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TRACKING CONTROL OF A BALANCING ROBOT -
A MODEL-BASED APPROACH

This paper presents a control concept for a single-axle mobile robot moving on
the horizontal plane. A mathematical model of the nonholonomic mechanical system
is derived using Hamel’s equations of motion. Subsequently, a concept for a tracking
controller is described in detail. This controller keeps the mobile robot on a given
reference trajectory while maintaining it in an upright position. The control objective
is reached by a cascade control structure. By an appropriate input transformation,
we are able to utilize an input-output linearization of a subsystem. For the remaining
dynamics a linear set-point control law is presented. Finally, the performance of the
implemented control law is illustrated by simulation results.

1. Introduction

In industrial as well as in transport and service applications, single-axle
mobile robots can be used profitably. In comparison to traditional vehicles,
their main advantages are their smaller size and lower production costs.
During the last years, mobile robots have received increasing attention with
respect to their modeling and controller design. The main difficulties in the
design process are due to the nonholonomic constraints combined with the
inherent instability of the system [1, 2, 3, 4, 5, 6, 7].

In this paper, we consider a single-axle mobile robot as illustrated in Fig-
ure 1. It consists of a main body with an axle at its bottom and is equipped
with two independently driven wheels, each attached to one end of the axle.
This vehicle drives without slip on a horizontal plane. This means, we in-
vestigate a mechanical system that is subject to nonholonomic constraints.
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Fig. 1. Mobile robot rolling on the horizontal plane. The wheels are assumed to be ideal disks.
The center of gravity of the main body is labeled by CG. Its distance from the wheels’ axle is /

One way of dealing with this type of mechanical systems is utilizing
Lagrange multipliers to represent the reaction forces of the constraints, see
e.g. [8, 9]. This approach leads to a system of differential algebraic equations,
whose solution is more involved than the solution of ordinary differential
equations (ODE-system), see [10, 11, 12, 13]. Moreover, the dimension of
the problem is higher compared to the original system since the Lagrange
multipliers appear in the equations.

In Section 2, we follow another approach for the derivation of the equa-
tions of motion that is ascribed to Hamel [1]. His approach can directly take
into account the nonholonomic constraints and results in a system of ordinary
differential equations of lowest possible dimension. Within the literature, one
can find contributions on other mechanical systems where this approach has
already been proven beneficial [9, 14, 15].

The second part of the paper comprises a control concept for the mobile
robot which is able to meet both requirements: first, to keep the main body
upright, and second, to maintain the position of the axle’s center point close
to a reference trajectory. Both tasks are accomplished by a cascade control
structure that is described in section 3.

Section 4 finally presents some simulation results to illustrate the con-
troller’s performance on the derived mathematical model.

2. Modeling

We consider a single-axle mobile robot with two independently driven
wheels rolling on a horizontal plane as illustrated in Figure 1. The body of
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the robot as well as each of the wheels are assumed to be rigid. The position
of the center of the axle can be expressed in terms of the coordinates x and
v, whereas the wheels’ angles with respect to the main body are described
by ¢; and ¢,. Furthermore, the angles ¢ and a denote the rotation of the
robot’s body around the vertical axis and, respectively, the wheels’ axis. The
wheels’ radius and the length of the axle are designated by the constants r
and b, respectively. Moreover, the y-axis of the global coordinate system is
defined to be parallel to the robot’s axle for # = 0. The gravitational field
acts in vertical direction with gravity constant g. If « = 0 and ¢ = O the
principal axes of inertia of the main body are supposed to be parallel to the
axes of the global coordinate system. The corresponding principal moments
of inertia of this body w.r.t. its center of mass are J, J,, and J;, while
the wheels are assumed to be ideal disks with principal moments of inertia
1mwr2 and %mwrz, respectively. The distance between the center of gravity

2
of the main body and the wheels’ common axis is denoted by /. In order to

manipulate the robot, the torques 7, and 7, can be applied between the body
and the right and left wheel, respectively.

2.1. Kinematic Description of the Rolling Robot

The configuration of the rolling robot may be described in terms of the
six positional coordinates

g=1% q=x, @=y, @G=¢1, q@=¢ and gs=a. (1)

For the kinematic description of the rolling robot it has proven beneficial to
introduce the following six quasi-velocities

wo = b — r(¢1 — ) wy = xsin®d — ycos,
Wy = 1 + %(gb] +én) = Gicosd + ysind),  w; = d, @)
Wy = ¥cosd + ysind, ws = %(gbl — %).

In order to give an illustrative meaning for these variables, w; can be inter-
preted as the velocity of the axle’s center point in the direction of the wheels’
axis and wy as its (nonholonomic) path velocity v. Concerning the movement
of the axle’s center point, the velocity coordinate w, gives a measure for the
slip of the wheels when driving straight ahead, whereas wq refers to slip
when turning around its vertical axis. Moreover, w3 and ws represent the
angular velocities of the main body around the wheels’ axis and the vertical
line, respectively.
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Since, for the vehicle’s wheels, slipping should not be permitted in both,
the driving direction and in lateral direction, the velocities wy, w; and w;
must vanish identically. While the constraint equation wy = 0 is holonomic,
the remaining conditions result in the following nonholonomic constraints:

wp =xsin —ycos? =0, w,=ra+ %(gbl +¢p) — (xcos? + ysind) = 0.

3)

In fact the constraint equation wy = 0 can easily be integrated with respect
to time yielding

9 = 2«01 — ) + )

with some arbitrary integration constant #, being set to zero for the remainder
of this paper. Regarding this condition as given, we can now reduce the
complexity of the kinematic description and drop the coordinates gy and wy.
Since we cannot further reduce the number of coordinates, the dimension of
the configuration space equals five.

Note, that the definition of w3 to ws was not made arbitrarily but in a
way to get an invertible transformation between the velocity coordinates w;
and the time derivatives ¢; for i, j = 1,...,5. The inverse transformation can
thus be stated as

._.(901—902) (901—902) .1 1 b
x=sin|r——|wj + cos|{r———= | wa, Y1 = —wy — W3 + —Wy + —ws,
b r r 2r
- - 1 1 b
y = —Cos (rw)wl + sin (rw)(m, ) = —Wy — W3 + —Wyg — —ws,
r r 2r
a = ws3.
(&)

2.2. Equations of Motion of the rolling robot

In this subsection the equations of motion will be derived using Hamel’s
Equations [1]. His approach allows us to directly take the given nonholonomic
constraints into account, which — compared to other approaches — reduces
the numerical complexity significantly (refer to [7]).



www.czasopisma.pan.pl P N www.journals.pan.pl

=
~—
KADEMLA NAUK

TRACKING CONTROL OF A BALANCING ROBOT - A MODEL-BASED APPROACH 335

For that, we first have to express the kinetic energy in terms of the
introduced velocity coordinates w; (i = 1,...,5)) without prior consideration
of the nonholonomic constraints (3). One hence gets

2
mo + 2m m J, + myl mo + 3m
_ Mot Iy o M g D AIOE o Moty o
2 2 2 2

]5 2 .
+ 7(»5 + mpl(w3w4 cOs @ — W ws SIn @) — My, WywWy

(6)

where mg, m,, are the masses of the body and one wheel, respectively. The
moment of inertia Js is defined by

3 1
Js = (Jy + mpl*)sin® @ + J, cos® a + meiﬂ + Emwrz. (7)
The potential energy is simply given by
U = —mylgcosa. (8)

Hamel’s equations of motion [1] can be generally expressed as

d 0T A (0T 9U\d4j(w) < < 0T
YN o T 4q. —; = 9
dt Owy JZI (an aq;) dwy, + ;:14 1:§p+‘1 Ba)jyl’k(qwl fk’ )

for k =3,...,5, where

2 8.[
fo=y (10)

i1 OWk

These equations are quite similar in structure to Lagranges’ Equations of
Motion. However, they differ in the use of velocity coordinates wy instead of
time derivatives ¢; and they comprise one additional term that accounts for
the nonholonomic constraints. Within the foregoing equation, this is the third
term and it contains the so-called Hamel-coeflicients 7Z , Which are given by

V=i Pw;  Pw; |\ 04r Iy an
Lk 0q,0q,  0q4,0q, ) dw; Owy

v,o=1
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Within the derivation, all Hamel coeflicients ylj . vanish except 721’3 and y31’2,
which take the values —1 and +1, respectively. Hence, the equations of motion
of the mobile robot can subsequently be derived as

Jy +mol> mplcosa  0)(ws
molcosa mgy+3m, O ||lws]|+
0 0 J5 )\ ws
1 2 2 . . -1 -1
3 (JZ —Je—mpl )a)5 sin(2a) — mplgsin « 1 1
+ —myl sin ax(w% + w%) =7 - (Tl].
(Jx -J, + molz) w3ws Sin(2a) + molwaws sin @ 22 b |\T2
,

2r
(12)

These equations are accompanied by a system of kinematic differential equa-
tions which are deduced from the inverse transformation (5) taking the non-
holonomic constraints (3) into account:

Y1 —Qﬂz)

. ( S01—902)
X =COS|\r e

wy, y = sin (r W4, @ = w;3

(13)

gbl = —-w3 + —w4 + —ws, ()bz = —w3+ —Wyg — —ws.
r 2r r 2r

3. Control Concept

In this section, a controller is presented for the mechanical system de-
scribed above, which enables the mobile robot to track a given reference
trajectory. The controller design is related to the considerations for a similar
mechanical system in [6]. In the literature different controller design concepts
can be found for the easier problem described in [2, 3], or [4] but also for
more complex models as e. g. in [5]. The basic idea of our controller concept
is to split the control objective into two tasks. First, the controller has to keep
the main body upright, which can be regarded as a stabilization of an inverse
pendulum. Second, it has to maintain the position (x, y) of the axle’s center
point close to a reference trajectory.

The two mentioned control tasks are tackled by a cascade control struc-
ture. The outer loop controller solves the tracking control task by command-
ing appropriate values for the path velocity v and the angular velocity %
in order to maintain the axle’s center position on the reference trajectory.
Hence, it can be regarded as a pure positional controller. The inner loop
controller has to fulfill two tasks. It stabilizes the upright body position and
controls the actual velocities v and ¢ to meet the commanded velocities from
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the outer loop controller. Thus, this part controls the upright position on the
one hand and the translational and rotational velocities of the vehicle on the
other hand.

S | — |
W w 19 ! w1 l 9
Try Yr | Co?tr(gler : -
| or LT
Gr, Gr - ! g
Position ! g ] o
Controller I o |
M, Vd : Controller |[%2 =k " 72 o
! for v and « = © i
|
I I
i ! Inner | Loop Controller ' Vehicle Dynamics

Fig. 2. Overall structure of the controller divided into an inner and an outer loop controller
(position controller)

3.1. The outer loop controller

In the first instance, the outer loop controller is based on the assumption
that the path velocity v and the angular velocity 9 can be set arbitrarily.
For a given a reference trajectory P : ¢t — (x,(t), y-(t)), we can calculate the
reference value for the path velocity v as

b= 2492 (14)

As 9 denotes the angle between the velocity vector of the vehicle’s axis’ cen-
ter point and the positive x-axis of the inertial frame, its reference trajectory
¥, can be expressed in terms of X, and y, by

Xr

J, = arctan(&). (15)

Differentiation with respect to time yields the reference trajectory for the
angular velocity

xr).ir _Xr)}r
P = . 16
) (1o

As a plausible measure for the tracking error we can introduce the vector
d between the actual and the reference position of the robot’s axle’s center
point. It can be written in components of the inertial frame J as

d = (x, = )& + (3, = )8} (17)
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|
T Ty O
Fig. 3. Actual and reference position of the mobile robot on the reference trajectory # in view
from above

with unit vectors €, and €} in x- and y-direction, respectively. Its absolute

value shall be denoted by d = |d.
According to Figure 3, we can now define the angles ¢ and ¢, (€ [-x, 7))
between the vector d and the actual or the reference driving direction, re-

spectively, from the relations
- - - -
: d- e, d-e Ty d- vy
sino = , cosd = , sSInod, = , coso, = ——, (18)
d dv, Vy
where
v
\7:)(.76—;4‘)}6_;, V:hﬂ’ @:ezxe_;, e_:):;9 (19)
7, = &, X V. (20)

1y =

and
5
Vr = |Vr|s

V= 58, 498,
Therein, vector ¢, is pointing upwards. For the formulation of the control law,
we further need the components d, and d,, of d with respect to the vehicle
frame *U, which are defined by
d = d,é, +dyé, 1)

and hence are given by
d, =(x,—x)cost + (y, —y)sin? and d, =(x —x,)sin?d + (y, —y) cos .
(22)
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Now, we can formulate some heuristic control objectives. Assuming a
large error d, it seems quite reasonable to drive directly in the direction of
the error vector d in order to reduce the error d as fast as possible. Hence,
we might choose the angle 6 as an error measure for the control variable %
and the absolute distance d as an error measure for the path velocity v.

When d becomes small, the direction of the reference trajectory must
also be taken into account for the control of the driving direction. Otherwise
the vehicle might cross the reference trajectory in a more obtuse angle,
which leads to a sudden change in the error measure ¢ and might destabilize
the controller. Another destabilizing phenomena occurs when the vehicle
overtakes the reference trajectory, as it also causes a rapid change in the
angle o. In order to reduce these destabilizing effects, we can introduce the

following weighted error measures e = (e1 e e3)T with
e; =wi(d)sgn(d,)d, e =wi(d)sind, and ez =wy(d)(0—0,). (23)
Therein, the following functions are defined as

+1 ford, >0
—1 ford, <0’
(24)

wi(d) = %arctan (di())’ wo(d) = 1 —wi(d), and sgn(d,) = {

where dj is a tuning parameter. Note, that the angle 6 — ¢, is in fact the angle
between the reference and the actual driving direction, i.e. ¢, — .

The desired path velocity v, and the desired rotational velocity ¥, are
then calculated as a superposition of the reference values and the proportional
feedback of the defined error measures ¢; (i = 1,2, 3):

Vg =V, +aey, ﬂd = 19., + apey + aszes. (25)

Here, the variables a; (i = 1,2,3) are design parameters of the controller,
which have been appropriately chosen. Figure 4 illustrates the described
control structure of the outer loop controller.

3.2. The inner loop controller

The inner loop controller has to maintain the actual velocities v and 9
close to the demanded velocities v, and ;. Additionally, it has to stabilize
the vehicle around its upright position @ = 0. For the design of the inner
loop controller, it has proven helpful to define two new inputs as

U =71 —72 and U =71 +1r. (26)
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Fig. 4. Outer loop controller acting as a positional controller

Under the assumption that the values of @, @, and v are measured, the control
of ¥ can be regarded as being decoupled from the remaining dynamics (refer
to Equation (12)). Choosing

_r
~2b

with some newly introduced input variable w, we can compensate all non-
linearities and reduce the system dynamics to a simple double integrator in
J:

U (J5w + (Jx -J, + molz) ad sin(2a) + molvf} sin oz) 227

& =w. (28)

For this linear system we could now design many different stabilizing con-
trollers using linear control theory. For our example we reach sufficiently
good tracking performance by setting

w =13, — k(@ —9y) (29)

with some appropiate selection of k > 0, as we end up with a stable linear
differential equation for the deviation of i} from its desired value :

W —Jy) + k(@ —9y) = 0. (30)

al v
w Inverse U1 Vehicle d
k ‘@_’ Dynamics Dynamics

Fig. 5. Controller for the rotational velocity of the vehicle based on an input-output linearized

model

Hence, we get a nonlinear controller that is based on an input-output
linearization [16] of the vehicle dynamics (refer to Figure 5). If the demand-
ed rotational velocity J; changes relatively slowly compared to the error
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dynamics, one can also additionally neglect the feed forward term that is
marked by its gray color in Figure 5.

The remaining dynamics describe the evolution of @ and v. For this part,
we use a linearization of (12) in the sense of a Taylor approximation of first
order around a, ¥ = 0. Thus, we get a linear system of differential equations
that is fully decoupled from ¥:

Jy + mol? mo! ](a) N (—molga] _ [_llJ . 31)
mol mo + 3m,, )\ v 0 -

On the basis of these equations, we can now design a stabilizing linear con-
troller. Assuming a relatively small rate of change in the demanded velocity
vy from the outer loop controller, it has proven sufficient to design a set
point controller rather than a tracking controller not only for the control of
the upright body position @ but also for the desired path velocity v (see
Figure 6).

Q
o
=
=
C.
=
@
=

Qe

vq rray\|1¥2 | Vehicle
k( ) ! Dynamics

Fig. 6. SIMO control structure of the inner loop controller for ¢ and v

As we want to place the roots of the linear closed loop system arbitrarily
with the help of a static feedback controller, we choose the following control
law for the input signal u;:

d a .
U = — (k]() + kll_() kZO)[ ) = _klla' - klOQ + k20(vd - V) (32)
dt Vg =V

KT(4)

comprising the parameters k;;, k19, and k9. Consequently, we get the char-
acteristic polynomial of the closed loop system

C3S3 + (C1k11 + C2k20)S2 + (d1 + Clkl())s + C0k20 =0 (33)
where
co = —mplg, c1 = —(mol + (mg + 3m,,)r), (34)
ca = (Jy + mol* + mplr),  c3 = ((Jy + ml*)(mg + 3m,,) — (mol)*)r, ~ (35)
and
dy = —molgr(mg + 3m,,). (36)
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By comparing these coefficients with the coefficients of the desired closed
loop characteristic polynomial

S+ bhs*+lis+1=0, (37)

we are led to an affine system of equations in the controller parameters kg,
k]l, and kzo:

0 C1 C
b o & G k1o 0?
Li=l= 0 0|k, |+|= (38)
C3 Cc3
lo o o |\kxo 0
C3
with the unique solution
I, —d I, — cal l
kio = M’ ki = M, and koo = G (39)
C1 CoCq Co

To ensure stability, the inner loop controller has been parametrized to be sig-
nificantly faster than the outer controller. Moreover, this assumption helps to
justify the set point controller and hence to drastically reduce the complexity
of the inner loop controller. Even if no stability proof can be provided for
the presented controller, it has shown good performance in simulation studies
(see e. g. the following section).

4. Simulation Results

Within this section some examples are presented that illustrate the per-
formance of the previously designed controller. All models were formulated
using the modeling language Modelica and were simulated in Dymola.

As a first example, the tracking performance of the controlled vehicle is
demonstrated for a circular reference trajectory. The initial position of the
vehicle is given by

X0 =0.5 and Yo = 0.5, (40)

which results in an initial positional error (see Figure 7). The initial driving
direction is parallel to the inertial x-axis, i.e. ¥ = 0. The simulation results
are plotted in Figures 7, 8, and 9.

After a short correction phase, the vehicle follows the given reference
trajectory sufficiently well. This can be seen either for the coordinates x and
y in Figure 7 or for the path velocity v and the angle ¢ in Figure 8. The
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Fig. 7. Actual (red solid line) and circular reference trajectory (black dashed line) of x and y for
an initial displacement

-
I
1

0 5 10 15 20 0 5 10 15 20
t t

Fig. 8. Actual (red solid line) and reference trajectory (black dashed line) of v and ¢ (in degree)
for an initial displacement from the circular reference trajectory in x, y

0 5 10 15 20
t

Fig. 9. Trajectory (red solid line) and reference value (black dashed line) of angle @ (in degree)
for an initial displacement from the circular reference trajectory in x, y

position controller for @ does also show quite good performance (refer to
Figure 9) as it keeps the body upright with a maximum decline of 11°.

The second example shows the tracking performance of the controller
on a straight reference trajectory for an initial positional and rotational error
(see Figure 10). The initial position and driving direction of the vehicle is
given by

Xo =1, o =0, and 9 = 0. (41)

Figures 10, 11, and 12 show the simulation results. At the beginning of
the simulation, one can see the action of the coupled v- and a-controller.
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0 5 10 15 20 0 0.5 1 1.5 2

Fig. 10. Actual (red solid line) and straight reference trajectory (black dashed line) of x and y for
an initial positional and rotational error

80
60
> 40

0 5 10 15 20 0 5 10 15 20

Fig. 11. Actual (red solid line) and reference trajectory (black dashed line) of v and ¢ (in degree)
for an initial positional and rotational deviation from the straight reference trajectory in x and y

In order to accelerate the vehicle in the appropriate direction, the controller
moves the axle’s center point in the other direction. As a reaction the body
tilts and creates a torque around the wheels’ axis. By compensating this
torque the vehicle begins to move in the intended direction. Here, the vehicle
moves backwards due to the initial positional error. After a short period it
stops and changes the direction of its motion in order to follow the reference
trajectory. In the following period, the vehicle approaches the reference trajec-
tory (black dashed line in Figures 10 and 11) showing the good performance
of the J-controller as well as the controller for v.

0 5 10 15 20
t

Fig. 12. Trajectory (red solid line) and reference value (black dashed line) of angle « (in degree)
for an initial positional and rotational deviation from the straight reference trajectory in x and y
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Figure 12 depicts the trajectory of the tilting angle @ of the main body. As
the maximum absolute tilting angle is smaller than 10 degrees, the position
controller also shows sufficiently good performance.

5. Conclusions

This paper presents a control concept for a mobile robot rolling on the
horizontal plane. After introducing the nonholonomic mechanical system, a
mathematical model has been derived using Hamel’s equations of motion [1].
With the help of a cascade control structure, a tracking controller has been
designed that tracks the mobile robot along a given reference trajectory in an
upright position. While, the outer loop controller solves the tracking control
task for the kinematic wheel model by commanding appropriate values for
both the path velocity and the angular velocity, the inner loop controller
stabilizes the upright body position and maintains the commanded velocities
from the outer loop controller. Exploiting the inner structure of the equa-
tions of motion, the inner loop controller has been split into two separate
controllers. For the dynamics of the angular velocity a linearizing control law
has been presented. For the remaining dynamics a linear set-point control
law has been designed. Finally, the performance of the implemented tracking
control law has been illustrated by simulation results.

Manuscript received by Editorial Board, December 16, 2013;
final version, April 19, 2014.
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Sterowanie $ledzace robota zachowujacego réwnowage — podej$cie oparte na modelu
Streszczenie

W artykule przedstawiono koncepcje sterowania ruchem jednoosiowego robota poruszajacego
si¢ po plaszczyZnie poziomej. Model matematyczny nieholonomicznego systemu mechanicznego
wyprowadzono korzystajac z réwnan ruchu Hamela. Opisano nastg¢pnie szczegétowo koncepcje
sterownika §ledzacego. Sterownik prowadzi poruszajacy si¢ robot po zadanej trajektorii utrzymujac
go jednoczesnie w pozycji pionowej. Cel sterowania jest osiagniety przy zastosowaniu kaskado-
wej struktury sterowania. Dzigki odpowiedniej transformacji danych wejSciowych, w podsystemie
istnieje mozliwos¢ linearyzacji wejscie-wyjscie. Dla dynamiki pozostatej czgsci zaprezentowano
prawo liniowego sterowania stalowarto$ciowego. Ostatecznie, jako$¢ dziatania zastosowanych praw
sterowania zilustrowano wynikami symulacji.



