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CORRELATION BETWEEN DIAGONAL RATIO AND CONDITION
NUMBER OF THE GENERALIZED INERTIA MATRIX OF A

SERIAL-CHAIN

The condition number of the Generalized Inertia Matrix (GIM) of a serial
chain can be used to measure its ill-conditioning. However, computation of the con-
dition number is computationally very expensive. Therefore, this paper investigates
alternative means to estimate the condition number, in particular, for a very long
serial-chain. For this, the diagonal elements of the GIM are examined. It is found
that the ratio of the largest and smallest diagonal elements of the GIM, when scaled
using an initial estimate of the condition number, closely resembles the condition
number. This significantly simplifies the process of detecting ill-conditioning of the
GIM, which may help to decide on stability of the system at hand.

1. Introduction

The GIM of a multibody system is a function of its joint variables and
plays a vital role in simulation and control. It is interesting to note that ill-
conditioning of the GIM results into loss of accuracy, mainly, in forward
dynamics [1] and poor control performance of the joints [2]. Therefore, the
condition number is used as an important measure to quantify ill-conditioning
of the GIM [2]. If norm-2 definition [3] is used, the condition number is
defined as the ratio of the largest and smallest singular values. As the GIM
is a symmetric and positive-definite matrix, its condition number is nothing
else but the ratio of the maximum and minimum eigenvalues [3]. Even though
the condition number is widely used as a mean to judge ill-conditioning of the
GIM, its computation using eigenvalues is computationally very expensive.
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As a result, if the health of the GIM can be judged using any alternative
property of the GIM, significant computational savings can be obtained.
Such alternative means were seldom reported in literature to the best of our
knowledge.

Interestingly, in 1975 Mitra and Klein [4] showed that the pivot ratio,
defined as ratio of highest to smallest pivot element, can be used to predict
instability. They used the concept in integral equations of electromagnetics.
However, it was found during this work, that the use of pivot cannot provide
a good estimate of the trend of the condition number. The facts 1) the trace of
GIM is equal to the sum of eigenvalues, and 2) each diagonal element of the
GIM carries the knowledge of the system ahead of the body corresponding to
the index of the diagonal element, motivated us to use the ratio of the highest
to smallest diagonal elements of the GIM as a measure of ill-conditioning
of the GIM. This ratio will be referred to as diagonal ratio hereafter for the
sake of simplicity. As the elements of the GIM are readily available as a by-
product of either inverse or forward dynamics algorithms [1], no additional
computation is required to calculate the diagonal ratio. The diagonal ratio
was compared to the condition number as a mean to judge ill-conditioning.
Later, the notion of scaled diagonal ratio is introduced.

Rest of the paper is organized as follows: Ill-conditioning of the GIM is
introduced in Section 2. Some important properties of the GIM are presented
in Section 3 and several numerical illustrations are provided in Section 4.
Finally, conclusions are given in Section 5.

2. Ill-conditioning of the GIM

According to [5], the equations of motion of a tree-structured multibody
system may be represented as

Iq̈ + Cq̇ = τ (1)

where I, q, C, and τ represent the GIM, vector of generalized coordinates,
matrix of convective inertia terms, and vector of the generalized external
forces, respectively.

As shown in [2], the ill-conditioning of the GIM not only affects the
accuracy of simulation results but also the control performance of a system.
Hence the measure of ill-conditioning may help to take any corrective mea-
sures during simulation or control. This, however, is beyond the scope of the
paper; rather we focus here on efficient estimation of ill-conditioning, which
may be used as a guide. Here, we use simulation only to demonstrate how
the condition of the GIM varies over time.
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Simulation of a multibody system consists of 1) solution of a system of
algebraic equations linear in joint accelerations, and 2) numerical integration.
The joint accelerations, denoted with q̈, are obtained from Eq. (1) as

q̈ = I−1ϕ, where ϕ = τ − Cq̇ (2)

Note that the explicit inversion of the GIM, I, is not required to solve for
q̈ as the GIM can be factorized using LU or Cholesky decomposition [3],
and then q̈ is calculated by backward and forward substitutions [3]. However,
when the GIM becomes ill-conditioned, small perturbations in the system can
produce relatively large changes in the solutions. Ill-conditioning of a matrix
is defined as the closeness of a matrix to its singularity [3]. For small change
in right hand side of Eq. (2), the solution is disturbed according to

(q̈ + δq̈) = I−1(ϕ + δϕ), (3)

Resulting in the relative error [3]

‖δq̈‖
‖q̈‖ ≤

∥∥∥I−1
∥∥∥ ‖I‖ ‖δϕ‖‖ϕ‖ (4)

where ‖I‖ represents the norm of the GIM, and κ(I) =
∥∥∥I−1

∥∥∥ ‖I‖ is defined
as its condition number which determines the amount by which the solution
q̈ gets magnified for a small change in the right hand side, i.e., φ. If the
condition number of the GIM is very high, it is ill-conditioned or close to
singularity. If we choose norm-2 [3], then the condition number of the GIM
is found from

κ2(I) =
σmax(I)
σmin(I)

(5)

where σmax(I) and σmin(I) are the maximum and minimum singular values of
the GIM. As the GIM is symmetric and positive definite, its singular values
are nothing else but the eigenvalues, and Eq. (5) can be rewritten as

κ2(I) =
λmax

λmin
(6)

where λmax and λmin are the highest and smallest eigenvalues of the GIM.
It is worth noting that serial multibody systems with identical links or

homogenous rods have worst condition numbers in the order of O(4n4) [1]
where n is the total number of links. Hence, with the increase in n there is a
high chance of loss of accuracy in the computation of the joint accelerations.
As a result, a numerical integrator may require small step sizes in order
to provide accurate solution. This phenomenon is also known as numerical
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stiffness [6]. In order to get some idea of ill-conditioning, a 4-link serial chain
with identical links moving under gravity is considered as shown in Fig. 1.
Each link is assumed to be a slender homogeneous rod with mass m = 2.2 kg
and length l = 1m. The GIM I and the forces ϕ for the configuration q =

q̇ = 0 are given by

Fig. 1. A 4-link chain with only revolute joints

I =



47.0822 sym
29.7942 19.8629
14.7132 10.2993 5.8854
4.0462 2.9427 1.8392 0.7357


, andϕ =



− 86.6015
− 48.7133
− 21.6504
− 5.4126


(7)

where ‘sym’ denotes symmetric elements of the GIM. The solution of the
joint accelerations can be obtained as

q̈ = I−1ϕ =



−6.2189
7.8864
−2.1226
0.6071


(8)

Note that the condition number of the GIM in Eq. (7) is κ2(I) =1074, which
is rather high for such a small system. In order to see the effect of small
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perturbations of ϕ on q̈, small deviations due to rounding error in ϕ are
considered as

ϕ =



−86.0
−48.7
−21.6
−5.4


, resulting in q̈ = I−1ϕ =



−5.7477
6.7586
−1.2128
0.2696


. (9)

Thus, the small changes in ϕ1,ϕ2,ϕ3 and ϕ4 of 0.69%, 0.02%, 0.23% and
0.23%, respectively, result in relative high percentage changes in accelera-
tions q̈1, q̈2, q̈3, and q̈4 of 7%, 14%, 42% and 55%, respectively, which
are significant. This change will be even more significant in large systems.
Hence, an estimate of ill-conditioning of the GIM is very essential.

It was shown in [5, 7] that the GIM, obtained using the concept of
the Decoupled Natural Orthogonal Complement (DeNOC) matrices, stores
the information of mass and inertia properties in a very systematic manner.
Hence, study of the elements of the GIM may provide thorough insight
about ill-conditioning. Therefore, some important characteristic of the GIM
are discussed next.

3. Characteristics of the GIM

The GIM of a serial chain has the following representation:

I ≡



I11 sym
I21 I22

I31 I32 I33
...

...
. . .

. . .

In1 In2 · · · Inn−1 Inn



. (10)

where Ii j represents the (i, j)-th element of the GIM. The analytical expres-
sion of the (i, j)-th element of the GIM is given by [7]

Iii = pT
i M̃ipi

Ii j = pT
i M̃iAi, jp j ≡ I ji

(11)

In Eq. (11), Ai, j and p j are the twist-propagation matrix and motion propa-
gation vectors [7], respectively, whereas M̃i is the mass matrix of composite
body which contains the mass and inertia properties of the system comprising
of all rigidly connected links upstream of the ith link including itself. It is
obtained from mass matrix Mi of link i as

M̃i = Mi + AT
j,iM̃ jA j,i (12)



152 SURIL V. SHAH, SUBIR K. SAHA

where for the terminal link M̃n = Mn. The structure of the mass matrix
of a composite body may vary with the choice of independent generalized
coordinates. However, the present choice is based on a popular choice for
the serial-type systems, i.e., relative coordinates.

It is worth noting that the GIM is a positive definite matrix, and hence,
the diagonal terms are always greater than zero, i.e., pT

i M̃ipi>0 for i =1, . . . ,
n. Using the analytical expressions in Eq. (11), the GIM of the 4-link planar
chain, shown in Fig. 1, is obtained as

I =



pT
1M̃1p1 sym

pT
2M̃2A21p1 pT

2M̃2p2

pT
3M̃3A31p1 pT

3M̃3A32p2 pT
3M̃3p3

pT
4M̃4A41p1 pT

4M̃4A42p2 pT
4M̃4A43p3 pT

4M̃4p4


(13)

In Eq. (14), M̃4 = M4 represents the mass and inertia properties of the
4th link only, whereas, M̃1 represents the mass and inertia properties of all
the links, enclosed by the dotted line in Fig. 1. Therefore, the term pT

1M̃1p1

is larger than any other diagonal term and pT
4M̃4p4 is the smallest of all. This

is also evident from Eq. (7). Moreover, it obvious that with the increase in
the number of links, the term pT

1M̃1p1 will become larger and larger, whereas
pT

nM̃npn will remain unaffected. Moreover, the ‘trace’ of the GIM, i.e., the
sum of the diagonal elements, is related to the eigenvalues [3] by

tr(I) =

n∑

i=1

Iii =

n∑

i=1

λi, where Iii = pT
i M̃ipi (14)

The above two facts motivated us to compare the ratio of the smallest and
highest eigenvalues, i.e., condition number in Eq. (6), with the ratio of the
largest to smallest diagonal elements of the GIM. These ratios are compared
using several numerical examples in the next section.

4. Numerical Illustrations

As introduced in Section 1, the diagonal ratio is defined as the ratio of
the largest to smallest diagonal elements of the GIM and will be denoted
as δ(I) = I11/Inn hereafter. The eigenvalues and the diagonal elements of the
GIM for the swinging 4-link chain are plotted in Figs. 2(a-b). It can be seen
that the element I11>(I22, I33,I44) follows the trend of the highest eigenvalue
λ1 throughout the simulation period. Since, I44 is the smallest element, δ(I)
= I11/I44 forms the diagonal ratio, Fig. 2(d). Comparison with the condition
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Fig. 2. Different properties of the GIM of a 4-link chain

number κ2 = λ1/λ4 in Fig. 2(c) makes clear that the diagonal ratio captures
the trend of the condition number.

δ(I) = I11/I44

Next, the diagonal ratio and the condition number of 10- and 20-link serial-
chains of identical links are compared as shown in Fig. 3. It is evident from
Fig. 3 that with the increase in the number of links the maximum condition
number increases and so is the diagonal ratio. Moreover, the diagonal ratio
is able to capture the trend of the condition number for both 10- and 20-link
chains. It is also evident from Figs. 2(c), 3(a) and 3(c) that the worst condition
number for a serial-chain with identical links is about of O(4n4) [1].

It was observed in [4], that the pivot ratio, the ratio of largest to smallest
pivot element obtained from Gaussian elimination [3] of the GIM, can be
used as a measure of ill-conditioning. Motivated by this fact pivot ratios of
both 10- and 20-link chains are also shown in Fig. 4, which clearly demon-
strate that the pivot ratio does not capture the trend of the condition number.
Hence, pivot ratio should not be used as a measure of the ill-conditioning of
the GIM for serial-chain systems.

Even though the condition number follows the diagonal ratio, their mag-
nitudes are not comparable. In order to have the estimate of the magnitude
of the condition number, the notion of scaled diagonal ratio is introduced.
The scaled diagonal ratio is nothing else but the diagonal ratio scaled by the
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Fig. 3. Comparison of the condition number and diagonal ratios for two serial chains

Fig. 4. Pivot ratios for 10- and 20- link chains

condition number of a system at time t=0:

δs(I) =αδ(I) where α =
κ(I)|t=0

δ(I)|t=0
(15)

The results in Fig. 5 show that δs(I) not only captures the trend of the
condition number but also provides a good estimate of the condition num-
ber. This shows that the scaled diagonal ratio δs(I) can be used to estimate
ill-conditioning of the GIM during simulation without incurring expensive
computation of the condition number.

5. Conclusions

This paper presents a novel method to estimate the ill-conditioning of the
GIM during simulation. This method uses the ratio of the largest to smallest
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Fig. 5. Condition number and scaled diagonal ratio for the 4-, 10- and 20-link chains

diagonal elements of the Generalized Inertia Matrix (GIM) scaled by constant
factor. The effectiveness of this method is shown using several numerical
examples. The diagonal ratio captures the trend of the condition number, and
when scaled with the help of the initial values of the condition number, the
resulting scaled diagonal ratio provides magnitude of the condition number,
thereby making a very safe decision about the ill-conditioning of the GIM.

The proposed methodology not only makes the estimation of ill-conditio-
ning simple and efficient, but also lends its utility in taking corrective con-
trol measures in order to improve control performance and setting adaptive
tolerances for the forward dynamics problem, which will be carried out as a
future work.
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Korelacja między współczynnikiem diagonalnym a współczynnikiem uwarunkowania
uogólnionej macierzy bezwładności łańcucha szeregowego

S t r e s z c z e n i e

Wskaźnik uwarunkowania jest wykorzystywany jako miara złego uwarunkowania macierzy,
np. dla uogólnionej macierzy bezwładności (GIM) łańcucha szeregowego. Niemniej, wyznacze-
nie tego współczynnika wymaga znacznego nakładu mocy obliczeniowej. Tak więc, w artykule
zaproponowano sposoby alternatywne, pozwalające estymować współczynnik uwarunkowania, w
szczególności dla bardzo długiego łańcucha szeregowego. W tym celu bada się elementy diagonalne
uogólnionej macierzy bezwładności. Wykazano, że stosunek diagonalny (stosunek największego do
najmniejszego elementu na głównej przekątnej macierzy bezwładności), przeskalowany przy uży-
ciu estymatora początkowej wartości wskaźnika uwarunkowania, ma wartość bardzo zbliżoną do
rzeczywistego wskaźnika uwarunkowania. Jego zastosowanie upraszcza w znaczący sposób ocenę
złego uwarunkowania macierzy, dzięki czemu można od razu zdecydować czy układ jest stabilny.


