerical solution the classical theory of sandwich
plates with the broken line hypothesis [13] has been used. The distribution
of stresses into normal and shear loading the plate facings and the core has
been accepted, respectively. The proposed method of solution, which is based
on the solution to the dynamic deflection task of three-layered, annular plate
with elastic and viscoelastic core is presented in works [14,15].

The main steps of the solution to the discussed problem are the following:
– formulation of the dynamic equilibrium equations for each plate layer,
– description of the core deformation in radial and circumferential direc-

tions accepting the rule: preliminary and additional deflections are equal
for each plate layer,

– application of the linear physical relations of the Hooke’s law for fac-
ings and linear elastic and linear viscous flow relations expressed by the
Bingham body equation (2) of the plate core material. Physical relations
of the Bingham core material are expressed by equations [1,16]:

τrz2 = η · γ̇rz2 + τr max, τθz2 = η · γ̇θz2 + τθmax, (2)

– establishing the sectional forces and moments in facings using the equa-
tions of the nonlinear Kármán’s plate and formulation of the resultant,
transverse radial Qr and circumferential Qθ forces. The resultant forces
Qr , Qθ as the sums of the individual layer forces Qr1(2,3) , Qθ1(2,3) found
based upon the equilibrium equations have the following form:
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Qr = −k1wd,rrr − k1

r
wd,rr +

k1

r2 wd,r − k2

r2 wd,rθθ +
k1 + k2

r3 wd,θθ+

+G̃2(δ + H ′wd,r)
H ′

h2
+ τr maxH ′,

(3)

Qθ = −k1

r3 wd,θθθ − k1

r2 wd,θr − k2

r
wd,θrr + G̃2

(
γ + H ′

1
r
wd,θ

)
H ′

h2
+ τθmaxH ′

where:
H ′ = h′ + h2
k1 = 2D, k2 = 4Drθ + νk1 ,

D =
Eh′3

12(1 − ν2)
, Drθ =

Gh′3

12
− flexural rigidity of the outer layers,

G̃2 − quantity expressed as: G̃2 = η
∂

∂t
,
∂

∂t
– differential operator,

G̃2 = G2 − for the elastic core,
– formulation of the resultant membrane forces expressed by the introduced

stress function Φ,
– determination of the initial loading and boundary conditions and condi-

tions connected with the slideably clamped both inner and outer plate
edges:

w|t=0 = wo, w,t

∣∣∣
t=0 = 0, wd |t=0 = 0, wd,t

∣∣∣
t=0 = 0,

σr |r=ri(ro) = −p (t) d1(2), σr,t

∣∣∣r=ri(ro) = − (p (t)),t d1(2), τrθ |r=ri(ro)
= 0 (4)

w|r=ri(ro) = 0, w,r

∣∣∣
r=ri(ro)

= 0, δ = γ|r=ri(ro) = 0, δ,r
∣∣∣
r=ri(ro)

= 0

where:
d1, d2 – quantities, equalled to 0 or 1, determining the loading of the inner
or/and outer plate perimeter,
– determination of the basic differential equation expressing the deflections

of the analysed sandwich plate with ER core material:
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(5)
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where:
M = 2h′µ + h2µ2, Q̃r2, Q̃θ2 – transverse forces of ER core in radial and
circumferential direction, respectively.

In the solution, the following dimensionless quantities, expressions and
shape functions have been accepted [14,17]:

ζ =
w
h
, ζ1 =

wd

h
, ζo =

wo

h
, F =

Φ

Eh2 , ρ =
r
ro
,

δ̄ =
δ

h
, γ̄ =

γ

h
, t∗ = t · K7, K7 =

s
pcr

,
(6)

ζ1(ρ, θ, t) = X1(ρ, t) cos(mθ),

ζo(ρ, θ) = Xa(ρ) + Xb(ρ) cos(mθ),

Xa(ρ) = ξ1ηo(ρ), Xb(ρ) = ξ2ηo(ρ),
ηo(ρ) = ρ4 + A1ρ

2 + A2ρ
2 ln ρ + A3 ln ρ + A4,

(7)

ζ = ζ1 + ζo,

F(ρ, θ, t) = Fa(ρ, t) + Fb(ρ, t) cos(mθ) + Fc(ρ, t) cos(2mθ),

δ (ρ, θ, t) = δ(ρ, t) cos(mθ), γ (ρ, θ, t) = γ(ρ, t) sin(mθ), (8)

τr max (ρ, θ) = τr max(ρ) cos(mθ), τθmax (ρ, θ) = τθmax(ρ) sin(mθ)

where:
ξ1 , ξ2 – calibrating numbers,
Ai – quantities fulfilling the conditions of clamped edges by the function
η(ρ), i = 1, 2, 3, 4.

Using the orthogonalization method and the finite difference method after
several consecutive transformations and addition of some new equations to
calculate the quantities δ̄, γ̄ the form of the system of differential equations
expressing the deflections of the three-layered, annular plate with ER core
was obtained:

PU + Q + PLU̇ + QL + QE = KEÜ, (9)

MY(V,Z)Y(V,Z) = QY(V,Z), (10)

MY(V,Z)Ẏ(V̇, Ż) = Q̇Y(V,Z), (11)

MDLḊ = MDD + MUU + MULU̇ + MGG + MGLĠ + ER, (12)

MGGLG = MGGG + MGUU + MGULU̇ + MGDD + MGDLḊ + EΘ, (13)

where:
KE – expression, KE = K72WK5 WK8′,

WK5, WK8′ – expressions: WK5 =
h′

h
, WK8′ = roh2M,
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U, Y, V, Z, U̇, Ü,U, Ẏ, V̇, Ż – vectors of plate additional deflections and
components of the stress function,
Q,QL,QY,QV,QZ, Q̇Y, Q̇V, Q̇Z,D,G, Ḋ, Ġ – vectors of expressions com-
posed of plate model parameters,

QE – vector of elements expressed as:
H ′

h2h
WK5

(
m
ρi
τθmaxi +

1
ρi
τr maxi + τr max′i ρ

)

(i– discretization points),
ER, EΘ – vectors of elements expressed as: ER =

ro

h2hH ′
τr maxi ,

EΘ =
2roρi

h2
2h

τθmaxi , respectively,

MD,MG,MGG,MGD, ṀDL, ṀGL, ṀGGL, ṀGDL,MU, ṀU,MGU, ṀGUL−matri-
ces of elements composed of plate parameters,
MY,MV,MZ− matrices of elements composed of the plate radius, value of
the length of the interval in the finite difference method and number of
buckling mode m.

The system of Equations (9)-(13) was solved using the Runge-Kutta’s
integration method for the initial state of the plate.

Critical static stress pcr has been calculated solving the eigenproblem for
the problem of the disk state neglecting the inertial components and nonlinear
expressions [14, 15].

4. Plate model in Finite Element Method

The plate model called as a simplified model is built of axisymmetrical
elements. The scheme is presented in Fig. 2.

Fig. 2. Simplified model of plate

The facings are built of shell elements, but the core mesh is built
of solid elements. The grids of facings elements are tied with the grid
of core elements using the surface contact interaction. The calculations
were carried out at the Academic Computer Center CYFRONET-CRACOW
(KBN/SGI ORIGIN 2000/PŁódzka/030/1999) using the ABAQUS system.
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5. Numerical results

The exemplary results show the dynamic response of the plate loaded on
inner or outer edge. The subject of analyses are the plates, whose quotient of
inner radius to outer one is equal to: ρi = 0.4 or 0.5. The plate is loaded with
linear, quickly increasing stress (see, Eq.(1)). The rate of loading growth s
is equal to: s ≈ 4346 MPa/s and s ≈ 932 MPa/s for plates loaded on inner
or outer perimeter of facings, respectively. The plate facings made of steel
with parameters: Young’s modulus E = 2.1·105 MPa, Poisson’s ratio ν = 0.3,
have thickness equal to h′ = 0.001 m. The plate core material in elastic field
behaviour has a value of Kirchhoff’s modulus G2 equal to G2 = 2.5 MPa but
for rheological fluid properties the values of viscosity constants η are in range
of η = 1.7 Pa·s to η = 17000 Pa·s. The adopted value of the mass density
is equal to µ = 64 kg/m3. The core thickness is equal to: h2 = 0.001, 0.002,
0.003 m. The plate cases, for which the loss of dynamic stability occurs for
the minimal value of critical load, have been examined. It is observed for
axisymmetrical buckling form m = 0 of the plate loaded on inner edge and
for a circumferentially wavy form of the plate compressed on outer edge. One
can see the confirmation of these results in works [14, 15]. The examined
plate loaded on outer edge, whose geometry and material are determined by
the following parameters: inner radius ri = 0.2 m, outer radius ro = 0.5 m,
core thickness h2 = 0.002 m, Kirchhoff’s modulus G2 = 2.5 MPa, loses its
dynamic stability in the buckling form with m = 7 circumferential waves
for the minimal value of critical load pcrdyn. The distribution of values of
dynamic critical loads pcrdyn for several plate modes is presented in Table 1.

Table 1.
Critical dynamic loads pcrdyn and corresponding buckling modes mof plate compressed on outer

edge

buckling mode m 0 3 5 6 7 8 9 10
critical dynamic load

pcrdyn [MPa] 26.97 18.77 14.95 14.30 14.11 14.77 15.23 16.72

The cases of plates loaded on inner edge with different core thickness
h2 = 0.001, 0.002 and 0.003 m, in which the size of inner dimensionless
radius ρi is equal to ρi = 0.4 are shown in Figs. 3, 4, 5. Fig. 3b presents the
character of the plate behaviour for the value of Kirchhoff’s modulus of elastic
core equal to G2 = 2.5 MPa and additionally for G2 = 0.5 MPa and G2 = 5.0
MPa. The plate with core material parameter, in which Kirchhoff’s modulus
is equal to G2 = 2.5 MPa is subjected to the detailed analysis. The results
for ER core properties and the marked point of the loss of plate dynamic
stability are presented. The plate with value of viscosity constant above η(eta)
= 17 Pa·s behaves as the plate with elastic core with supercritical vibrations
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initiated by increasing load. The limitation of the supercritical plate dynamic
response is possible for electrorheological core parameters, whose value of
the viscosity constant is about η = 10 Pa·s (see, Fig. 3b). The decrease in
the core thickness to value of h2 = 0.001 m shows that for smaller values
of core viscosity constant (below the value of η = 10 Pa·s) the control of
the plate behaviour is possible. Figure 4 presents these observations. The
increase in core thickness to the value h2 =0.003 m causes that influence of
ER core properties on the plate response exists for higher values of viscosity
constant in the range of η = 20 Pa·s (see, Fig. 5). The results show that
significance of ER core thickness is important for the plates loaded on inner
edge. The controlling supercritical plate behaviour depends on both value of
rheological core parameters and core thickness.

Fig. 3. Time histories of deflection of plates with elastic and ER core (h2 = 0.002 m) loaded on
inner edge and with value of inner radius equal to ρi = 0.4: a) in full examined range, b) in range

of time t∗ = 0.2÷0.5 and for values of η(eta) =10÷17 Pa·s
The comparison of results presented in Fig. 3b for the plate with core

thickness h2 = 0.002 m and the value of plate inner radius ρi = 0.4 with
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Fig. 4. Time histories of deflection of plates with elastic and ER core (h2 = 0.001 m) loaded on

inner edge and with value of inner radius equal to ρi = 0.4

Fig. 5. Time histories of deflection of plates with elastic and ER core (h2 = 0.003 m) loaded on

inner edge and with value of inner radius equal to ρi = 0.4

Fig. 6. Time histories of deflection of plates with elastic and ER core (h2 = 0.002 m) loaded on

inner edge and with value of inner radius equal to ρi = 0.5
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Fig. 7. Results for FEM plate model loaded on inner edge with parameters: G2 = 2.5 MPa,

h2 = 0.003 m, ρi = 0.4: a) time histories of deflection and velocity of deflection in full analysed

range and b) in range of time t = 0.015÷0.025 s, c) form of plate buckling, d) distribution of

values of critical radial shear stress
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the results shown in Fig. 6 for the plate with the same core thickness but
with the value of radius ρi equal to: ρi = 0.5 indicates the meaning of the
plate outer geometry. One can notice that with the increase in value of inner
plate radius (ρi = 0.5) the ER effect is observed for higher values of viscosity
constant, equal about η = 20 Pa·s.

The Fig. 7 shows the time histories of deflection and velocity of deflection
of the plate model calculated using the Finite Element Method (FEM). The
plate with the value of inner radius ρi = 0.4 is loaded on inner edge. The core
thickness is equal to h2 = 0.003 m. The Fig. 7a,b enables the establishing of
the critical parameters: time tcr and deflection wdcr . Figure 7c and Fig. 7d
show the plate deformation and the distribution of radial shear critical stress
τcr , respectively. The values of critical parameters: tcr , wdcr , τcr are compa-
rable with the ones calculated using the Finite Difference Method (FDM).
The deflection curve ζ1max = f (t∗) and the distribution of critical shear stress
for FDM plate model are shown in Fig. 5 and Fig. 8, respectively. Figure 8
shows the distribution of critical values of shear stresses for the examined
plate cases with different core thickness and inner radius ρi (ro). The results
setting-up for other plate cases are presented in Table 2.

Fig. 8. Distribution of values of critical shear stress τcr (talcr) depending on discrete points N for
plates loaded on inner edge

Table 2.
The values of critical time tcr and deflection wdcr and maximum value of radial shear stress τcr max

for plate models calculated using FDM and FEM methods

h2 [m] / ρi
FDM FEM

tcr [s] wdcr [m] τcr max [MPa] tcr [s] wdcr [m] τcr max [MPa]

0.001 / 0.4 0.018 0.0042 0.35 0.018 0.0037 0.33

0.002 / 0.4 0.018 0.0042 0.23 0.018 0.0038 0.25

0.003 / 0.4 0.018 0.0041 0.23 0.018 0.0036 0.21

0.002 / 0.5 0.019 0.005 0.35 0.019 0.0045 0.32
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Figures 9, 10, 11 show the character of dynamic behaviour of the plates
loaded on the outer edge. The presented critical deformation is in the form
of several circumferential waves m = 6, 7, 8. Results corresponding to the
plates with m = 6, 8 numbers of buckling waves enable the observation of
plate behaviour particularly in the range of the critical state. The marked
points, which mean the loss of plate stability, indicate the small differences
of the critical values of time tcr and deflection wdcr between the plate modes
m = 6, 7, 8. The plate with buckling mode equal to m = 7 is subjected to
the detailed numerical analysis. The plate reactions for the Bingham effect
in the formulated dynamic problem were examined. The evaluation of the
results presented in Figs. 9, 10, 11 indicates that the core thickness doesn’t
influence dynamic response of plate with electrorheological effect. For each
of the analysed cases of core thickness (h2 = 0.001, 0.002, 0.003 m) the
limitation of the supercritical plate behaviour is possible for the values of
viscosity constant, which are in range of η = 1.7 Pa·s÷17 Pa·s. For the
higher values of viscosity constant the plate behaves as an elastic one with
supercritical vibrations. One can notice that the sensitivity of waved plate
on the fluctuation of the size of structure geometry is low. This observa-
tion could be interesting for some practical applications. One could try to
formulate some conclusion that determined, fixed values of electroreological
fluid as the Bingham core material control the dynamic response of strongly
circumferentially buckled plate with geometrically different structure.

Fig. 9. Time histories of deflection of plates with elastic and ER core (h2 = 0.001 m) loaded on

outer edge and with value of inner radius equal to ρi = 0.4

Additionally, the results shown in Fig. 12 for the plate with value of
dimensionless inner radius equal to ρi = 0.5 confirm presented observations.
The inner radius of each plate layer also the layer of the Bingham core is
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Fig. 10. Time histories of deflection of plates with elastic and ER core (h2 = 0.002 m) loaded on

outer edge and with value of inner radius equal to ρi = 0.4

greater than for plates described above (see Figs. 9, 10, 11). The plate behav-
iour doesn’t change. For low, fixed values of viscosity constants, supercritical
zone of plate behaviour is limited. For higher values of viscosity constants,
the vibrations are initiated. The observed fluctuations of values of critical
parameters and the tendency to relegation of the minimal value of critical
time tcr to higher value of mode (from m = 7 to m = 8) are the result of
characteristic changes in geometry of the plate with an elastic core [14].

Fig. 11. Time histories of deflection of plates with elastic and ER core (h2 = 0.003 m) loaded on

outer edge and with value of inner radius equal to ρi = 0.4

Figure 13 shows the distribution of radial and circumferential values
of critical shear stresses for the plate compressed on outer edge with core
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Fig. 12. Time histories of deflection of plates with elastic and ER core (h2 = 0.002 m) loaded on

outer edge and with value of inner radius equal to ρi = 0.5

thickness equal to h2 = 0.001 m and number of buckling waves m = 7. The
presented values for this example of the plate and also for the plate loaded
on inner edge (values shown in Fig. 8) were accepted in description of the
Bingham core material (see, Eq. (2)). These critical stresses control plate
elastic behaviour, which exists below the plate critical state and rheological,
supercritical response of the plate, which is expressed by physical relations
of the Bingham body of core material.

The results presented in Table 3 can recap the numerical investigations
undertaken in this work. The Table 3 shows the range of values of viscosity
constant of ER core material for which the essential changes in supercritical
plate behaviours have been observed. The existing rapid change in rheolog-
ical properties influences the supercritical vibrations and dynamic response
of the analysed plate. The vibrations are not initiated by increasing load
or they suddenly disappear. Different plate reactions for fluctuations of ER

Table 3.
Range of values of viscosity constant η with observed ER effect for plates loaded on inner and

outer edge with different ER core thickness h2 and dimension of inner radius ρi

inner radius ρi core thickness h2 [m]
range of viscosity constant η [Pa·s] / buckling mode m

loaded edge

inner outer

0.4
0.001 1÷7 / 0 1.7÷17 / 7

0.002 10÷14 / 0 1.7÷17 / 7

0.003 10÷21 / 0 1.7÷17 / 7

0.5 0.002 10÷20 / 0 1.7÷17 / 8
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Fig. 13. Distribution of values of critical shear stress τcr (talcr) depending on discrete points N

for the plate loaded on outer edge with parameters: m = 7, h2 = 0.001 m, ρi = 0.4

core properties indicate the possibility of controlling plate behaviour. The
geometry of ER core is significant for plates radially compressed on inner
edge, whose buckling form is axisymmetrical.

6. Summary

The paper presents the dynamic response of an annular plate with the
core layer with electrorheological properties expressed by the relations of
the Bingham body. The main elements of problem solution with the presen-
tation of the system of differential equations, which is the solution to the
dynamic deflections of the examined plate, have been shown. The solution
has been generalized on the plate modes circumferentially waved. The nu-
merical results have been shown for the basic forms of plate buckling, which
are important in plate dynamic stability problems: axisymmetrical for the
plate loaded on inner edge and highly circumferentially waved for the plate
compressed on outer edge.

The analysis was focused on the influence of core thickness and geometry
size of the plate as well as the core layer on the final results. The behaviours
of the plate structure for various values of viscosity constant, which is a
parameter characterizing the Bingham body properties, have been presented.
The results of numerical calculations have shown the possibility of control-
ling plate behaviour by changes in the electrical field intensity. Then, the
changes of rheological properties of the core material can limit the zone
of supercritical vibrations and influence on plate behaviour. Of course, the
choice of specific values of the Bingham parameters requires carrying out of
the perceptive experimental investigations. The presented plate seems to be
an effective system which could control the dynamic behaviours of the other
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objects containing such structure as a constructive element. It could be the
main application of the analysed annular plate.

The numerical calculations indicate the narrow range of values of viscos-
ity constant of the Bingham core material for the assumed level of values of
shear stresses for which the searched plate responses are observed. The range
of values of viscosity constant, which cause the limitations in supercritical
plate behaviour, changes for different core thickness for plates loaded on
inner edge. Much lower sensitivity to the thickness of ER core is observed
for plates compressed on outer edge. The introduced change of inner plate
radius has the similar influence on supercritical plate behaviour.

The presented image of dynamic behaviour of the analysed plate could
be a helpful hint in designing and numerical modelling of “smart” layered
structures working under dynamic conditions. However, the examined prob-
lem is a complex, multiparameter task, which in the case of aiming for its
full evaluation requires further detailed analyses.

Manuscript received by Editorial Board, September 01, 2015;
final version, January 20, 2016.
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Sterowanie dynamicznej odpowiedzi trójwarstwowej płyty pierścieniowej zmiennymi
parametrami elektroreologicznego rdzenia

S t r e s z c z e n i e

W pracy przedstawiono dynamiczne odpowiedzi pierścieniowej trójwarstwowej płyty poddanej
obciążeniom zmiennym w czasie. Struktura pyty złożona jest z trzech symetrycznych warstw: cien-
kich, stalowych okładzin i cienkiego rdzenia o właściwościach elektroreologicznych wyrażonych
cechami cieczy Binghama. Płyta obciążona jest w płaszczyźnie okładzin siłami równomiernie
rozłożonymi na obwodzie, liniowo szybko narastającymi w czasie. W momencie dynamicznej utraty
stateczności płyty o sprężystych własnościach rdzenia pokrytyczne zachowanie płyty sterowane jest
parametrami materiałowymi i geometrycznymi jej rdzenia o cechach elektroreologicznych. Zagad-
nienie dynamicznych ugięć płyty rozwiązano analitycznie i numerycznie wykorzystując metodę
ortogonalizacyjną i metodę różnic skończonych. Ocenę wartości parametrów krytycznych płyty
przeprowadzono wykorzystując także metodę elementów skończonych. Obliczeniom numerycznym
poddano płyty, których utarta stateczności dynamicznej ma postać osiowosymetryczną, jak i płyty
obwodowo pofalowane. Liczne wyniki obliczeń pokazują wrażliwość struktury badanej płyty na
niewielkie wahania wartości parametrów materiałowych i geometrycznych rdzenia. Obserwacje
potwierdzają możliwość sterowania pokrytyczną pracą płyty i jej wykorzystania jako elementu tzw.
konstrukcji inteligentnej.


