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Fully synthetic, biochemically inert and water-immiscible liquid perfluorochemicals (PFCs) are
recognised as flexible liquid carriers/scavengers of gaseous compounds (respiratory gases mainly,
ie. O; and CO,) and increasingly applied in bioprocess engineering. A range of unmatched
physicochemical properties of liquid PFCs, i.e. outstanding chemo- and thermostability, extremely
low surface tension, simultaneous hydro- and lipophobicity, which result from carbon chain
substitution with fluorine atoms (the most electronegative chemical element) and the presence of
intramolecular C—F bonds (the strongest single bond known in organic chemistry) have been
described in detail. Exceptional propensity to solubility of respiratory gases in liquid perfluorinated
compounds has been widely discussed. Advantages and disadvantages of bioprocess applications of
liquid PFCs in the form of a pure PFC as well as in an emulsified form have been pointed out.
A liquid PFC-mediated mass transfer intensification in various types of microbial, plant cell and
animal cell culture systems: from miniaturised microlitre-scale cultures, via biomaterial-based
scaffolds containing culture systems, to litre-scale bioreactors, has been reviewed and elaborated on
bearing in mind the benefits of bioprocesses.

Keywords: liquid perfluorochemical (fluorocarbon), liquid gas carrier, solubility, cell/tissue culture,
hybrid culture system

1. INTRODUCTION

The key function of a properly developed culture system (i.e. bioreactor) is to provide a designed and
properly controlled environment as well as a predicted concentration of nutrients and culture medium
components (dissolved oxygen, mainly) sufficient to achieve optimal growth in bioprocesses focused
on cell cultures. The level of dissolved oxygen in the culture medium is the result of a balance between
its consumption rate in the cells suspended in the broth (i.e. the oxygen uptake rate), and the rate of
oxygen transfer from the gas carrier (sparged air bubbles, typically) to the liquid phase (i.e. oxygen
transfer rate). Up to date, a considerable amount of extensive literature focused on mass transfer in
variously agitated gas — liquid contacting culture systems has been reported, discussed or reviewed
(Galaction et al., 2004; Garcia-Ochoa et al., 2010; Gogate et al., 2000; Martin et al., 2010; Suresh et al.
2009). A sufficient level of oxygen dissolved in the culture medium must be provided as a mandatory
issue in every aerobic bioprocess because the concentration of dissolved oxygen becomes the key-
factor governing the metabolic pathway complexity in all kinds of aerobic cells (i.e. many microbial, all
plant as well as insect, mammalian, and human cells) which are cultured in vitro. This is due to the fact
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that in every aerobic metabolism process the energy is generated by substrate (organic carbon source,
mainly) oxidation.

Therefore, from the bioprocess point of view, oxygen is often the limiting nutrient in microbial
cultures, as well as in plant, insect or animal cell/tissue successful growth in vitro. This results directly
from the poor solubility of oxygen in water (which is the basic solvent of nutrients in all culture media)
which is finally responsible for insufficient transfer of oxygen from gas phase through aqueous medium
to cell surface. The oxygen concentration in a typical aqueous-phase culture medium is limited to ca.
0.2 mM (i.e. twice its solubility in pure water) when atmospheric air is used for aeration. Based on
equimolar intracellular biochemical reactions of monosaccharides oxidation, oxygen is typically
consumed at approximately the same rate as glucose, but oxygen solubility is much lower than the
availability of glucose in a typical culture medium (i.e., ca. 20 — 200 mM depending on type of cultured
cells) (Centis and Vermette, 2009; Martin and Vermette, 2005).

At the same time, significant carbon dioxide accumulation in culture medium can exist, especially at
high cell density conditions observed in a range of bioprocess applications of microbes (bacteria,
yeasts, fungi, as well as microalgae), in monolayered mammalian cell cultures and especially during in
vitro development of 3-D aggregated mammalian and human cell constructs or implants where the
value of the cell number to medium volume ratio is much higher than in culture systems containing
suspended cells. It results in a significant acidification of culture medium and in increase of its
osmolality due to the dissolution of bicarbonate anions (Glazyrina et al., 2012; Zhu et al., 2005).

Difficulties, both in achieving a sufficient level of dissolved oxygen and in reducing a culture system
carbon dioxide level to the physiological range motivate investigators to continue search for bioprocess
solutions which intensify the mass transfer between the elements of a culture system (i.e. oxygenation
agent, culture medium and continuously metabolising cells). Water-immiscible liquid gas carriers such
as saturated hydrocarbons (Lai et al., 2012; Li et al., 2012; da Silva et al., 2006), oils (Dumont et al.,
2006; Han et al., 2009), haemoglobin derivatives (Davey et al., 2003; Lowe et al., 2001) or
perfluorinated compounds (Dumont et al., 2006; Menge et al., 2001; Ntwampe et al., 2010; Pilarek and
Szewczyk, 2005) characterised by O,/CO; solubility much higher than that in water, are alternatives to
conventional aeration systems applied in bioreactors and other small (i.e. micro- and milliliter-) scale
culture systems. Fully synthetic, biochemically inert and immiscible with aqueous phases, liquid
perfluorochemicals (synonym: fluorocarbons; PFCs) are recognised as some of the most flexible liquid
carriers/scavengers of gaseous compounds (respiratory gases mainly, i.e. O, and CO;) in bioprocess
engineering applications. Other types of liquid gas carriers may cause negative or even detrimental
effects on cultured cells, e.g. hydrocarbons can be toxic and oils can be metabolised by cells (Menge et
al., 2001; Pilarek and Szewczyk, 2008). Up to date, PFCs have been frequently applied in bioreactors,
as well as small-scale or miniaturised culture systems of various types of cells, i.e. microorganisms, e.g.
bacteria (Pilarek et al., 2011; Pilarek et al., 2013a), yeast (Pilarek and Szewczyk, 2008; Pilarek et al.,
2006), fungi (Elibol, 2001) or microalgae (Hillig et al., 2013; Hillig et al., 2014), or plant cells (Davey
et al. 2005; Lowe at al. 2003; Pilarek and Szewczyk 2008; Syktowska-Baranek et al. 2014) as wells as
animal (Douglas et al. 2014; Pilarek et al., 2013b; Pilarek et al., 2014; Rappaport, 2003; Shiba et al.,
1998) to successfully obtain higher cell densities or to identify positive influence on metabolite
excretion due to enhanced the mass transfer effects in culture systems, mainly.

The aim of this review is to widely outline and extensively discuss the application effects of liquid
perfluorinated gas carriers in various types of microbial, plant cell and animal cell culture systems:
from miniaturised microlitre-scale cultures, via biomaterial-based scaffolds containing culture systems,
to litre-scale bioreactors. A range of unmatched physicochemical properties of liquid PFCs, i.e. chemo-
and thermostability, extremely low surface tension, simultaneous hydro- and lipophobicity, have been
described in detail. Exceptional propensity to solubility of respiratory gases in liquid perfluorinated
compounds has been widely discussed. The benefits of liquid PFC-mediated mass transfer
intensification in bioprocesses have been also looked into.
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2. CHARACTERISTIC AND PHYSICOCHEMICAL PROPERTIES OF PFCS

PFCs are fluorine substituted analogues of saturated aliphatic hydrocarbons with linear, cyclic or
polycyclic molecules. A loose but common definition of perfluorinated compounds encompasses highly
fluorinated molecules containing also occasional hydrogen, oxygen, nitrogen atoms or halogens other
than fluorine. The general empirical formula of acyclic PFCs fully substituted with fluorides (CnF2n+2)
is corresponding to the general empirical formula of fully saturated acyclic alkanes (C,Hn+2) (Riess,
2001).

Liquid PFCs, as well as all perfluorinated materials, are totally synthetic compounds. PFCs are
obtained by controlled fluorination (with elementary fluorine) of vaporised alkanes diluted with an
auxiliary gaseous agent, e.g. nitrogen, helium, argon, or in a liquid phase, e.g. hydrogen fluoride, liquid
PFCs, trichlorofluoromethane (i.e. R-11 freon), in the presence of metal fluorides as a catalyst (cobalt
trifluoride or its complex salts, mainly) (Lewandowski et al., 2006; Sanford, 2003). Another way of
PFC production is anode electrochemical fluorination and telomerisation of tetrafluoroethylene
(CF,=CF,) in the presence of adequate telogens (e.g. iodine, pentafluoride iodine). Especially
telomerisation process has enabled liquid PFC (e.g. perflubron®) production on a multi-ton scale in at
least 99 % purity (Riess and Krafft, 2006). Perfluorodecalin (CioF1s; PFD) is actually produced in at
least 98 % purity as an equimolar mixture of cis-/trans- isomers by controlled fluorination of decalin
(CioHis) in the presence of CoF; (Shine et al., 2005).

2.1. Chemical characteristic

The chemical structure of carbon chains substituted with fluorine atoms provides a range of unmatched
physicochemical properties of PFCs. Fluorine atom is the most electronegative chemical element
(electronegativity 3.98) and its van der Waals radius (1.47 A) is only slightly larger than the value for
hydrogen atom (1.20 A) (Eaton and Smart, 1990; Kirsch, 2004) which results in the higher dipole
moment of C—F bond (1.41 D) compared to C—H bond (0.40 D). Fluorine has a higher ionisation
potential than hydrogen, just after the inert gases helium and neon. Another attribute of fluorine is
lower polarisability than hydrogen — second only to neon. Such differences are the basic structural
reasons for different physicochemical properties revealed by conventional hydrocarbons and their
perfluorinated analogues. PFCs are recognised as compounds characterised by outstanding chemo- and
thermostability (they were initially developed for handling extremely corrosive uranium fluorides), as
well as biochemical inertness due to the presence of the intramolecular C-F bonds, the strongest single
bond known in the whole organic chemistry with bond strength of ca. 485 kJ/mol (as compared to ca.
425 kJ/mol for C-H bonds) (Krafft and Riess, 2002). Such effects are additionally enhanced by dense
electron sheath which coats the carbon chain in a PFC’s molecule and results in its stiffness, as well as
protection and repellency from attacking ligands higher than in hydrocarbon analogues (Eaton and
Smart, 1990; Lowe 2001). The mean volumes of ~CF,— and —~CH>— groups are 38 A® and 27 A’,
respectively, while the difference in volumes of —CF; and —CH; groups (i.e. 92 A® and 54 A’
respectively) is even more significant (Gruen, 1985; Riess, 2002a). Furthermore, structural features of
stiff chains of linear PFCs allow them to adopt a helical conformation, rather than the usual planar
“zig-zag” arrangement found in hydrocarbon chains, in order to minimise steric effects (Gomes and
Gomes, 2007). Owing to their bioengineering applications, PFCs exhibit high resistance to heat
sterilisation (e.g. by typical autoclaving at 121°C) and long-time storage potential at room temperature.
Fluorinated compounds can resist highly aggressive media, including strong mineral acids, alkalis and
oxidants, even in high temperature. To give as an example, poly(tetrafluoroethylene), commonly
known as Teflon® (PTFE), is one of the most inert organic materials known (Hondred et al., 2013).
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2.2. Physical characteristic

In contrast to the strength of intramolecular bonds, liquid PFCs are characterised by very low values of
the van der Waals forces resulting in the lowest polarisability of fluoride substituents (0.56x10%* cm®)
of all atoms (Kirsch, 2004). A tight packing of highly electronegative fluorine atoms in liquid PFCs
causes very low intermolecular cohesiveness which results in the extremely low surface tension (the
lowest surface tension of any organic liquids), and therefore PFCs wet almost any surface
(Lewandowski et al. 2006). The PFC-water surface tension is below 6x102 N/m (Riess, 2005). Low
cohesiveness also causes very weak dispersion forces between PFC molecules and it is the reason for
the simultaneous hydro- and lipophobicity of liquid PFCs (Kirsch, 2004; Krafft and Riess, 2007).
Therefore they exhibit maximum water solubility level around 10® — 10 mole which is the lowest
water solubility of all liquids (Ruiz-Cabello et al., 2011). Some physicochemical properties of PFD and
1-bromoperfluorooctane (CsFy7Br; perflubron®), which are definitely the most frequently applied liquid
PFCs as liquid gas carriers on bioprocess and biomedical engineering field, are compared in Table 1.

Table 1. Comparison of some physicochemical properties of PFD and perflubron®

property water PFD* perflubron®
molecular formula HO CioF1s CsF17Br
molecular weight [g mol™] 18 462 499
melting point [°C] 0 6 -10
boiling point [°C] 100 142 142
vapour pressure at 37°C [kPa] 6.27 1.87 1.40
kinematic viscosity [m? s™'] 8.92x107 2.90x10° 1.00x107°
interfacial tension toward water [N m™'] - 5.56x107 5.50x107
spreading coefficient on water [N m™'] - -1.5x107 +2.7x107
solubility in water [mol dm™] - 1x1078 5x107

* equimolar mixture of cis-/trans- isomers

The occurrence of large miscibility gaps in multi-phase solvent systems composed of hydrocarbons,
aqueous media and liquid PFCs results in the development of a third liquid phase, named as “fluorous”
vel “perfluorous”, in addition to the “organic” and “aqueous” phases. The perfluorous phase is located
at the bottom of the water/PFC system due to the relatively high density of liquid PFCs (about
1.8 — 1.9-10° kg m™). Such unique immiscibility of liquid PFCs with other organic and aqueous phases
is one of the main properties which promotes the spread of liquid PFCs applicability and range of
patent submissions applied to their use in organic synthesis (e.g. US Patent 5463082. 31.10.1995; US
Patent 6897331, 24.05.2005; US Patent 7404943. 29.07.2008), bioprocess engineering (e.g. EU Patent
0164813. 18.12.1985; EU Patent 2402433. 04.01.2012; PL Patent P-404726 16.07.2013), and on
biomedical field (e.g. US Patent 4105798. 08.08.1978; US Patent 5531219. 02.07.1996; US Patent
20060278224, 22.03.2011). It is also important that liquid PFCs added to a reaction or culture system
do not change the concentration of its components dissolved in aqueous phase.

3. SOLUBILITY OF RESPIRATORY GASES IN LIQUID PFCS

From the bioprocess engineering point of view, liquid PFCs have one special advantage over any other
aqueous or organic compounds applied into culture systems — they exhibit an exceptional propensity to
dissolve gases, including respiratory gases, i.e. oxygen and carbon dioxide. A very high oxygen
carrying capacity (O:c.c.) of liquid PFCs combined with their extreme oxidative decomposition
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strength make liquid PFCs an efficient oxygen carrier with very wide applicability in biomedical
engineering field, as well as in bioprocess engineering. It is assumed that the gas absorption rate in
liquid PFCs increases linearly with the partial pressure of a component in the gaseous phase, according
to the Henry’s Law, in contrast with sigmoidal dissociation curves for biochemical oxygen carriers, i.e.
oxygen-binding globular proteins naturally occurring in animal blood (haemoglobin, Hb) or muscle
tissue (myoglobin, Mb) (Elliott, 2011; Kraft and Riess, 1998; Lowe, 2001; Wesseler et al., 1977). In
general, the basic molecular difference between oxygen transfer by liquid PFCs and Hb is that PFCs
passively dissolve and release gases without interacting with them, whereas Hb reversibly binds
dioxygen molecules. Gas molecules occupy intermolecular spaces within the liquid phase of PFC
(Lamy and Deby-Dupont, 2009; Lowe 2001; Riess 2001). A comparison of oxygen-carrying capacity
of PFD and perflubron®, i.e. two biomedically utilised perfluorinated oxygen carrier agents, with
human blood plasma, Hb and Mb is presented in Fig. 1. Thus, at a given partial pressure of oxygen, Hb
or Mb binds more O, than can be dissolved in typical liquid PFCs. However oxygen solubility in liquid
perfluorinated compounds (with a range of 35 — 44 mM (Deschamps et al., 2007; Riess, 2006a) is
approximately 20 times higher than the solubility of oxygen in water (2.2 mM) at standard temperature
and pressure. The solubility of carbon dioxide exceeds 200 mM (Lowe, 2002; Riess, 2001). What is
also valuable, gas solubility in liquid PFCs decreases in the following order (Lowe, 2001):

CO,>>0,>CO >N, (D

which makes them suitable in a range of bioprocess applications for oxygen delivery and removal of
metabolically generated carbon dioxide from culture systems.

25
Hb
15
% (v/v) O,
10 perflubron
PFD
5
Fluosol (20 % PFC)
" blood plasma
0 5 10 15 20 25
pO, [kPa]

Fig. 1. Comparison of oxygen-carrying capacity of PFD, perflubron® and Fluosol-DA (as an example of
biomedically utilised liquid PFC-based emulsion) with human blood plasma, Hb and Mb
(based on Kirsch, 2004; Lowe 1999 and Riess, 2001)

Previously published data on the solubility of oxygen and carbon dioxide in PFD and perflubron®™ are
listed in Table 2. In order to facilitate a comparison of the data, they were expressed (after conversion
from the Ostwald coefficient (L. ;) if needed) as the Henry's Law constant (/) defined as:

pi=Hg; ()
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Table 2. Solubility of oxygen and carbon dioxide in perfluorodecalin and 1-bromoperfluorooctane expressed as
the Henry’s law constant defined as in Eq. 2

0 CO; T »
liquid PFC % % (K] [kPa] reference
[kPa m® mol']|[kPa m® mol]
Deschamps
5.94-6,29 - 288.6—311.4{96.1 -98.4 et al., 2007
Costa Gomes
- 1.29-1.72 |288.6—-312.3|95.0-97.2 et al., 2004
perfluorodecalin B B B .
(C1oF1s: PFD) 5.79 - 6.38 288.3-312.2 101.3 | Freire et al., 2004
Sobieszuk and
- 0.820 293.1 101.3 Pilarek, 2012
Pilarek et al.,
2.85 - 293.1 101.3 2013¢
Deschamps
I -bromoperfluorooctane 526-573 | 1.17-1.55 |289.8—-311.0|93.5-97.7 et al., 2007
. ®
(CsFiBr: perflubron®) | 5 43 5 g4 ~ |2892-316.5]95.7-97.1| CostaGomes
et al., 2004

It should be emphasised that the data available in the open literature for the solubility of gases in liquid
PFCs are still rather limited, with most data widely scattered. The incomplete quantitative
characterisation of the used PFC samples or the imprecise descriptions of the employed experimental
methods makes it difficult to compare most of previously published data. Moreover, most of the
available data on the O, and CO; solubility in liquid PFCs refers to the values measured in only one
temperature, e.g. 20 or 37 °C, as well as measured for perfluorinated compounds in an emulsified form.

4. GAS CONCENTRATION DETERMINATION IN LIQUID PFCS

It is not possible to directly measure the concentration of dissolved oxygen in liquid PFCs. The
standard method using the Clark electrode is not applicable due to hydrophobicity of fluorinated phase.
Therefore, it is necessary to apply indirect methods. Because of the relatively high costs of liquid PFCs,
using a typical apparatus to determine the values of gas solubility, e.g. the laminar-jet (Pohorecki and
Moniuk, 1988), is uneconomical and thus problematic. An isobaric saturation method was most
frequently employed to quantitatively determine solubility of gases in liquid PFCs (Costa Gomes et al.,
2004; Deschamps et al., 2007; Freire et al., 2004) expressed as the Ostwald coefficient (L; ;).
Furthermore, a modified enzymatic method (Pilarek et al., 2013c), originally developed by Freire
(2005) to determine the oxygen solubility in liquid PFCs-based emulsions, was successfully employed
to determine oxygen concentration in microliter-scale samples of PFD, as well as volumetric gas-side
mass transfer coefficient (k,a = 0.051 mol m™ s' kPa') and volumetric liquid-side mass transfer
coefficient (kza = 3.63x107° s) for a PFD-oxygen/air two-phase system. The gas-liquid flow in a
microchannel has been proposed by Sobieszuk and Pilarek (2012) for mass transfer investigations in
PFD/CO; systems. The Henry’s law constant has been determined based on the estimated values of the
CO; absorption rates in the applied microchannel device and using the correlation for mass transfer
coefficient in the Taylor flow due to Yue et al. (2007). Such investigation was also the first report of
the application of liquid PFC in a microreactor system in general. Summarising, all previously
published data on oxygen solubility in PFD and perflubron seems to be consistent (see Table 2) and
basically they are sufficient to approve biomedical application of liquid PFCs or to develop
bioprocesses utilising liquid PFC-based carriers of respiratory gases.
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5. LIQUID PFC-BASED EMULSIONS

As insoluble in water, liquid PFCs can be converted to an emulsified form using different types and
concentrations of a range of surfactants. The form of liquid PFC-based emulsions depends on the way
of its bioengineering application. Two main lines of research are being actively pursued: (i) PFC-in-
water emulsions for in vivo intravascular oxygen delivery (known as perfluorinated temporary blood
substitutes) (Krafft et al., 2003; Riess, 2006b; Vasquez et al., 2013), as storage-media during organ
transplantation procedures (Bezinover et al., 2014; Maillard et al., 2008; Terai et al., 2010), currently
under development for treatment of traumatic brain and spinal cord injury (Spiess, 2009) as well as in
decompression sickness therapy (Randsoe and Hyldegaard, 2009), and (ii) water-in-PFC reverse
emulsions for pulmonary drug delivery (Courrier et al., 2004; Smota et al., 2008), targeted emulsions
for diagnosis and therapy (Kaufmann and Lindner, 2007; Lanza and Wickline, 2001; Martin and
Dayton, 2013), as well as valuable research tool used in polymerisation technology (Chen et al., 2010;
Zetterlund et al., 2008).

It should be emphasised that from the point of view of bioengineering, PFC-in-water emulsions
(particle size of approximately 0.2 um) have much greater importance for intravenous administration
than the others. Nowadays, they are usually formulated as submicron, i.e. nano- or micro- PFC-in-water
emulsions, preferably, to increase their stability (Maevsky and Ivanitsky, 2005; Riess, 2002b) and thus
significantly smaller (10 to 100 times) than the size of erythrocytes. Not only smaller droplet size, but
also significantly larger relative surface-to-volume ratio of PFC drops create favourable gas exchange
conditions. Aside from adequate dispersion, homogeneity and reproducibility of small droplets of liquid
PFC, formulation of emulsion with high applicability in bioengineering field requires a surfactant
system and manufacturing procedures capable of ensuring stability, biocompatibility and possibility for
heat-sterilisation. Poloxamers (e.g. Pluronics and Proxanols, mainly) and natural phospholipids (e.g.
from egg yolk, mainly), which are commonly utilised in the formulation of pharmaceuticals, seem to be
capable of meeting all of these requirements (Bouchemal, 2004; Kaufman, 1992; Riess and Krafft,
2006). The key idea in developing liquid PFCs-based emulsions is to apply them in vivo as
intravenously injectable temporary blood substitutes. PFC-in-water emulsions intended for biomedical
use are produced at concentrations ranging from 20 % up to 120 % weight/volume. Osmolarity of the
suspending media is independent of liquid PFC concentration and is adjusted by the addition of tonicity
agents (Cabrales and Intaglietta, 2013). Up to date, several emulsion systems based on a few liquid
PFC agents have been commercially developed and they are generally in preclinical/clinical trials, as
reported in Table 3.

Three main criteria to differentiate between 1% and 2™ generations of liquid PFC-based emulsions have
been proposed by Kusnetzova (2003):
e concentration of liquid PFC agents in 2™ generation emulsions is twice or even four times higher
compared to 1* generation,
e natural emulsifiers are ingredients of 2™ generation emulsions,
e 2" generation emulsions can be stored in room temperature in contrast to 1% generation
emulsions that need to be frozen.

Simplifying, the 2™ generation emulsions have been developed in order to overcome the difficulties in
biomedical applications exhibited by the 1% generation. They are supplied in an emulsified form and
capable to withstand temperature variations during preparation and shipping (e.g. Oxycyte can be
stored at 4°C, with a shelf life of 18 — 24 months). Liquid PFCs are used in an emulsified form in order
to increase the interfacial exchange surface. Nevertheless, from the bioprocess point of view, most
commercially developed liquid PFC-based emulsions are not fully applicable in culture systems
containing living cells. The main reason is the content of non-perfluorinated additives which may
influence negatively cells (e.g. phospholipids utilised as emulsifiers) or they may be metabolised (e.g.
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plant-origin additives, o-tocopherol). They may negatively affect culture processes conducted in
bioreactor systems (e.g. increased foaming caused by surfactants).

Table 3. Liquid PFC-based emulsions developed as injectable temporary blood substitutes

. product PFC surfactants additives 0320.0. .
generation| (manufacturer, [cm” O, dm| reference
[Yow/v] [Yow/v] and buffer |3 1
country) kPa™]
Fluosol-DA 2.7 % Pluronic| NaCl, KCI,
(Alpha F-68 MgCl,,
Therapeutic Corp.,| 14 % PFD 0.4 % EYP CaCly, 0.06x102 Mitsuno
US; previously: | 6 % PFTPA 0.03 % Ca(HCOs3),, | et al., 1982
Green Cross Corp., potassium glycerol,
JP) oleate dextrose
Oxypherol
1 Theralgéli?i};aCom Krebs-Ringer Ruland
. 120 % PFTBA | Pluronic F-68 | bicarbonate | 0.45x10
US; previously: . etal., 1987
solution
Green Cross Corp.,
JP)
NaCl, KCl,
Perftoran o o MgCl,,
(Perftoran 31;) g)FPI:ECDP 6.5 A)ngg xanol NaHCOs, | 0.06x107 elt\/iellevzsg(})fs
Company, RU) NaH,POy, ?
glucose, H,O
Oxycyte
(Oxygen
Biotherapeutics,
Inc., US; 60 % 2 Yacoub
previously TBPFCH EYP wa 12710 etal., 2014
Synthetic Blood
International Inc.,
2nd o Ufsl)
xyfluor .
(HemaGen/PFC, |78 % PFDCO| EYD> wa | 0.13x102 | Remy
Us) safflower oil et al., 1999
Oxygent NaCl,
(Alliance >8 % EDIA, Hill
. perflubron®, | 3.6 % EYP |a-tocopherol,| 2.32x107
Pharmaceutical 5 % PFDB hosphat et al., 2002
Corp., US) ° phosphate
buffer
NaCl,
glucose,
“Columbian 58 % 3 % soybean | glycerol, o/ Gardeazabal
emulsion” perflubron® lecithin a-tocopherol, a etal., 2008
currently in phosphate
progress buffer
4% EYP
) . 90 % 2.5 % diblock phosphate Aqdonnet-
French emulsion ® | perfluoro- n/a Blaise et al.,
perflubron /hydrocarbon buffer 2006
compound

Osc.c. - oxygen carrying capacity (cm® O, dm™ kPa!); n/a - not available
liquid PFCs: PFDB - 1-bromo-perfluorodecane; perflubron® - 1-bromo-perfluorooctane; PFD - perfluorodecalin;

PFDCO - perfluorodichlorooctane, PFMCP - perfluoromethylocyclohexylpiperidin,

PFTBA - perfluorotributylamine, PFTPA - perfluorotripropylamine, TBPFCH - tributyloperfluorocyclohexane;
surfactants/emulsifiers: EYP - egg yolk phospholipid;
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6. LIQUID PFC-BASED GAS CARRIERS IN VARIOUS CELL CULTURE SYSTEMS

Oxygen has a low solubility in water and in aqueous media. Additionally, the concentration of oxygen
dissolved in culture media decreases during heating the broth, and the presence of dissociated
microelements in the culture medium also influence negatively oxygen solubility. Combinations of
spargers and various types of agitators, as well as air-lift systems are typical and commonly used
mixing-and-aerating systems applied in a range of bioprocesses related to living cells. However, their
application can result in undesired by-product production (e.g. biosynthesis and secretion of stress-
derived metabolites as the response to environmental stressors, leak of metabolites through weakened
cell membrane) (Enfors et al., 2001; Garcia-Ochoa and Gomez, 2009; Neubauer and Junne, 2010) or
even in structural disruption of cells as a result of the hydrodynamic cell stress caused by high shear
forces generated during mechanical mixing and/or continuous bubble aeration of culture broth/medium
due to turbulence intermittency (Baldyga and Pohorecki, 1998; Garcia-Ochoa et al., 2013; Pohorecki et
al., 2001). All these effects negatively affect biomass performance, and contribute to bioprocess yield
decrease.

Water-immiscible carriers of respiratory gases are the alternative to conventional aeration systems
applied in a range of bioreactors and miniaturised-scale culture systems. Such agents exhibit one
common property — they have greater capacity to solubilise the oxygen than water, i.e. the basic solvent
of all culture media. Besides liquid PFCs, a few other organic materials have been applied in
bioprocesses as gas (oxygen, mainly) carriers so far: saturated hydrocarbons, oils and modified-
haemoglobin-based derivatives. Initially, water-immiscible gas carriers have been utilised in the field of
biomedical engineering, e.g. haemoprotein-based derivatives and emulsified liquid PFCs as
intravascularly applied temporary blood substitutes (Bucci, 2009; Kim, 2007; Kottuniewicz, 2014) or
pure liquid PFCs as media suitable for liquid ventilation procedures (Kaisers et al., 2003; Tawfic and
Kausalya, 2011). Nevertheless, droplets or layer of gas saturated water-immiscible liquid carriers
(liquid PFCs, mainly) can be applied to enhance gas supply (e.g. in the case of oxygen, ethene) or
removal (e.g. in the case of carbon dioxide) through liquid-liquid (i.e. PFC-medium) interfacial area in
culture systems. Examples of bioprocess engineering applications of liquid PFC-based gas carriers in
culture systems of various types of cells are reviewed in Table 4.

Water-immiscible liquid PFC-based gas carriers were applied in submerged cultures of all main types
of cells utilised in bioprocess engineering, i.e. microorganisms (bacteria, yeasts, microalgae), plant and
animal (insects, mammalian, human) cells. To date, depending on the specificity of a particular culture,
liquid PFCs were used to intensify the transfer of the following gases: oxygen, carbon dioxide,
nitrogen, nitrous oxide and ethene. The main benefits of bioprocesses carried out in the presence of a
gas-saturated liquid PFC compared to traditional cultures (without liquid gas carrier) include: (i)
providing additional liquid-liquid (i.e. liquid PFC - culture medium) interfacial area for effective mass
transfer independent from gas-liquid interface typically occurring in culture vessel filled by aqueous
broth/medium and air phase; (ii) enhanced gas absorption rate without the need for supplementary
energy input for mixing the culture; (iii) reduction of the detrimental effects of mechanical damage of
cells occurring during a conventional intensive mixing and bubble aeration; (iv) easy separation of
liquid PFC from culture medium as well as its regeneration (e.g. in typical absorption column) and re-
use (v) possibility to use liquid PFCs in an autoclave directly in culture vessel together with
broth/medium prepared for culture (independent sterilisation of liquid PFCs via filtration is also
possible).
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6.1. PFC-mediated oxygen transfer intensification

Regardless of the type of cultured cells, the effects of supplying oxygen into culture media via
perfluorinated carriers have been studied frequently. Generally, the application of liquid PFC-based
oxygen carriers in culture systems had positive effects on the rate of oxygen absorption and thus
enhanced biomass and bioproduct yields. In the case of submerged cultures of microbial cells, the
highest increase of volumetric liquid-side mass transfer coefficient (kza) of up to 3.5 times, which been
achieved when emulsified Forane F66E has been applied for oxygenation of Enterobacter aerogenes
(synonym: Aerobacter aerogenes) culture performed in 12 dm? stirred tank (500 rpm) in comparison to
a process with typical bubble aeration (Rols et al., 1994). Liquid PFC-supported bioprocesses resulting
in the increase of kza from 1.2 to 3.0 times have been reported (see Table 4). In the case of enhancing
biomass production, the highest increase in biomass yield (up to 2.22 times) has been reported by
Ju et al. (1991) for Escherichia coli culture with oxygenation enhanced by FlurO,.

Elibol (2001) informed of up to 2.0 fold increase in Streptomyces coelicolor secondary metabolite
production in culture performed in 12 dm’ bioreactor with Rushton turbine (200 rpm) and supported
with dispersed aerated PFD. More recently it has been proved that water-immiscible liquid PFC-based
oxygen carriers are also feasible agents in miniaturised culture systems. A significantly higher yield of
genetically modified alcohol dehydrogenase as well as a lower level of inclusion bodies (i.e. insoluble
fraction of not-correctly folded protein molecules) achieved in milliliter-scale of dispersed PFD
containing cultures of E. coli has been reported by Pilarek et al. (2011). The same group has also
informed of a 25 % increase in plasmid DNA yield biosynthesised in E. coli cells cultured in PFD-
supported microliter-scale system (Grunzel et al., 2014; Pilarek et al., 2013). Such a huge range of
culture volumes (from 10 to 10" dm?®) which has been reviewed in Table 4 (as well as discussed
above) clearly indicates that perfluorinated oxygen carriers are very flexible bioengineering tools for
gas transfer intensification in scaling-up or scaling-down of bioprocesses.

Also in the case of in vitro cultures of cells isolated from multicellular organisms, liquid PFCs have
been applied mainly as carriers of oxygen. The application of the PFD-mediated oxygenation system in
Nicotiana tabacum BY-2 (Bright Yellow 2) cultures performed in a hollow-fibre bioreactor has resulted
in 1.1 time kza increase, as well as up to 5 times higher biomass yield in comparison to the culture
system utilising atmospheric air as oxygenation medium (Pilarek et al., 2009). A hollow-fibre
bioreactor has been also utilised for monoclonal antibody (mAb) production in cultures of mouse 3C11
hybridoma cells (Shi et al., 1998). The application of aerated Oxyfluor emulsion as an oxygenation
agent has resulted in a 78 % increase in yield of IG;-type mAbs.

More recent studies on the application of liquid PFCs in animal cell cultures were focused on cultures
of 3-D aggregated anchorage-dependent (adherent) mammalian and human cells on a of liquid PFC in
hybrid liquid-liquid (PFC-medium) systems. /n vitro development of 3-D aggregates of cells which
typically grow in monolayers (due to growth-inhibition confluence effect) when they are cultured
directly on a layer of pure (i.e. non-emulsified and non-dispersed) liquid PFC, has been originally
reported by Shiba et al. (1998) and further elaborated by Brzezinska et al. (2012), Pilarek and
Grabowska (2012) as well as Pilarek et al. (2013b). Finally, liquid-liquid system has been studied as a
new way of a cartilage implant development (Pilarek et al., 2014) and it has been proven that the
system is suitable for inoculation and further enhanced growth of CP-5 chondrocytes on biodegradable,
fibrous poly-lactide (PLA) scaffolds placed on the interfacial area between immiscible layers of PFD
and the medium. From the bioprocess engineering point of view, such a hybrid system simultaneously
enables the adhesion of adherent cells to fibers of PLA-based scaffolds, as well as, due to a PFC phase,
enhances the mass transfer in the case of supplying/removing of respiratory gases, i.e., O, and COs.
Another way for liquid PFC-mediated mass transfer intensification in biodegradable scaffolds has been
proposed by Douglas et al. (2014). Oxygenated PFD has been successfully applied in the form of
dispersed droplets to thermosensitive injectable scaffolds based on chitosan hydrogels in order to
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improve human adipose-tissue derived stem cells growth. The incorporation of oxygenated PFD
improved the suitability of studied hydrogels as bone regeneration materials.

6.2. PFC-mediated transport of other gases

In the field of water-immiscible liquid gas carriers applied in culture systems, removal of carbon
dioxide from broth/medium via liquid PFCs has been much less investigated (e.g. by Percheron et al.
(1995) in the case of bacteria culture and by Syklowska-Baranek et al. (2014) in the case of plant cells)
than the problem of oxygen supply. Nevertheless, accumulation of CO, which is gas continuously
generated by cells and major waste product in culture media may cause detrimental effects in the cells,
causing intracellular enzyme inhibition leading to death and further lysis of the cells. Because carbon
dioxide is also well soluble in liquid PFCs, one can take advantage of the reversibility of the
mechanisms of oxygen-supply and COs-extraction from the culture medium/broth in bioprocesses
supported with liquid PFCs. The phenomenon is currently successfully adopted in biomedical
applications of liquid PFCs, such as liquid ventilation and temporary blood substitutes. In the case of
supply of non-respiratory gases (i.e. gases other than O, and COy), liquid PFCs have been applied as
water-immiscible carriers of nitrogen, nitrous oxide or ethene (see Table 4). The way of enhancing
ethene transfer is important particularly in the development of plant cell cultures because such gaseous
compound is one of the biologically active signal molecules which regulate metabolism and growth of
plant cells. Ethene has very poor solubility in water and liquid PFC-mediated supply of this compound
has great potential of applicability in plant cell cultures. Up to date the effects of ethene-saturated PFD
application have been studied only in the case of submerged cultures of Arneubia euchroma cells
(Syktowska-Baranek et al., 2014) in which 26 x higher value of the ratio between alkanin/shikonin, i.e.
extracellularly secreted naphtoginone-based plant secondary metabolites, has been achieved in
comparison to cultures without PFD.

7. SUMMARY AND OUTLOOK

During the past thirty years many studies have shown that various liquid PFCs can be successfully
applied as carriers of different kinds of gases (mainly O, but also CO», N,O and ethene) to supply them
into culture media or as scavengers of gaseous cellular by-products. Data published up to date clearly
revealed that the application of a perfluorinated gas carrier can facilitate mass transport in different
types and scales of microbial, plant cell and animal cell culture systems. One of the main reasons for
this is an increased value of the driving force of the process due to the relatively higher values of gas
solubility (e.g. in the case of dissolved oxygen) in perfluorinated compound added to culture system
than in aqueous medium. The second reason is the presence of a higher interfacial area in the case of
liquid PFCs applied in dispersed forms, which leads to higher kza values. On balance, the above
findings indicate that liquid PFCs can be recognised as very flexible bioengineering tools for gas
transfer intensification in bioprocess engineering.

However, no liquid PFC-based mass transfer intensification method has been implemented in a real
scaled-up industry-scale bioprocess installation so far. One of the main reasons why liquid PFCs are
still rather rarely applied in the field of bioprocess engineering is the relatively high cost of
perfluorinated compounds, which makes their use in large-scale bioprocesses uneconomical.
Nevertheless, liquid PFCs could be successfully used in scaled-down miniature-scale cell culture
systems to prevent oxygen limitation during grow to high cell densities. In miniaturised-scale culture
formats, the costs of perfluorinated compounds are insignificant due to their small volumes. It may be
argued that liquid PFC-mediated gas transfer would also offer benefits in the automation of
bioprocesses and in microbioreactor cultures of various kinds of cells, especially in high throughput
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screening approaches in which the prevention of cells from decrease of dissolved oxygen concentration
as well as increase of dissolved carbon dioxide concentration are still unsolved problems.

SYMBOLS
Ci molar concentration at interfacial area, mol dm™
H Henry’s Law constant, kPa m®> mol!
kra volumetric liquid-side mass transfer coefficient, s
kya volumetric gas-side mass transfer coefficient, mol m> s kPa’!
Ly Ostwald coefficient, -
M molar concentration, mol dm™
Oxc.c. oXygen carrying capacity, cm’® O, dm™ kPa™
p pressure, kPa
pi partial pressure at interfacial area, kPa
T temperature, K
Abbreviations perfluorochemicals
perflubron® 1-bromo-perfluorooctane
PFC perfluorochemical (synonym: perfluorocarbon)
PFD perfluorodecalin
PFDB 1-bromo-perfluorodecane

PFDCO perfluorodichlorooctane

PFMCP perfluoromethylocyclohexylpiperidin
PFMD perfluoromethylodecalin

PFTBA perfluorotributylamine

PFTPA perfluorotripropylamine

PLA polylactide

PTFE poly(tetrafluoroethylene) (Teflon®™)
TBPFCH tributyloperfluorocyclohexane

cell lines

#824 mouse-derived hybridoma cells
3CI11 mouse-derived hybridoma cells
4C10B6 mouse-derived hybridoma cells
A431 human epidermoid carcinoma cells
ADSC adipose tissue-derived stem cells

BHK-21 Syrian hamster kidney normal cells
C2C12 mouse myoblasts

CP-5 bovine articular cartilage progenitor cells
HeLa human epithelial cervix adenocarcinoma cells
Hep G2 human hepatocellular carcinoma cells

L-929 mouse subcutaneous connective tissue fibroblasts
NIH-3T3  mouse embriogenic fibroblasts

S19 Spodoptera frugiperda ovarian cells

other

DWP deep well plate

EYP egg yolk phospholipid

Hb haemoglobin

HFE hydrofluoroether

mADb monoclonal antibody
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Mb myoglobin
n/a not available
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