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MODIFICATION OF THE RIGID FINITE ELEMENT METHOD IN
MODELING DYNAMICS OF LINES AND RISERS

The paper presents an application of the modified rigid finite element method
to analysis of the dynamics of slender structures. The equations of motion are for-
mulated for a system discretized by means of the method, and discussion is limited
to planar systems and large deformations. Slender elements can be found in offshore
engineering as lines, cables and risers. In these cases the hydrostatic influence of
water and sea currents has to be taken into account. While analyzing dynamics of
risers it may also be necessary to consider the flow of fluid inside the riser. The
influence of hydrodynamic coefficients and the velocity of the internal flow of fluid
on displacements and forces is presented.

1. Introduction

Modeling of slender elements used in offshore engineering such as lines,
cables and risers requires not only bending and longitudinal flexibilities but
also large deflections to be considered. Moreover, in the sea environment up-
lift pressure, drag force, added mass water and, in the case of risers, internal
flow of hydrocarbons (petroleum and gas) have to be taken into account. This
means that modeling the behavior of slender systems in offshore engineering
is often more complicated than modeling cables, ropes and pipes in the air.

In order to model this type of system, different methods are used [1],
among which the most popular are the lumped mass and finite element meth-
ods. In the lumped mass method [2], inertial features of the systems modeled
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are reflected by replacing a continuous system by a system of lumped masses.
Despite simplifications of the method, it is often used for modeling risers
[3]. A similar approach is used in the method called the Flexible Segment
Model (FSM) presented in [4].

The finite element method is most often used in dynamic analysis of
lines, cables and risers. Many commercial packages both of general use
(Abaqus) or specialized for offshore engineering (Riffex or Offpipe) are based
on this method. However, new methods of modeling slender systems used in
offshore engineering are still being sought for [5,6,7,8,9]. This paper, which
presents an application of a modification of the rigid finite element method to
modeling a planar system with large deformations of links and consideration
of longitudinal flexibility, is one of such methods.

Applications of the rigid finite element method (RFEM) in its classical
formulation, when the elements have 6 degrees of freedom [10], to modeling
of pipes transporting petroleum or gas are presented in [11, 12]. Applica-
tion of the modification of RFEM in which only bending flexibility of the
discretized links is considered [13] to dynamic analysis of a pipe-laying
operation by the reel method is presented in [14,15].

This paper continues research [16] and presents two different formula-
tions of a modification of the rigid finite element method enabling us to
consider of both bending and longitudinal flexibilities of slender links. In
the first, absolute coordinates of rigid elements are used and constraint equa-
tions are formulated. In the second paper, the authors abandon the idea of
separating the elements and use independent coordinates which lead to a for-
mulation with a much smaller number of generalized coordinates. This paper
presents the most important parts of the two formulations and compares their
numerical effectiveness. Moreover, the formulation in absolute coordinates is
supplemented with relations describing an influence of hydrodynamic forces,
and new detailed relations for the internal flow of fluid in the riser are also
given. Exemplary numerical simulations demonstrate the influence of drag
force, added mass and internal flow of fluid on displacements and forces in
the system analyzed.

2. Modification of RFEM, alternative formulation

In the modified Rigid Finite Element method used in the analysis of
bending vibrations of slender links [13,14,15,17], division into rigid finite
elements is carried out as in the classical RFEM [10], presented in Fig. 1.
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Fig. 1. Division into rigid finite elements (rfe) and spring-damping elements (sde): a) primary
division, b) secondary division

First, the slender beam-like link with length L is divided into n elements
with the following lengths:

d =
L
n

(1)

Then, during the secondary division, massless spring-damping elements (sde),
representing bending features of sections with length d, are placed in the
middle of the rigid elements. When the linear physical relations describe the
characteristics of the discretized links, stiffness coefficients are calculated
according to the formula:

cb
i =

EI
d

(2)

where: E – Young’s modulus of elasticity,
I – inertial moment of the cross-section area.

Rigid finite elements (rfe) are sections of the link placed between sdes or
between the ends of the link and sde 1 or n respectively. Thus, the generalized
coordinates of the rfe are:

x0, y0− coordinates of point A0,
ϕi− inclination angles of rfe 0÷n towards axis x of the coordinate system

(Fig. 2).

Fig. 2. Generalized coordinates of the slender link with bending flexibility only
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In order to consider longitudinal flexibility too [16], we propose in this
paper one more stage of discretization, in which each rfe from Fig. 1b is
divided into two parts connected by means of an additional sde representing
longitudinal flexibility of the rfe described by ∆i (Fig. 3a).

Fig. 3. Modification of RFEM when both bending ad longitudinal flexibilities are considered:
a) spring-damping elements for longitudinal flexibility, b) generalized coordinates of rfe i,

c) geometrical and mass parameters of rfe i

Geometrical and mass parameters of parts (1) and (2) ( j =1,2) of rfe i
are characterized by the following:

a( j)
i − distance of the center of mass of part j of rfe i from point Ai,

l( j)i − length of part j of rfe i,
I ( j)
i − inertial mass moments of part j of rfe i with respect to their mass

centers C( j)
i .

Longitudinal stiffness coefficients of sde i can be defined from the fol-
lowing relations:

cl
i =

EFi

li
(3)

where: Fi – area of cross-section of rfe i,
li− length of rfe i (without consideration of ∆i).

Kinetic and potential energies of the link discretized in the way described
above can be presented in the following forms:

– kinetic energy:

T =

n∑

i=0

2∑

j=1

1
2

{
m( j)

i

[(
ẋ( j)
ci

)2
+

(
ẏ( j)
ci

)2]
+ I ( j)

i (ϕ̇i)2
}

(4)
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– potential energy of bending deformations:

V b =

n∑

i=1

cb
i (ϕi − ϕi−1) (5.1)

– potential energy of longitudinal deformations:

V l =

n∑

i=0

cl
i∆

2
i (5.2)

– potential energy of forces of gravity:

V g =

n∑

i=0

m( j)
i y( j)

ci g (5.3)

Equations of motion of the slender link can be derived from the Lagrange
equations. First the generalized coordinates of rigid finite elements have to be
chosen according to one of the above formulations. Below, a short description
of the two approaches is given.

In further considerations, we use the terms absolute and independent
coordinates in order to distinguish the approaches presented. In both cases,
according to [18], one could use the term mixed coordinates: absolute/joint
in the first case and nodal/joint in the second case.

2.1. Absolute coordinates

In this case, the motion of rfe 0 to rfe n is described by the vectors:

qi =
[
xi yi ∆i ϕi

]T for i = 0, 1, ..., n. (6)

The equations of motion of rfe i can be written in the form:

Mr
i q̈i = hr

i + D̄Ri + DiRi+1 − ∂V
g

∂qi
(7.1)

where: Mr
i – mass matrices 4×4,

hr
i = hr

i (qi, q̇i)− right side vectors 4×1,
D̄,Di(qi)− matrices of coefficients 4×2,
Ri =

[
Rx

i ,R
y
i

]T − vector of reactions at points Ai.
Detailed expressions for elements of above vectors and matrices are given

in [16].
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It is assumed that the coordinates of point A0 are known:


x0 = x0(t)
y0 = y0(t)

. (7.2)

Moreover, the coordinates of rfes have to fulfill the following constraint
equations:


xi+1 = xi + (li + ∆i) cosϕi

yi+1 = yi + (li + ∆i) sin ϕi
for i = 0, 1, ..., n − 1 (7.3)

Formulae defining elements of matrices and vectors from the above formulae
are defined in [16]. Having completed equations (7) with constraint equations
in the acceleration form, we can define the equations of motion of a slender
link as:

M̄I q̈I − D · R = fI (8.1)

DT q̈I = g (8.2)

qI =



q0

q1
...

qn


(8.3)

where: M̄I = diag
{
M̄0, M̄1, ..., M̄n

}
,

D, R, f, g – defined in [16].
A special diagonal form of matrix M̄I enables an easy calculation of

M̄−1
I and then vectors q̈I and R.

2.2. Independent coordinates

In this case, the components of the following vector are assumed to be
generalized coordinates of the slender link:

qII =
[
x0, y0,∆0, ϕ0, . . . ,∆i, ϕi, . . . ,∆n, ϕn

]T (9)

The equations of motion of the link take the following form:

M̄II q̈II − DR0 = fII (qII , q̇II ) (10)

and from the constraint equations only (7.2) apply.
It should be noted that matrix M̄II is full in this case.
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2.3. Comparison of numerical effectiveness of formulations in absolute
and independent coordinates

Formulation in the absolute coordinates leads to a system with:

• 4×(n+1) differential equations (8.1),
• 2×(n+1) equations (8.2).

Mass matrix M̄I takes a block-diagonal form.
Formulation of the equations of motion using independent coordinates

leads to a system with:
• 2×(n+2) differential equations (10) with full mass matrix,
• 2 constraint equations (7.2).
In order to define how the choice of generalized coordinates influences the
numerical effectiveness of the models, computer programs implementing the
algorithms have been elaborated. The Runge-Kutta method of the fourth order
with a constant integration step has been used for integrating the equations
of motion. Systems of linear algebraic equations have been solved by means
of the Gauss method with a pivot element.

Motion of mass ms = 1000 kg hanging on a line with length L = 100
m is analyzed. The following parameters of the line are assumed: Young’s
modulus E = 1011 N/m2; density of the material ρ = 2000 kg/m3; circular
cross-section with radius R = 0.025 m. Initial conditions are shown in Fig. 4.

Fig. 4. Mass ms hanging on the line with length L

Bending stiffness of sde is omitted, assuming cb
i =0. A configuration in

which mass ms is displaced by ∆ = 50m under horizontal force Fx is assumed
as initial conditions. Calculations are carried out with integration step h =

10−4 s for time t ∈ <0, 20s>. Table 1 presents an influence of number n and
the method of defining generalized coordinates on the time of calculations.

Analysis of results from Table 1 indicates that, for large n, considerably
shorter times of calculations are obtained when absolute coordinates are used.
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Table 1.
Influence of definition of generalized coordinates of rfes on numerical effectiveness

of dynamic simulations

n
Absolute coordinates Independent coordinates

xs (20 s) ys (20 s) time of calculations xs (20 s) ys (20 s) time of calculations

10 -49.547 -86.750 37” -49.549 -86.750 35”

20 -49.551 -86.763 1’23” -49.552 -86.762 3’18”

30 -49.552 -86.765 2’20” -49.553 -86.765 10’06”

40 -49.552 -86.765 3’30” -49.553 -86.765 23’13”

50 -49.552 -86.765 4’52” -49.553 -86.765 43’13”

100 -49.552 -86.765 14’23” -49.553 -86.765 5h32’25”

Despite the necessity of considering constraint equations, the diagonal mass
matrix definitely increases numerical effectiveness of the algorithm. Taking
this into consideration below, only the formulation in absolute coordinates
is used for introduction of hydrodynamic forces and internal flow of fluid in
risers.

Fig. 5 presents the trajectory of mass ms while Fig. 6 presents a shape
of the line at the chosen time points. Differences between n =10 and n =50
are negligible, and impossible to show in the scale of the figures.

Fig. 5. Trajectory of mass ms

It should be underlined that both formulations of the modified rigid finite
element method have been verified by comparison of our own results with
the analytical solution for a catenary line. The results indicate that an error
of 1% with respect to the exact solution is already obtained for n = 40.
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Fig. 6. Shape of the line at chosen moments

3. Influence of hydrodynamic forces

Fig. 7. External DOut and internal DIn diameter of the riser

When an rfe of the discretized link is submerged, then the following
forces act on the segment with length dξ (Fig. 7):
– uplift pressure and force of gravity [2]:

dFr =


0

(−ρrAr − ρ f A f + ρwAw)

 dξ (11)

where: ρr – density of the riser (pipe) walls,
ρ f− density of the fluid inside the riser,
ρw− density of water,
Ar =

π

4

[
D2

Out − D2
In

]
− area of the riser walls,
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A f =
π

4
D2

In− area of fluid flow,

Aw =
π

4
D2

Out− external cross-section of the riser;
– drag forces dependent on the velocity of the sea current and element [19]:

dFv = −1
2
ρwDOut


Dξ

∣∣∣V ′ξ
∣∣∣ V ′ξ

Dη

∣∣∣V ′η
∣∣∣ V ′η

 dξ (12)

where: Dξ ,Dη– drag coefficients,
V ′ξ ,V

′
η− components of velocity V′ = V′r − V′w,

V′r ,V′w − vectors of velocity of the riser and water in coordinate
system {ξ, η};

– inertial forces [19]:

dFb =
[
CM AOutρw · aw − (CM − 1)AOutρw · a] dξ (13)

where: CM– inertia coefficient,
aw− vector of acceleration of water (sea current) in frame {ξ, η},
a− vector of acceleration of the riser in frame {ξ, η};

– interaction forces of the pipe and internal fluid. Further, we show how to
take into account this interaction.

Consideration of drag forces dependent on velocity requires introduction
of additional vectors into the right side of equations of motion (7):

fv
i = fv

i (qi, q̇i,Vw) (14)

where: Vw – water velocity in the global system.
Consideration of inertial forces leads to the following relation:

fb
i = Mb

i (qi)q̈i + hb
i (qi, q̇i, aw) (15)

In order to take into account uplift pressure acting on the i-th rfe, forces
from (11) have to be integrated with respect to the length of both parts of
the element, and thus instead of V g from (5.4) the following expression is
obtained :

V g
w =

{[
Ar

i + A f
i − Aw

i

]
l(1)
i y(1)

Ci
+

[
Ar

i + A f
i − Aw

i

]
l(2)
i y(2)

Ci

}
g (16)

where: y(1)
Ci

= yi +
l(1)
i

2
sin ϕi – coordinates of the center of the mass of

part (1) of rfe i,

y(2)
Ci

= yi +

l(1)
i +

l(2)
i

2
+ ∆i

 sin ϕi − coordinates of the center of the

mass of part (2) of rfe i.
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Having calculated derivatives
∂V g

w

∂qi
, they have to be introduced into equa-

tions (7) instead of
∂V g

∂qi
.

In order to consider the influence of internal fluid flow on the motion of
the riser, an approach similar to that presented in [19] is used and this does
not require direct definition of interaction forces between the fluid and the
riser.

Let u define the velocity of the fluid with respect to the walls of the
riser. According to Fig. 8 the kinetic energy of the fluid flowing through rfe
i is defined as follows:

T f
i =

1
2
ρ

f
l

l(1)
i∫

0

[
V 2

x,1 + V 2
y,1

]
dξ +

1
2
ρ

f
l

li∫

l(1)
i

[
V 2

x,2 + V 2
y,2

]
dξ (17)

where: ρ f
l = ρ f A f – linear density of the fluid,

Vx,1, Vy,1 − velocity of the fluid in part (1) of rfe i,
Vx,2, Vy,2 − velocity of the fluid in part (2) of rfe i.

Fig. 8. Velocities of the fluid a) in part (1) of rfe i, b) in part (2) of rfe i

Velocities Vx,1, Vy,1, Vx,2, Vy,2 in terms of the absolute coordinates
given in (6) are defined by the relations:

Vx,1 = ẋi − ξϕ̇isϕi + u(1)
i,x

Vy,1 = ẏi + ξϕ̇icϕi + u(1)
i,y

(18.1)

Vx,2 = ẋi + ∆̇icϕi − (ξ + ∆i)ϕ̇isϕi + u(2)
i,x

Vy,2 = ẏi + ∆̇isϕi + (ξ + ∆i)ϕ̇icϕi + u2)
i,y

(18.2)
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where: ux, uy – are components of relative velocity of the fluid in the inertial
system,

cϕi = cosϕi, sϕi = sin ϕi.

Components ux, uy in the inertial system depend on angle ϕ of inclination
of the central line of the riser towards axis x of the global frame of reference.

It is assumed that:

u(1)
i =


u(1)

i,x

u(1)
i,y

 = u


αi,1(ξ)cϕi−1 + βi,1(ξ)cϕi

αi,1(ξ)sϕi−1 + βi,1(ξ)sϕi

 (19.1)

u(2)
i =


u(2)

i,x

u(2)
i,y

 = u


αi,2(ξ)cϕi + βi,2(ξ)cϕi+1

αi,2(ξ)sϕi + βi,2(ξ)sϕi+1

 (19.2)

where: αi,1 = 1 − ξ

l(1)
i

, βi,1 =
ξ

l(1)
i

,

αi,2 = 1 − ξ − l(1)
i

li − l(1)
i

, βi,1 =
ξ − l(1)

i

li − l(1)
i

.

If we assume that functions u(1) and u(2) take form (19), the following con-
ditions are fulfilled:

u|ξ=0 = u


cϕi−1
sϕi−1

 (20.1)

u|ξ=l(1)
i

= u


cϕi

sϕi

 (20.2)

u|ξ=li = u


cϕi+1

sϕi+1

 (20.3)

which means that the continuity of u between rfes i-1, i, i+1 is preserved.
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Bearing in mind the above assumptions, the kinetic energy of the fluid
flowing through rfe i can be expressed as:

T f
i =

1
2
m f

i ẋ2
i +

1
2
m f

i ẏ
2
i +

1
2
m f

i,2∆̇
2
i + I f

i ϕ̇
2
i

+
1
2
u2

{
m f

i,1

[
2
3

+
1
3

cos(ϕi−1 − ϕi)
]

+ m f
i,2

[
2
3

+
1
3

cos(ϕi − ϕi+1)
]}

+ẋi

{
m f

i,1

[
−ϕ̇iAi,0sϕi +

u
2
(cϕi−1 + cϕi)

]

+ m f
i,2

[
∆̇icϕi − (∆i + Bi,0)ϕ̇isϕi +

u
2
(cϕi + cϕi+1)

]}

+ẏi

{
m f

i,1

[
ϕ̇iAi,0cϕi +

u
2
(sϕi−1 + sϕi)

]

+ m f
i,2

[
∆̇isϕi + (∆i + Bi,0)ϕ̇icϕi +

u
2
(sϕi + sϕi+1)

]}

+uϕ̇i

[
m f

i,1Ai,1 sin(ϕi−1 − ϕi) − m f
i,2

(
1
2

∆i + Bi,1

)
sin(ϕi − ϕi+1)

]

+m f
i,2∆̇i

u
2

[
1 + cos(ϕi − ϕi+1)

]

(21)

where: m f
i,1 = ρ

f
l l

(1)
i , m f

i,2 = ρ
f
l (li − l(1)

i ), m f
i = m f

i.1 + m f
i,2,

Ai,0 =
1
2
l(1)
i , Ai,1 =

1
6
l(1)
i ,

Bi,0 =
1
2
(li + l(1)

i ), Bi,1 =
1
6
(2li + l(1)

i ),

Ii =
1
3
m f

i,1(l
(1)
i )2 + m f

i,2∆i(∆i + 2B0) +
1
3
m f

i,2

(
l2i + lil

(1)
i + (l(1)

i )2
)
.

It should be noted that kinetic energy T f
i of the fluid flowing through rfe i of

the riser depends not only on components of vector qi =
[
xi, yi,∆i, ϕi

]T , but
also on ϕi−1 and ϕi+1. Since the kinetic energy of the fluid flowing through
all rfes can be expressed as:

T f =

n∑

i=0

T f
i for i = 0, ..., n (22)

where T f
i defined in (21) and the Lagrange operators are as follows:

εqi(T
f ) =

d
dt
∂T f

∂q̇i
− ∂T

f

∂qi
= M f

i q̈i + hi (23)
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where:

M f
i = M f

i (qi) =



m f
i 0 m f

i,2cϕi −Aisϕi

0 m f
i m f

i,2sϕi Aicϕi

m f
i,2cϕi m f

i,2sϕi m f
i,2 0

−Aisϕi Aicϕi 0 I f
i


,

Ai = m f
i A0 + m f

i,2(∆i + Bi,0),

hi = hi(qi−1,qi, qi+1) =



h f
i,1

h f
i,2

h f
i,3

h f
i,4


,

h f
i,1 = −2m f

i,2∆̇isϕi − ϕ̇2
i Aicϕi

+
u
2

{
−m f

i,1
[
ϕ̇i−1sϕi−1 + ϕ̇isϕi

] − m f
i,2

[
ϕ̇isϕi + ϕ̇i+1sϕi+1

]}

+
u̇
2

{
m f

i,1
[
cϕi−1 + cϕi

]
+ m f

i,2
[
cϕi + cϕi+1

]}
,

h f
i,2 = 2m f

i,2∆̇iϕ̇icϕi − ϕ̇2
i Aisϕi

+
u
2

{
m f

i,1
[
ϕ̇i−1cϕi−1 + ϕ̇icϕi

]
+ m f

i,2
[
ϕ̇icϕi + ϕ̇i+1cϕi+1

]}

+
u̇
2

{
m f

i,1
[
sϕi−1 + sϕi

]
+ m f

i,2
[
sϕi + sϕi+1

]}
,

h f
i,3 = m f

i,2

{
− (

∆i + Bi,0
)
ϕ̇2

i +
u
2
ϕ̇i+1 sin (ϕi − ϕi+1)

+
u̇
2

[
1 + cos (ϕi − ϕi+1)

]} ,

h f
i,4 = 2m f

i,2
(
∆i + Bi,0

)
∆̇iϕ̇i + m f

i
u
2

(ẋisϕi − ẏicϕi)

+m f
i,1Ai,1

[
u̇ sin (ϕi−1 − ϕi) + ϕ̇i−1u cos (ϕi−1 − ϕi)

]

−m f
i,2

(
1
2

∆i + Bi,1

) [−u̇ sin (ϕi − ϕi+1) + uϕ̇i+1 cos (ϕi − ϕi+1)
]

−1
6
u2

[
m f

i,1 sin (ϕi−1 − ϕi) − m f
i,2 sin (ϕi − ϕi+1)

]

+hi,L + hi,R

,

u̇ =
du
dt
.

Quantities hi,L and hi,R occurring in formulae for h f
i,4 are defined as:

hi,L =



0 if i = 0

−∂T
f
i−1

∂ϕi
if i > 0

(24.1)
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hi,R =



0 if i = n

−∂T
f
i+1

∂ϕi
if i < 0

(24.2)

where:

−∂T
f
i−1

∂ϕi
= −m f

i−1,2u
{
u
6

sin (ϕi−1 − ϕi) +
1
2

(ẋi−1 sin ϕi − ẏi−1 cosϕi)

+
∆̇i−1
2

sin (ϕi−1 − ϕi) +

(
∆i−1
2

+ Bi−1

)
ϕ̇i−1 cos (ϕi−1 − ϕi)

} ,

−∂T
f
i+1

∂ϕi
= m f

i+1,1u
{
u
6

sin (ϕi − ϕi+1) − 1
2

(ẋi+1 sin ϕi − ẏi+1 cosϕi)

− Ai+1,1ϕ̇i+1 cos (ϕi − ϕi+1)
} .

In view of relation (19), formulae for h f
i,4 contain expressions u2 sin (ϕi−1 − ϕi)

and u2 sin (ϕi − ϕi+1) proportional to the square of relative velocity of the fluid
and curvature of the riser defined by the differences of angles ϕi−1 − ϕi and
ϕi − ϕi+1.

If apart from hydrostatic forces fv
i and fb

i we also consider forces caused
by internal flow of fluid in the riser, the equations of motion of rfe i can be
written as:

Miq̈i = D̄Ri − DiRi+1 + fi (25)

where: Mi = Mv
i −Mb

i + M f
i ,

fi = −hv
i + fv

i + hb
i − h f

i −
∂V g

w

∂qi
.

Constraint equations take forms (7.2) and (7.3).

4. Numerical simulations

In order to define the influence of hydrostatic coefficients on dynamics
of the riser we consider a situation in which an initial position of the riser is
defined in Fig.9a, and then it is moved along axis x assuming that velocity
ẋ0 changes as in Fig. 9b.

Geometrical and mass data of the riser and values of coefficients are
given in Table 2.

Calculations are carried out for n =50, for t ∈<0,200s>with an integra-
tion step 10−3 s. It is assumed that all rfes are submerged in the sea.

Fig. 10 presents the course of trajectory of point A for different values
of drag coefficients Dη, assuming CM =2. It can be seen that the value of
this coefficient considerably influences the motion of the riser.
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Fig. 9. Displacement of the riser a) motion of the vessel, b) velocity course vx = ẋ0

Table 2.
Parameters of the system

Parameter Denotation Value Unit

Length of the riser L 500 m

External diameter DOut 0.50 m

Internal diameter DInn 0.45 m

Young’s modulus E 2.07·1011 N/m2

Density of the riser ρr 7850 kg/m3

Density of water ρw 1025 kg/m3

Density of the fluid ρ f 0

Resistance coefficients Dξ 0

Dη 0.7;1.0;1.3

CM 1.0;1.5;2.0

Velocity of the sea current Vw 0

Acceleration of the sea current aw 0

The influence of inertial forces (together with the added mass) on calcula-
tion results is presented in Fig. 11. We compared results for CM =1, CM =1.5
and CM =2, assuming that Dη =0.7. It can be seen that the influence of CM is
less obvious.

Calculations for a pipe with length L =170 m laid by J-lay method
(Fig. 12) are carried out in order to examine the way in which internal flow
of fluid influences displacements and forces acting on the riser.
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Fig. 10. Influence of drag coefficients Dη on trajectory of point A

Fig. 11. Influence of coefficient CM on trajectory of point A

Fig. 12. Displacement of the riser to an initial position

To obtain the position of the riser as in Fig.12 for A|t=0, we solved the
static problem of shifting end A of the riser by means of force FA,x until the
following relation is fulfilled:

x0 − xA = ∆xA = 140m (26)

Parameters of the system are given in Table 3.
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Table 3.
Parameters of the system with fluid flow

Parameter Denotation Value Unit

Length of the riser L 170 m

External diameter DOut 0.30 m

Internal diameter DInn 0.26 m

Density of the fluid ρ f 840 kg/m3

Drag coefficients Dη 0.7

CM 2.0

Stiffness coefficients CE,x 107 N/m

CE,y 106 N/m

Velocity of the fluid u 0; 5; 10 m/s

Remaining parameters as in Table 2

It is assumed that the motion of point A0 is defined by the relations:

x0 = 10 cos
(
2π
27 t

)
[m], (27.1)

y0 = 0[m]. (27.2)

Calculations have been carried out for n =40 which means that the riser is
divided into 41 elements. Fig. 13 shows the comparison of the longitudinal
force and the trajectory of the middle of the riser when ρ f =0 (no fluid
inside the riser) as well as ρ f =840 kg/m3 and u =0 (the riser is filled with
no movable fluid).

Fig. 13. Influence of the internal fluid mass on the results of calculations: a) longitudinal force
inside the riser, b) trajectory of the middle point of the riser

The influence of the velocity of the internal fluid flow u on the results
of calculations are presented in Fig.14 (for u =0; u =5 m/s; u =10 m/s).
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Fig. 14. Influence of the velocity of the fluid flow u on results of calculations a) rfe 0, b) rfe 20

Longitudinal forces are compared at rfe 0 and 20 which means close to point
A0 and in the middle of the riser.

The influence of the flow velocity u on the longitudinal force (tension of
the riser) is below 1%.

5. Final remarks

The paper presents an application of the modification of the rigid finite
element method to modeling of dynamics of risers. It is shown that the formu-
lation using absolute coordinates is considerably more numerically efficient.
We also discuss how viscous and hydrodynamic forces of the fluid flowing
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inside the riser can be considered. Results of numerical simulations indicate
the large influence of drag forces (coefficient Dη) on displacements while
the riser is shifted. The influence of coefficient CM characterizing an inertial
resistance is much smaller. According to test calculations, the influence of
the velocity of the internal flow u on values of the tension force is about
1%. It should be noted that this influence can be as large as 15% [20] when
velocity u changes and curvature of the riser is large.

Manuscript received by Editorial Board, November 28, 2012;
final version, February 25, 2013.
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Modyfikacja metody sztywnych elementów skończonych
w modelowaniu dynamiki lin i riserów

S t r e s z c z e n i e

W pracy przedstawiono zastosowanie zmodyfikowanej metody elementów skończonych do
analizy dynamiki wiotkich struktur. Sformułowano równania ruchu układu dyskretyzowanego pre-
zentowaną metodą, przy ograniczeniu rozważań do płaskich układów i uwzględnieniu dużych ugięć.
Elementy wiotkie spotykane są często w technice offshore’owej jako liny, kable i risery. Anali-
zę dynamiki tych elementów trzeba jednak wówczas uzupełnić o hydrostatyczne oddziaływania
wody i prądów morskich. W przypadków riserów, należy też uwzględnić możliwość przepływu
płynu w ich wnętrzu. Na przykładzie risera pokazano wpływ współczynników hydrodynamicznych
i prędkości przepływu płynu we wnętrzu risera na przemieszczenia i siły.


