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Abstract. In the paper a description of heat transfer in one-dimensional crystalline solids is presented. The lattice Boltzmann method based on 
Boltzmann transport equation is used to simulate the nanoscale heat transport in thin metal films. The coupled lattice Boltzmann equations for 
electrons and phonons are applied to analyze the heating process of thin metal films via laser pulse. Such approach in which the parameters 
appearing in the problem analyzed are treated as constant values is widely used, but in the paper the interval values of relaxation times and 
electron-phonon coupling factor are taken into account. The problem formulated has been solved by means of the interval lattice Boltzmann 
method using the rules of directed interval arithmetic. In the final part of the paper the results of numerical computations are shown.
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are still a subject of discussion [18]. The analogical problem is 
with the electron-phonon coupling factor. In the literature we 
can find a wide range of this value [19]. So it seems natural to 
take the interval values of relaxation times and coupling factor 
and this assumption is closer to the real physical conditions of 
the process analyzed.

In the article the authors present an innovative approach 
of the described problem using the interval lattice Boltzmann 
method. Using interval numbers, the mathematical model 
reflects better the course of the heat flow. There was no 
such an approach in available literature until now. More-
over, there isn’t any known commercial software using the 
interval LBM, although the presented method can easily be 
programmed.

Here, the interval lattice Boltzmann method (ILBM) is pre-
sented with the approach of the directed interval arithmetic [16, 
20, 21]. In this arithmetic a set of proper intervals is extended 
by improper intervals, and all arithmetic operations and func-
tions are also extended. The main advantage of the directed 
interval arithmetic [20, 22] upon the usual interval arithmetic 
[23] is that the obtained temperature intervals are much narrow-
er and their width does not increase in time.

In theory as well as in practice it is valuable to develop the 
interval version of the LBM.

2. Directed interval arithmetic

Let us consider a directed interval ā which can be defined as 
a set D of all directed pairs of real numbers defined as follows 
[17, 20, 24]

ā = [a−, a+] ꞉= {̄a 2 Dja−, a+ 2 R}, (1)

where a− and a+ denote the beginning and the end of the inter-
val, respectively.

1. Introduction

In metals the heat transport is mainly realized by two kinds of 
heat carriers: electrons and quanta of lattice vibrations called 
phonons [1]. It should be pointed out, that in metals the free 
electron mechanism of heat transport is much more efficient 
than the phonon one, because electrons have higher veloci-
ties and phonons are more easily scattered than free electrons. 
These carriers always “move” from the part with the higher 
temperature to the part with the lower temperature. During 
this move electrons and phonons carry energy. This kind of 
phenomena can be described by the Boltzmann transport equa-
tion (BTE) [2‒5] but the other approaches can be also ap-
plied, e.g. [6‒8]. The BTE is difficult to solve and for this rea-
son in numerical computations the lattice Boltzmann method 
(LBM) is used [9‒11]. The LBM solves a discretized set of 
the Boltzmann transport equations. In the paper the coupled 
lattice Boltzmann equations for electrons and phonons have 
been assumed. The coupled model contains two energy equa-
tions determining the heat exchange in the electron gas and the 
metal lattice [12, 13].

Such approach in which the parameters appearing in the 
mathematical model are treated as constant values is widely 
used [14]. In papers [15‒17] the mathematical description of 
heat transfer in 1D and 2D silicon film with interval values 
of phonon relaxation time and boundary conditions has been 
presented. It should be pointed out that in semiconductors only 
phonons take part in heat conduction but analyzing this phe-
nomena in metals we should take into account both carriers: 
phonons and electrons.

In the paper the interval values of relaxation times and elec-
tron-phonon coupling factor are taken into account. The relax-
ation times are estimated experimentally and their actual values 
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The left or the right endpoint of the interval ā can be denoted 
as as, s 2 {+, −}, where s is a binary variable. This variable 
can be expressed as a product of two binary variables and is 
defined as

+ + = − − = +
+ − = − + = −

, (2)

An interval is called proper if a− ≤ a+, improper if a− ≥ a+ 
and degenerate if a− = a+. The set of all directed interval num-
bers can be written as D = P

2 

The left or the right endpoint of the interval a  can be 
denoted as  , ,sa s   , where s is a binary variable. 
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For directed interval numbers two binary variables are 
defined. The first of them is the direction variable 
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and the other is the sign variable 
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For zero argument   σ 0, 0 σ(0)   , for all intervals 

including the zero element aZ ,  σ a  is not defined.  
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In the directed interval arithmetic two extra operators 
are defined, inversion of summation  
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Now, it is possible to obtain the number zero by 
subtraction of two identical intervals 0a a D  and the 
number one as the result of the division / 1a a D , which 
was impossible when applying classical interval 
arithmetic [25]. 
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During the heating of thin metal films via laser pulse 
the electrons are energized and they subsequently transfer 
the energy to phonons via coupling between them. The 
Boltzmann transport equations for the coupled model (1D 
problem) with two kinds of carriers: electrons (e) and 
phonons (ph) can be written in the following form [26] 
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Now, it is possible to obtain the number zero by 
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In the directed interval arithmetic two extra operators 
are defined, inversion of summation  
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Now, it is possible to obtain the number zero by 
subtraction of two identical intervals 0a a D  and the 
number one as the result of the division / 1a a D , which 
was impossible when applying classical interval 
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Now, it is possible to obtain the number zero by 
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number one as the result of the division / 1a a D , which 
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Now, it is possible to obtain the number zero by 
subtraction of two identical intervals 0a a D  and the 
number one as the result of the division / 1a a D , which 
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Now, it is possible to obtain the number zero by 
subtraction of two identical intervals 0a a D  and the 
number one as the result of the division / 1a a D , which 
was impossible when applying classical interval 
arithmetic [25]. 
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The left or the right endpoint of the interval a  can be 
denoted as  , ,sa s   , where s is a binary variable. 
This variable can be expressed as a product of two binary 
variables and is defined as  
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interval numbers can be written as = D P I , where P 
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including the zero element aZ ,  σ a  is not defined.  
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Now, it is possible to obtain the number zero by 
subtraction of two identical intervals 0a a D  and the 
number one as the result of the division / 1a a D , which 
was impossible when applying classical interval 
arithmetic [25]. 
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Now, it is possible to obtain the number zero by subtraction 
of two identical intervals ā − D ā = 0 and the number one as the 
result of the division ā − D ā = 1, which was impossible when 
applying classical interval arithmetic [25].

3. Formulation of the problem before styling

During the heating of thin metal films via laser pulse the elec-
trons are energized and they subsequently transfer the energy to 
phonons via coupling between them. The Boltzmann transport 
equations for the coupled model (1D problem) with two kinds 
of carriers: electrons (e) and phonons (ph) can be written in the 
following form [26]
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In the directed interval arithmetic two extra operators 
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Now, it is possible to obtain the number zero by 
subtraction of two identical intervals 0a a D  and the 
number one as the result of the division / 1a a D , which 
was impossible when applying classical interval 
arithmetic [25]. 
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During the heating of thin metal films via laser pulse 
the electrons are energized and they subsequently transfer 
the energy to phonons via coupling between them. The 
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phonons (ph) can be written in the following form [26] 
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where ,e phf f  are the carrier distribution functions,  
0 0,e phf f  are the equilibrium distribution functions given 

by the Bose-Einstein statistic for phonons [27] and Fermi-
Dirac statistic for electrons, ,e phv v  are the frequency-

dependent carrier propagation speeds, ,e ph   are the 

frequency-dependent carrier relaxation times and ,e phg g  

are the carrier generation rates due to external sources such 
as laser heating. 

The BTEs  (14) and (15) can be transformed into an 
equivalent carrier energy density equations [25] 
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where ,e phe e  are the carrier energy densities, 0 0,e phe e  are 

the equilibrium carrier energy densities and ,e phQ Q are 

the carrier energy sources related to an unit of volume. 
The equations (16) and (17) must be supplemented by the 
adequate boundary-initial conditions. 

The electron and phonon energy densities at their 
equivalent nonequilibrium temperatures are given by the 
formulas 
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where ,e phT T  are the carrier temperatures, kb is the 

Boltzmann constant, F is the Fermi energy, en  is the 
electron density, Θ D is the Debye temperature of the 
solid,   is the number density of oscillators [28]. 

The electron and phonon energy sources are calculated 
using the following expressions [26] 

  ( )e e phQ Q G T T    (20) 

  ( )ph e phQ G T T   (21) 

where Q is the power density deposited by the external 
source function associated with the laser irradiation  
[29-31] and G is the electron-phonon coupling factor 

which characterizes the energy exchange between 
electrons and phonons [12, 19].  

4. Interval lattice Boltzmann method 

The lattice Boltzmann method is a discrete 
representation of the Boltzmann transport equations. This 
method is employed to transport modeling of heat carriers. 
The interval form of the BTEs for 1D problems can be 
expressed as [28] 
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where ,e phe e  are the interval values of carrier energy 
densities for electrons and phonons respectively, 0 0,e phe e  
are the interval equilibrium carrier energy densities and 

,e ph  are the interval relaxation times.  
The interval values of the electron and phonon energy 

sources are calculated using the following formulas 
according to the rules of directed interval arithmetic [20] 

  ( )e e phQ Q G T T    (24) 

  ( )ph e phQ G T T  , (25) 

where G is the interval value of  the electron-phonon 
coupling factor. 

For example, for the interval values of the electron-
phonon coupling factor 16 162 10 , 2.5 10G     W/m3K 

and the temperatures of electrons  1175, 1179.6 KeT   an 

phonons  360.2, 373.7 KphT  , the phonon energy 
source is calculated using the rules of directed interval 
arithmetic according to the following formula (see (12))  
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Taking into account the assumption that , dG T \D Z  one 
obtains the following formula 
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where ,e phe e  are the carrier energy densities, 0 0,e phe e  are 

the equilibrium carrier energy densities and ,e phQ Q are 

the carrier energy sources related to an unit of volume. 
The equations (16) and (17) must be supplemented by the 
adequate boundary-initial conditions. 

The electron and phonon energy densities at their 
equivalent nonequilibrium temperatures are given by the 
formulas 
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where ,e phT T  are the carrier temperatures, kb is the 

Boltzmann constant, F is the Fermi energy, en  is the 
electron density, Θ D is the Debye temperature of the 
solid,   is the number density of oscillators [28]. 

The electron and phonon energy sources are calculated 
using the following expressions [26] 

  ( )e e phQ Q G T T    (20) 

  ( )ph e phQ G T T   (21) 

where Q is the power density deposited by the external 
source function associated with the laser irradiation  
[29-31] and G is the electron-phonon coupling factor 

which characterizes the energy exchange between 
electrons and phonons [12, 19].  

4. Interval lattice Boltzmann method 

The lattice Boltzmann method is a discrete 
representation of the Boltzmann transport equations. This 
method is employed to transport modeling of heat carriers. 
The interval form of the BTEs for 1D problems can be 
expressed as [28] 
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where ,e phe e  are the interval values of carrier energy 
densities for electrons and phonons respectively, 0 0,e phe e  
are the interval equilibrium carrier energy densities and 

,e ph  are the interval relaxation times.  
The interval values of the electron and phonon energy 

sources are calculated using the following formulas 
according to the rules of directed interval arithmetic [20] 

  ( )e e phQ Q G T T    (24) 

  ( )ph e phQ G T T  , (25) 

where G is the interval value of  the electron-phonon 
coupling factor. 

For example, for the interval values of the electron-
phonon coupling factor 16 162 10 , 2.5 10G     W/m3K 

and the temperatures of electrons  1175, 1179.6 KeT   an 

phonons  360.2, 373.7 KphT  , the phonon energy 
source is calculated using the rules of directed interval 
arithmetic according to the following formula (see (12))  
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Taking into account the assumption that , dG T \D Z  one 
obtains the following formula 

 ( ) ( )( ) ( ),d dT TG G
d d dG T = G T G T         (27) 

, (16)
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where ,e phf f  are the carrier distribution functions,  
0 0,e phf f  are the equilibrium distribution functions given 

by the Bose-Einstein statistic for phonons [27] and Fermi-
Dirac statistic for electrons, ,e phv v  are the frequency-

dependent carrier propagation speeds, ,e ph   are the 

frequency-dependent carrier relaxation times and ,e phg g  

are the carrier generation rates due to external sources such 
as laser heating. 

The BTEs  (14) and (15) can be transformed into an 
equivalent carrier energy density equations [25] 
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where ,e phe e  are the carrier energy densities, 0 0,e phe e  are 

the equilibrium carrier energy densities and ,e phQ Q are 

the carrier energy sources related to an unit of volume. 
The equations (16) and (17) must be supplemented by the 
adequate boundary-initial conditions. 

The electron and phonon energy densities at their 
equivalent nonequilibrium temperatures are given by the 
formulas 
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where ,e phT T  are the carrier temperatures, kb is the 

Boltzmann constant, F is the Fermi energy, en  is the 
electron density, Θ D is the Debye temperature of the 
solid,   is the number density of oscillators [28]. 

The electron and phonon energy sources are calculated 
using the following expressions [26] 

  ( )e e phQ Q G T T    (20) 

  ( )ph e phQ G T T   (21) 

where Q is the power density deposited by the external 
source function associated with the laser irradiation  
[29-31] and G is the electron-phonon coupling factor 

which characterizes the energy exchange between 
electrons and phonons [12, 19].  

4. Interval lattice Boltzmann method 

The lattice Boltzmann method is a discrete 
representation of the Boltzmann transport equations. This 
method is employed to transport modeling of heat carriers. 
The interval form of the BTEs for 1D problems can be 
expressed as [28] 
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where ,e phe e  are the interval values of carrier energy 
densities for electrons and phonons respectively, 0 0,e phe e  
are the interval equilibrium carrier energy densities and 

,e ph  are the interval relaxation times.  
The interval values of the electron and phonon energy 

sources are calculated using the following formulas 
according to the rules of directed interval arithmetic [20] 

  ( )e e phQ Q G T T    (24) 

  ( )ph e phQ G T T  , (25) 

where G is the interval value of  the electron-phonon 
coupling factor. 

For example, for the interval values of the electron-
phonon coupling factor 16 162 10 , 2.5 10G     W/m3K 

and the temperatures of electrons  1175, 1179.6 KeT   an 

phonons  360.2, 373.7 KphT  , the phonon energy 
source is calculated using the rules of directed interval 
arithmetic according to the following formula (see (12))  
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Taking into account the assumption that , dG T \D Z  one 
obtains the following formula 

 ( ) ( )( ) ( ),d dT TG G
d d dG T = G T G T         (27) 

, (17)

where ee, eph are the carrier energy densities, e0
e , e0

ph are the 
equilibrium carrier energy densities and Qe , Q 0

ph are the carrier 
energy sources related to an unit of volume. The equations (16) 
and (17) must be supplemented by the adequate boundary-ini-
tial conditions.

The electron and phonon energy densities at their equivalent 
nonequilibrium temperatures are given by the formulas
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where ,e phf f  are the carrier distribution functions,  
0 0,e phf f  are the equilibrium distribution functions given 

by the Bose-Einstein statistic for phonons [27] and Fermi-
Dirac statistic for electrons, ,e phv v  are the frequency-

dependent carrier propagation speeds, ,e ph   are the 

frequency-dependent carrier relaxation times and ,e phg g  

are the carrier generation rates due to external sources such 
as laser heating. 

The BTEs  (14) and (15) can be transformed into an 
equivalent carrier energy density equations [25] 
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where ,e phe e  are the carrier energy densities, 0 0,e phe e  are 

the equilibrium carrier energy densities and ,e phQ Q are 

the carrier energy sources related to an unit of volume. 
The equations (16) and (17) must be supplemented by the 
adequate boundary-initial conditions. 

The electron and phonon energy densities at their 
equivalent nonequilibrium temperatures are given by the 
formulas 
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where ,e phT T  are the carrier temperatures, kb is the 

Boltzmann constant, F is the Fermi energy, en  is the 
electron density, Θ D is the Debye temperature of the 
solid,   is the number density of oscillators [28]. 

The electron and phonon energy sources are calculated 
using the following expressions [26] 

  ( )e e phQ Q G T T    (20) 

  ( )ph e phQ G T T   (21) 

where Q is the power density deposited by the external 
source function associated with the laser irradiation  
[29-31] and G is the electron-phonon coupling factor 

which characterizes the energy exchange between 
electrons and phonons [12, 19].  

4. Interval lattice Boltzmann method 

The lattice Boltzmann method is a discrete 
representation of the Boltzmann transport equations. This 
method is employed to transport modeling of heat carriers. 
The interval form of the BTEs for 1D problems can be 
expressed as [28] 
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where ,e phe e  are the interval values of carrier energy 
densities for electrons and phonons respectively, 0 0,e phe e  
are the interval equilibrium carrier energy densities and 

,e ph  are the interval relaxation times.  
The interval values of the electron and phonon energy 

sources are calculated using the following formulas 
according to the rules of directed interval arithmetic [20] 

  ( )e e phQ Q G T T    (24) 

  ( )ph e phQ G T T  , (25) 

where G is the interval value of  the electron-phonon 
coupling factor. 

For example, for the interval values of the electron-
phonon coupling factor 16 162 10 , 2.5 10G     W/m3K 

and the temperatures of electrons  1175, 1179.6 KeT   an 

phonons  360.2, 373.7 KphT  , the phonon energy 
source is calculated using the rules of directed interval 
arithmetic according to the following formula (see (12))  
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Taking into account the assumption that , dG T \D Z  one 
obtains the following formula 

 ( ) ( )( ) ( ),d dT TG G
d d dG T = G T G T         (27) 
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where ,e phf f  are the carrier distribution functions,  
0 0,e phf f  are the equilibrium distribution functions given 

by the Bose-Einstein statistic for phonons [27] and Fermi-
Dirac statistic for electrons, ,e phv v  are the frequency-

dependent carrier propagation speeds, ,e ph   are the 

frequency-dependent carrier relaxation times and ,e phg g  

are the carrier generation rates due to external sources such 
as laser heating. 

The BTEs  (14) and (15) can be transformed into an 
equivalent carrier energy density equations [25] 
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where ,e phe e  are the carrier energy densities, 0 0,e phe e  are 

the equilibrium carrier energy densities and ,e phQ Q are 

the carrier energy sources related to an unit of volume. 
The equations (16) and (17) must be supplemented by the 
adequate boundary-initial conditions. 

The electron and phonon energy densities at their 
equivalent nonequilibrium temperatures are given by the 
formulas 
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where ,e phT T  are the carrier temperatures, kb is the 

Boltzmann constant, F is the Fermi energy, en  is the 
electron density, Θ D is the Debye temperature of the 
solid,   is the number density of oscillators [28]. 

The electron and phonon energy sources are calculated 
using the following expressions [26] 

  ( )e e phQ Q G T T    (20) 

  ( )ph e phQ G T T   (21) 

where Q is the power density deposited by the external 
source function associated with the laser irradiation  
[29-31] and G is the electron-phonon coupling factor 

which characterizes the energy exchange between 
electrons and phonons [12, 19].  

4. Interval lattice Boltzmann method 

The lattice Boltzmann method is a discrete 
representation of the Boltzmann transport equations. This 
method is employed to transport modeling of heat carriers. 
The interval form of the BTEs for 1D problems can be 
expressed as [28] 
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where ,e phe e  are the interval values of carrier energy 
densities for electrons and phonons respectively, 0 0,e phe e  
are the interval equilibrium carrier energy densities and 

,e ph  are the interval relaxation times.  
The interval values of the electron and phonon energy 

sources are calculated using the following formulas 
according to the rules of directed interval arithmetic [20] 

  ( )e e phQ Q G T T    (24) 

  ( )ph e phQ G T T  , (25) 

where G is the interval value of  the electron-phonon 
coupling factor. 

For example, for the interval values of the electron-
phonon coupling factor 16 162 10 , 2.5 10G     W/m3K 

and the temperatures of electrons  1175, 1179.6 KeT   an 

phonons  360.2, 373.7 KphT  , the phonon energy 
source is calculated using the rules of directed interval 
arithmetic according to the following formula (see (12))  
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Taking into account the assumption that , dG T \D Z  one 
obtains the following formula 

 ( ) ( )( ) ( ),d dT TG G
d d dG T = G T G T         (27) 

, (19)

where Te, Tph are the carrier temperatures, kb is the Boltzmann 
constant, εF is the Fermi energy, ne is the electron density, ΘD 
is the Debye temperature of the solid, η is the number density 
of oscillators [28].

The electron and phonon energy sources are calculated using 
the following expressions [26]
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where ,e phf f  are the carrier distribution functions,  
0 0,e phf f  are the equilibrium distribution functions given 

by the Bose-Einstein statistic for phonons [27] and Fermi-
Dirac statistic for electrons, ,e phv v  are the frequency-

dependent carrier propagation speeds, ,e ph   are the 

frequency-dependent carrier relaxation times and ,e phg g  

are the carrier generation rates due to external sources such 
as laser heating. 

The BTEs  (14) and (15) can be transformed into an 
equivalent carrier energy density equations [25] 
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where ,e phe e  are the carrier energy densities, 0 0,e phe e  are 

the equilibrium carrier energy densities and ,e phQ Q are 

the carrier energy sources related to an unit of volume. 
The equations (16) and (17) must be supplemented by the 
adequate boundary-initial conditions. 

The electron and phonon energy densities at their 
equivalent nonequilibrium temperatures are given by the 
formulas 
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where ,e phT T  are the carrier temperatures, kb is the 

Boltzmann constant, F is the Fermi energy, en  is the 
electron density, Θ D is the Debye temperature of the 
solid,   is the number density of oscillators [28]. 

The electron and phonon energy sources are calculated 
using the following expressions [26] 

  ( )e e phQ Q G T T    (20) 

  ( )ph e phQ G T T   (21) 

where Q is the power density deposited by the external 
source function associated with the laser irradiation  
[29-31] and G is the electron-phonon coupling factor 

which characterizes the energy exchange between 
electrons and phonons [12, 19].  

4. Interval lattice Boltzmann method 

The lattice Boltzmann method is a discrete 
representation of the Boltzmann transport equations. This 
method is employed to transport modeling of heat carriers. 
The interval form of the BTEs for 1D problems can be 
expressed as [28] 

 
0

e e e
e e e

e

e e ee Q
t

 
   

 
v  (22) 

 
0

ph ph ph
ph ph ph

ph

e e e
e Q

t
 

   
 

v , (23) 

where ,e phe e  are the interval values of carrier energy 
densities for electrons and phonons respectively, 0 0,e phe e  
are the interval equilibrium carrier energy densities and 

,e ph  are the interval relaxation times.  
The interval values of the electron and phonon energy 

sources are calculated using the following formulas 
according to the rules of directed interval arithmetic [20] 

  ( )e e phQ Q G T T    (24) 

  ( )ph e phQ G T T  , (25) 

where G is the interval value of  the electron-phonon 
coupling factor. 

For example, for the interval values of the electron-
phonon coupling factor 16 162 10 , 2.5 10G     W/m3K 

and the temperatures of electrons  1175, 1179.6 KeT   an 

phonons  360.2, 373.7 KphT  , the phonon energy 
source is calculated using the rules of directed interval 
arithmetic according to the following formula (see (12))  
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Taking into account the assumption that , dG T \D Z  one 
obtains the following formula 

 ( ) ( )( ) ( ),d dT TG G
d d dG T = G T G T         (27) 

, (20)

3 

 
0

ph ph ph
ph ph ph

ph

f f f
f g

t
 

   
 

v , (15) 

where ,e phf f  are the carrier distribution functions,  
0 0,e phf f  are the equilibrium distribution functions given 

by the Bose-Einstein statistic for phonons [27] and Fermi-
Dirac statistic for electrons, ,e phv v  are the frequency-

dependent carrier propagation speeds, ,e ph   are the 

frequency-dependent carrier relaxation times and ,e phg g  

are the carrier generation rates due to external sources such 
as laser heating. 

The BTEs  (14) and (15) can be transformed into an 
equivalent carrier energy density equations [25] 
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where ,e phe e  are the carrier energy densities, 0 0,e phe e  are 

the equilibrium carrier energy densities and ,e phQ Q are 

the carrier energy sources related to an unit of volume. 
The equations (16) and (17) must be supplemented by the 
adequate boundary-initial conditions. 

The electron and phonon energy densities at their 
equivalent nonequilibrium temperatures are given by the 
formulas 
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where ,e phT T  are the carrier temperatures, kb is the 

Boltzmann constant, F is the Fermi energy, en  is the 
electron density, Θ D is the Debye temperature of the 
solid,   is the number density of oscillators [28]. 

The electron and phonon energy sources are calculated 
using the following expressions [26] 

  ( )e e phQ Q G T T    (20) 

  ( )ph e phQ G T T   (21) 

where Q is the power density deposited by the external 
source function associated with the laser irradiation  
[29-31] and G is the electron-phonon coupling factor 

which characterizes the energy exchange between 
electrons and phonons [12, 19].  

4. Interval lattice Boltzmann method 

The lattice Boltzmann method is a discrete 
representation of the Boltzmann transport equations. This 
method is employed to transport modeling of heat carriers. 
The interval form of the BTEs for 1D problems can be 
expressed as [28] 
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where ,e phe e  are the interval values of carrier energy 
densities for electrons and phonons respectively, 0 0,e phe e  
are the interval equilibrium carrier energy densities and 

,e ph  are the interval relaxation times.  
The interval values of the electron and phonon energy 

sources are calculated using the following formulas 
according to the rules of directed interval arithmetic [20] 

  ( )e e phQ Q G T T    (24) 

  ( )ph e phQ G T T  , (25) 

where G is the interval value of  the electron-phonon 
coupling factor. 

For example, for the interval values of the electron-
phonon coupling factor 16 162 10 , 2.5 10G     W/m3K 

and the temperatures of electrons  1175, 1179.6 KeT   an 

phonons  360.2, 373.7 KphT  , the phonon energy 
source is calculated using the rules of directed interval 
arithmetic according to the following formula (see (12))  
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Taking into account the assumption that , dG T \D Z  one 
obtains the following formula 

 ( ) ( )( ) ( ),d dT TG G
d d dG T = G T G T         (27) 

, (21)

where Q' is the power density deposited by the exter-
nal source function associated with the laser irradiation 
[29‒31] and G is the electron-phonon coupling factor which 
characterizes the energy exchange between electrons and pho-
nons [12, 19].

4. Interval lattice Boltzmann method

The lattice Boltzmann method is a discrete representation of 
the Boltzmann transport equations. This method is employed 
to transport modeling of heat carriers. The interval form of the 
BTEs for 1D problems can be expressed as [28]
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where ,e phf f  are the carrier distribution functions,  
0 0,e phf f  are the equilibrium distribution functions given 

by the Bose-Einstein statistic for phonons [27] and Fermi-
Dirac statistic for electrons, ,e phv v  are the frequency-

dependent carrier propagation speeds, ,e ph   are the 

frequency-dependent carrier relaxation times and ,e phg g  

are the carrier generation rates due to external sources such 
as laser heating. 

The BTEs  (14) and (15) can be transformed into an 
equivalent carrier energy density equations [25] 
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where ,e phe e  are the carrier energy densities, 0 0,e phe e  are 

the equilibrium carrier energy densities and ,e phQ Q are 

the carrier energy sources related to an unit of volume. 
The equations (16) and (17) must be supplemented by the 
adequate boundary-initial conditions. 

The electron and phonon energy densities at their 
equivalent nonequilibrium temperatures are given by the 
formulas 
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where ,e phT T  are the carrier temperatures, kb is the 

Boltzmann constant, F is the Fermi energy, en  is the 
electron density, Θ D is the Debye temperature of the 
solid,   is the number density of oscillators [28]. 

The electron and phonon energy sources are calculated 
using the following expressions [26] 

  ( )e e phQ Q G T T    (20) 

  ( )ph e phQ G T T   (21) 

where Q is the power density deposited by the external 
source function associated with the laser irradiation  
[29-31] and G is the electron-phonon coupling factor 

which characterizes the energy exchange between 
electrons and phonons [12, 19].  

4. Interval lattice Boltzmann method 

The lattice Boltzmann method is a discrete 
representation of the Boltzmann transport equations. This 
method is employed to transport modeling of heat carriers. 
The interval form of the BTEs for 1D problems can be 
expressed as [28] 
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where ,e phe e  are the interval values of carrier energy 
densities for electrons and phonons respectively, 0 0,e phe e  
are the interval equilibrium carrier energy densities and 

,e ph  are the interval relaxation times.  
The interval values of the electron and phonon energy 

sources are calculated using the following formulas 
according to the rules of directed interval arithmetic [20] 

  ( )e e phQ Q G T T    (24) 

  ( )ph e phQ G T T  , (25) 

where G is the interval value of  the electron-phonon 
coupling factor. 

For example, for the interval values of the electron-
phonon coupling factor 16 162 10 , 2.5 10G     W/m3K 

and the temperatures of electrons  1175, 1179.6 KeT   an 

phonons  360.2, 373.7 KphT  , the phonon energy 
source is calculated using the rules of directed interval 
arithmetic according to the following formula (see (12))  
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Taking into account the assumption that , dG T \D Z  one 
obtains the following formula 

 ( ) ( )( ) ( ),d dT TG G
d d dG T = G T G T         (27) 

, (22)
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where ,e phf f  are the carrier distribution functions,  
0 0,e phf f  are the equilibrium distribution functions given 

by the Bose-Einstein statistic for phonons [27] and Fermi-
Dirac statistic for electrons, ,e phv v  are the frequency-

dependent carrier propagation speeds, ,e ph   are the 

frequency-dependent carrier relaxation times and ,e phg g  

are the carrier generation rates due to external sources such 
as laser heating. 

The BTEs  (14) and (15) can be transformed into an 
equivalent carrier energy density equations [25] 
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where ,e phe e  are the carrier energy densities, 0 0,e phe e  are 

the equilibrium carrier energy densities and ,e phQ Q are 

the carrier energy sources related to an unit of volume. 
The equations (16) and (17) must be supplemented by the 
adequate boundary-initial conditions. 

The electron and phonon energy densities at their 
equivalent nonequilibrium temperatures are given by the 
formulas 
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where ,e phT T  are the carrier temperatures, kb is the 

Boltzmann constant, F is the Fermi energy, en  is the 
electron density, Θ D is the Debye temperature of the 
solid,   is the number density of oscillators [28]. 

The electron and phonon energy sources are calculated 
using the following expressions [26] 

  ( )e e phQ Q G T T    (20) 

  ( )ph e phQ G T T   (21) 

where Q is the power density deposited by the external 
source function associated with the laser irradiation  
[29-31] and G is the electron-phonon coupling factor 

which characterizes the energy exchange between 
electrons and phonons [12, 19].  

4. Interval lattice Boltzmann method 

The lattice Boltzmann method is a discrete 
representation of the Boltzmann transport equations. This 
method is employed to transport modeling of heat carriers. 
The interval form of the BTEs for 1D problems can be 
expressed as [28] 
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where ,e phe e  are the interval values of carrier energy 
densities for electrons and phonons respectively, 0 0,e phe e  
are the interval equilibrium carrier energy densities and 

,e ph  are the interval relaxation times.  
The interval values of the electron and phonon energy 

sources are calculated using the following formulas 
according to the rules of directed interval arithmetic [20] 

  ( )e e phQ Q G T T    (24) 

  ( )ph e phQ G T T  , (25) 

where G is the interval value of  the electron-phonon 
coupling factor. 

For example, for the interval values of the electron-
phonon coupling factor 16 162 10 , 2.5 10G     W/m3K 

and the temperatures of electrons  1175, 1179.6 KeT   an 

phonons  360.2, 373.7 KphT  , the phonon energy 
source is calculated using the rules of directed interval 
arithmetic according to the following formula (see (12))  
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Taking into account the assumption that , dG T \D Z  one 
obtains the following formula 

 ( ) ( )( ) ( ),d dT TG G
d d dG T = G T G T         (27) 

, (23)

where ēe, ēph are the interval values of carrier energy densities 
for electrons and phonons respectively, ē 0

e , ē 0
ph  are the interval 

equilibrium carrier energy densities and τ̄e, τ̄ph are the interval 
relaxation times.

The interval values of the electron and phonon energy sourc-
es are calculated using the following formulas according to the 
rules of directed interval arithmetic [20]
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where ,e phf f  are the carrier distribution functions,  
0 0,e phf f  are the equilibrium distribution functions given 

by the Bose-Einstein statistic for phonons [27] and Fermi-
Dirac statistic for electrons, ,e phv v  are the frequency-

dependent carrier propagation speeds, ,e ph   are the 

frequency-dependent carrier relaxation times and ,e phg g  

are the carrier generation rates due to external sources such 
as laser heating. 

The BTEs  (14) and (15) can be transformed into an 
equivalent carrier energy density equations [25] 
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where ,e phe e  are the carrier energy densities, 0 0,e phe e  are 

the equilibrium carrier energy densities and ,e phQ Q are 

the carrier energy sources related to an unit of volume. 
The equations (16) and (17) must be supplemented by the 
adequate boundary-initial conditions. 

The electron and phonon energy densities at their 
equivalent nonequilibrium temperatures are given by the 
formulas 
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where ,e phT T  are the carrier temperatures, kb is the 

Boltzmann constant, F is the Fermi energy, en  is the 
electron density, Θ D is the Debye temperature of the 
solid,   is the number density of oscillators [28]. 

The electron and phonon energy sources are calculated 
using the following expressions [26] 

  ( )e e phQ Q G T T    (20) 

  ( )ph e phQ G T T   (21) 

where Q is the power density deposited by the external 
source function associated with the laser irradiation  
[29-31] and G is the electron-phonon coupling factor 

which characterizes the energy exchange between 
electrons and phonons [12, 19].  

4. Interval lattice Boltzmann method 

The lattice Boltzmann method is a discrete 
representation of the Boltzmann transport equations. This 
method is employed to transport modeling of heat carriers. 
The interval form of the BTEs for 1D problems can be 
expressed as [28] 
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where ,e phe e  are the interval values of carrier energy 
densities for electrons and phonons respectively, 0 0,e phe e  
are the interval equilibrium carrier energy densities and 

,e ph  are the interval relaxation times.  
The interval values of the electron and phonon energy 

sources are calculated using the following formulas 
according to the rules of directed interval arithmetic [20] 

  ( )e e phQ Q G T T    (24) 

  ( )ph e phQ G T T  , (25) 

where G is the interval value of  the electron-phonon 
coupling factor. 

For example, for the interval values of the electron-
phonon coupling factor 16 162 10 , 2.5 10G     W/m3K 

and the temperatures of electrons  1175, 1179.6 KeT   an 

phonons  360.2, 373.7 KphT  , the phonon energy 
source is calculated using the rules of directed interval 
arithmetic according to the following formula (see (12))  
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Taking into account the assumption that , dG T \D Z  one 
obtains the following formula 

 ( ) ( )( ) ( ),d dT TG G
d d dG T = G T G T         (27) 

, (24)

3 

 
0

ph ph ph
ph ph ph

ph

f f f
f g

t
 

   
 

v , (15) 

where ,e phf f  are the carrier distribution functions,  
0 0,e phf f  are the equilibrium distribution functions given 

by the Bose-Einstein statistic for phonons [27] and Fermi-
Dirac statistic for electrons, ,e phv v  are the frequency-

dependent carrier propagation speeds, ,e ph   are the 

frequency-dependent carrier relaxation times and ,e phg g  

are the carrier generation rates due to external sources such 
as laser heating. 

The BTEs  (14) and (15) can be transformed into an 
equivalent carrier energy density equations [25] 
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where ,e phe e  are the carrier energy densities, 0 0,e phe e  are 

the equilibrium carrier energy densities and ,e phQ Q are 

the carrier energy sources related to an unit of volume. 
The equations (16) and (17) must be supplemented by the 
adequate boundary-initial conditions. 

The electron and phonon energy densities at their 
equivalent nonequilibrium temperatures are given by the 
formulas 

 
22

2( )
2

b
e e e e

F

k
e T n T

 
    

 (18) 

 
/ 3

4
3

0

9( ) d
exp( ) 1

D phT
b

ph ph ph
D

k ze T z T
z

 
 
  

  (19) 

where ,e phT T  are the carrier temperatures, kb is the 

Boltzmann constant, F is the Fermi energy, en  is the 
electron density, Θ D is the Debye temperature of the 
solid,   is the number density of oscillators [28]. 

The electron and phonon energy sources are calculated 
using the following expressions [26] 

  ( )e e phQ Q G T T    (20) 

  ( )ph e phQ G T T   (21) 

where Q is the power density deposited by the external 
source function associated with the laser irradiation  
[29-31] and G is the electron-phonon coupling factor 

which characterizes the energy exchange between 
electrons and phonons [12, 19].  

4. Interval lattice Boltzmann method 

The lattice Boltzmann method is a discrete 
representation of the Boltzmann transport equations. This 
method is employed to transport modeling of heat carriers. 
The interval form of the BTEs for 1D problems can be 
expressed as [28] 
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where ,e phe e  are the interval values of carrier energy 
densities for electrons and phonons respectively, 0 0,e phe e  
are the interval equilibrium carrier energy densities and 

,e ph  are the interval relaxation times.  
The interval values of the electron and phonon energy 

sources are calculated using the following formulas 
according to the rules of directed interval arithmetic [20] 

  ( )e e phQ Q G T T    (24) 

  ( )ph e phQ G T T  , (25) 

where G is the interval value of  the electron-phonon 
coupling factor. 

For example, for the interval values of the electron-
phonon coupling factor 16 162 10 , 2.5 10G     W/m3K 

and the temperatures of electrons  1175, 1179.6 KeT   an 

phonons  360.2, 373.7 KphT  , the phonon energy 
source is calculated using the rules of directed interval 
arithmetic according to the following formula (see (12))  
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Taking into account the assumption that , dG T \D Z  one 
obtains the following formula 

 ( ) ( )( ) ( ),d dT TG G
d d dG T = G T G T         (27) 

, (25)

where Ḡ is the interval value of the electron-phonon coupling 
factor.

For example, for the interval values of the electron-pho-
non coupling factor Ḡ = [2×1016, 2.5×1016]W/m3K and the 
temperatures of electrons T̄e = [1175, 1179.6]K an phonons 
T̄ph = [360.2, 373.7]K, the phonon energy source is calculated 
using the rules of directed interval arithmetic according to the 
following formula (see (12)) 
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where ,e phf f  are the carrier distribution functions,  
0 0,e phf f  are the equilibrium distribution functions given 

by the Bose-Einstein statistic for phonons [27] and Fermi-
Dirac statistic for electrons, ,e phv v  are the frequency-

dependent carrier propagation speeds, ,e ph   are the 

frequency-dependent carrier relaxation times and ,e phg g  

are the carrier generation rates due to external sources such 
as laser heating. 

The BTEs  (14) and (15) can be transformed into an 
equivalent carrier energy density equations [25] 
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where ,e phe e  are the carrier energy densities, 0 0,e phe e  are 

the equilibrium carrier energy densities and ,e phQ Q are 

the carrier energy sources related to an unit of volume. 
The equations (16) and (17) must be supplemented by the 
adequate boundary-initial conditions. 

The electron and phonon energy densities at their 
equivalent nonequilibrium temperatures are given by the 
formulas 
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where ,e phT T  are the carrier temperatures, kb is the 

Boltzmann constant, F is the Fermi energy, en  is the 
electron density, Θ D is the Debye temperature of the 
solid,   is the number density of oscillators [28]. 

The electron and phonon energy sources are calculated 
using the following expressions [26] 

  ( )e e phQ Q G T T    (20) 

  ( )ph e phQ G T T   (21) 

where Q is the power density deposited by the external 
source function associated with the laser irradiation  
[29-31] and G is the electron-phonon coupling factor 

which characterizes the energy exchange between 
electrons and phonons [12, 19].  

4. Interval lattice Boltzmann method 

The lattice Boltzmann method is a discrete 
representation of the Boltzmann transport equations. This 
method is employed to transport modeling of heat carriers. 
The interval form of the BTEs for 1D problems can be 
expressed as [28] 
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where ,e phe e  are the interval values of carrier energy 
densities for electrons and phonons respectively, 0 0,e phe e  
are the interval equilibrium carrier energy densities and 

,e ph  are the interval relaxation times.  
The interval values of the electron and phonon energy 

sources are calculated using the following formulas 
according to the rules of directed interval arithmetic [20] 

  ( )e e phQ Q G T T    (24) 

  ( )ph e phQ G T T  , (25) 

where G is the interval value of  the electron-phonon 
coupling factor. 

For example, for the interval values of the electron-
phonon coupling factor 16 162 10 , 2.5 10G     W/m3K 

and the temperatures of electrons  1175, 1179.6 KeT   an 

phonons  360.2, 373.7 KphT  , the phonon energy 
source is calculated using the rules of directed interval 
arithmetic according to the following formula (see (12))  
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Taking into account the assumption that , dG T \D Z  one 
obtains the following formula 

 ( ) ( )( ) ( ),d dT TG G
d d dG T = G T G T         (27) 

. (26)

Taking into account the assumption that Ḡ, T̄d 2 D\Z one ob-
tains the following formula
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where ,e phe e  are the carrier energy densities, 0 0,e phe e  are 

the equilibrium carrier energy densities and ,e phQ Q are 

the carrier energy sources related to an unit of volume. 
The equations (16) and (17) must be supplemented by the 
adequate boundary-initial conditions. 

The electron and phonon energy densities at their 
equivalent nonequilibrium temperatures are given by the 
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where ,e phT T  are the carrier temperatures, kb is the 

Boltzmann constant, F is the Fermi energy, en  is the 
electron density, Θ D is the Debye temperature of the 
solid,   is the number density of oscillators [28]. 

The electron and phonon energy sources are calculated 
using the following expressions [26] 
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where Q is the power density deposited by the external 
source function associated with the laser irradiation  
[29-31] and G is the electron-phonon coupling factor 

which characterizes the energy exchange between 
electrons and phonons [12, 19].  

4. Interval lattice Boltzmann method 

The lattice Boltzmann method is a discrete 
representation of the Boltzmann transport equations. This 
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The interval form of the BTEs for 1D problems can be 
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where ,e phe e  are the interval values of carrier energy 
densities for electrons and phonons respectively, 0 0,e phe e  
are the interval equilibrium carrier energy densities and 

,e ph  are the interval relaxation times.  
The interval values of the electron and phonon energy 

sources are calculated using the following formulas 
according to the rules of directed interval arithmetic [20] 
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where G is the interval value of  the electron-phonon 
coupling factor. 

For example, for the interval values of the electron-
phonon coupling factor 16 162 10 , 2.5 10G     W/m3K 

and the temperatures of electrons  1175, 1179.6 KeT   an 

phonons  360.2, 373.7 KphT  , the phonon energy 
source is calculated using the rules of directed interval 
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Taking into account the assumption that , dG T \D Z  one 
obtains the following formula 

 ( ) ( )( ) ( ),d dT TG G
d d dG T = G T G T         (27) , (27)

For the interval values Ḡ = [2×1016, 2.5×1016]  and T̄d = [827.6, 
799] the sign variables are σ(̄G) = +, σ(̄Td) = +, so the product 
of Ḡ and T̄d can be calculated according to the formula
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and the directed interval phonon energy source is 
computed as follows 
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As a result, the interval obtained is proper. 
For one-dimensional model the discrete set of 

propagation velocities in two lattice directions (1 and 2) 
for electrons and phonons is defined as (see Fig. 1) 

 1 2[ , 0] [ , 0]e e e ec c  c c  (30) 
 1 2[ , 0] [ , 0]ph ph ph phc c  c c , (31) 

 
where / , /e e ph phc x t c x t       are the components of 
velocity along the x-axis for electrons and phonons 
respectively,  ,e phx x   are the lattice distances from site 
to site,  1f ft t t   is the time step needed for a phonon 
and electron to travel from one lattice site to the 
neighboring lattice site. In the paper the equality of ex  
and pfx  is assumed.  

In the LBM method, it is necessary to set the grid in 
such a way that  the result is independent of the grid size. 
Generally, this can be achieved with a lattice spacing 
shorter than the phonon mean free path. 
 

 

 
 

Fig. 1. One-dimensional 2-speed lattice Boltzmann model 
 

The equations (22) and (23) should be supplemented by 
the boundary conditions [28], for example of the 2nd type 
on the left boundary and the 1st type on the right boundary 
as follows 
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and the initial conditions 
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where 2
e
bT  and 2

ph
bT  are boundary temperatures of 

electrons and phonons respectively,  0eT and  1eT  are 

temperatures of electrons in the first and second node, 
 0phT  and  1phT  are temperatures of phonons in the 

first and second node, 0
eT  is the electron’s initial 

temperature and 0
phT  is the phonon’s initial temperature. 

Taking into account equations (30, 31), the set of four 
interval partial differential equations is obtained 
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Introducing discretizing form, time and position 
derivatives  may be written as follows  
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For example, for the interval phonon relaxation time 
 0.76, 0.84ph  ps and the time step 0.01t  ps, the 

value of the quotient / pht   is calculated according to 
the formula (see (13)) 

    /  / 0.01, 0.01 / 0.76, 0.84ph pht t      D . (36) 

Taking into account the assumption that , pht \  D Z  
one obtains the following formula 

 σ( τ ) σ( τ )σ( ) σ( )/ τ /τ , /τph pht t
ph ph pht = t t        . (37) 

For the interval values  0.01, 0.01t  ps and

 0.76, 0.84ph  ps the sign variables are ( ) ,t   

 (28)

and the directed interval phonon energy source is computed 
as follows
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where 2
e
bT  and 2

ph
bT  are boundary temperatures of 

electrons and phonons respectively,  0eT and  1eT  are 

temperatures of electrons in the first and second node, 
 0phT  and  1phT  are temperatures of phonons in the 

first and second node, 0
eT  is the electron’s initial 

temperature and 0
phT  is the phonon’s initial temperature. 

Taking into account equations (30, 31), the set of four 
interval partial differential equations is obtained 
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Introducing discretizing form, time and position 
derivatives  may be written as follows  
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For example, for the interval phonon relaxation time 
 0.76, 0.84ph  ps and the time step 0.01t  ps, the 

value of the quotient / pht   is calculated according to 
the formula (see (13)) 

    /  / 0.01, 0.01 / 0.76, 0.84ph pht t      D . (36) 

Taking into account the assumption that , pht \  D Z  
one obtains the following formula 

 σ( τ ) σ( τ )σ( ) σ( )/ τ /τ , /τph pht t
ph ph pht = t t        . (37) 

For the interval values  0.01, 0.01t  ps and

 0.76, 0.84ph  ps the sign variables are ( ) ,t   

. (29)

As a result, the interval obtained is proper.
For one-dimensional model the discrete set of propagation 

velocities in two lattice directions (1 and 2) for electrons and 
phonons is defined as (see Fig. 1)
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As a result, the interval obtained is proper. 
For one-dimensional model the discrete set of 

propagation velocities in two lattice directions (1 and 2) 
for electrons and phonons is defined as (see Fig. 1) 
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where / , /e e ph phc x t c x t       are the components of 
velocity along the x-axis for electrons and phonons 
respectively,  ,e phx x   are the lattice distances from site 
to site,  1f ft t t   is the time step needed for a phonon 
and electron to travel from one lattice site to the 
neighboring lattice site. In the paper the equality of ex  
and pfx  is assumed.  

In the LBM method, it is necessary to set the grid in 
such a way that  the result is independent of the grid size. 
Generally, this can be achieved with a lattice spacing 
shorter than the phonon mean free path. 
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The equations (22) and (23) should be supplemented by 
the boundary conditions [28], for example of the 2nd type 
on the left boundary and the 1st type on the right boundary 
as follows 
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and the initial conditions 
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where 2
e
bT  and 2

ph
bT  are boundary temperatures of 

electrons and phonons respectively,  0eT and  1eT  are 

temperatures of electrons in the first and second node, 
 0phT  and  1phT  are temperatures of phonons in the 

first and second node, 0
eT  is the electron’s initial 

temperature and 0
phT  is the phonon’s initial temperature. 

Taking into account equations (30, 31), the set of four 
interval partial differential equations is obtained 
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Introducing discretizing form, time and position 
derivatives  may be written as follows  
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For example, for the interval phonon relaxation time 
 0.76, 0.84ph  ps and the time step 0.01t  ps, the 

value of the quotient / pht   is calculated according to 
the formula (see (13)) 
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one obtains the following formula 
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ph ph pht = t t        . (37) 

For the interval values  0.01, 0.01t  ps and

 0.76, 0.84ph  ps the sign variables are ( ) ,t   

. (30)
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computed as follows 

 

 16 16

16 16

19 19 3

2 10 , 2.5 10 827.6, 799

2 10 827.6, 2.5 10 799

1.65 10 , 2 10 W/m K

phQ      
      
    

. (29) 

As a result, the interval obtained is proper. 
For one-dimensional model the discrete set of 

propagation velocities in two lattice directions (1 and 2) 
for electrons and phonons is defined as (see Fig. 1) 
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velocity along the x-axis for electrons and phonons 
respectively,  ,e phx x   are the lattice distances from site 
to site,  1f ft t t   is the time step needed for a phonon 
and electron to travel from one lattice site to the 
neighboring lattice site. In the paper the equality of ex  
and pfx  is assumed.  

In the LBM method, it is necessary to set the grid in 
such a way that  the result is independent of the grid size. 
Generally, this can be achieved with a lattice spacing 
shorter than the phonon mean free path. 
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The equations (22) and (23) should be supplemented by 
the boundary conditions [28], for example of the 2nd type 
on the left boundary and the 1st type on the right boundary 
as follows 
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and the initial conditions 
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where 2
e
bT  and 2

ph
bT  are boundary temperatures of 

electrons and phonons respectively,  0eT and  1eT  are 

temperatures of electrons in the first and second node, 
 0phT  and  1phT  are temperatures of phonons in the 

first and second node, 0
eT  is the electron’s initial 

temperature and 0
phT  is the phonon’s initial temperature. 

Taking into account equations (30, 31), the set of four 
interval partial differential equations is obtained 
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Introducing discretizing form, time and position 
derivatives  may be written as follows  
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For example, for the interval phonon relaxation time 
 0.76, 0.84ph  ps and the time step 0.01t  ps, the 

value of the quotient / pht   is calculated according to 
the formula (see (13)) 

    /  / 0.01, 0.01 / 0.76, 0.84ph pht t      D . (36) 

Taking into account the assumption that , pht \  D Z  
one obtains the following formula 

 σ( τ ) σ( τ )σ( ) σ( )/ τ /τ , /τph pht t
ph ph pht = t t        . (37) 

For the interval values  0.01, 0.01t  ps and

 0.76, 0.84ph  ps the sign variables are ( ) ,t   

 (31)

where ce = Δxe /Δt, cph = Δxph /Δt are the components of velocity 
along the x-axis for electrons and phonons respectively, Δxe, 
Δxph are the lattice distances from site to site, Δt = t f +1 − t f  is 
the time step needed for a phonon and electron to travel from 
one lattice site to the neighboring lattice site. In the paper the 
equality of Δxe  and Δxph  is assumed.

In the LBM method, it is necessary to set the grid in such 
a way that the result is independent of the grid size. General-
ly, this can be achieved with a lattice spacing shorter than the 
phonon mean free path.
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As a result, the interval obtained is proper. 
For one-dimensional model the discrete set of 
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The equations (22) and (23) should be supplemented by 
the boundary conditions [28], for example of the 2nd type 
on the left boundary and the 1st type on the right boundary 
as follows 
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and the initial conditions 
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where 2
e
bT  and 2

ph
bT  are boundary temperatures of 

electrons and phonons respectively,  0eT and  1eT  are 

temperatures of electrons in the first and second node, 
 0phT  and  1phT  are temperatures of phonons in the 

first and second node, 0
eT  is the electron’s initial 

temperature and 0
phT  is the phonon’s initial temperature. 

Taking into account equations (30, 31), the set of four 
interval partial differential equations is obtained 
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Introducing discretizing form, time and position 
derivatives  may be written as follows  
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For example, for the interval phonon relaxation time 
 0.76, 0.84ph  ps and the time step 0.01t  ps, the 

value of the quotient / pht   is calculated according to 
the formula (see (13)) 

    /  / 0.01, 0.01 / 0.76, 0.84ph pht t      D . (36) 

Taking into account the assumption that , pht \  D Z  
one obtains the following formula 

 σ( τ ) σ( τ )σ( ) σ( )/ τ /τ , /τph pht t
ph ph pht = t t        . (37) 

For the interval values  0.01, 0.01t  ps and

 0.76, 0.84ph  ps the sign variables are ( ) ,t   

. (34)

Introducing discretizing form, time and position derivatives  
may be written as follows 

4 

For the interval values 16 162 10 , 2.5 10G      and 

 827.6, 799dT   the sign variables are ( ) ,G  

( )dT   , so the product of G  and dT  can be calculated 
according to the formula 

, ,d d d d dG T = G T G T = G T G T                     (28) 

and the directed interval phonon energy source is 
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As a result, the interval obtained is proper. 
For one-dimensional model the discrete set of 

propagation velocities in two lattice directions (1 and 2) 
for electrons and phonons is defined as (see Fig. 1) 

 1 2[ , 0] [ , 0]e e e ec c  c c  (30) 
 1 2[ , 0] [ , 0]ph ph ph phc c  c c , (31) 

 
where / , /e e ph phc x t c x t       are the components of 
velocity along the x-axis for electrons and phonons 
respectively,  ,e phx x   are the lattice distances from site 
to site,  1f ft t t   is the time step needed for a phonon 
and electron to travel from one lattice site to the 
neighboring lattice site. In the paper the equality of ex  
and pfx  is assumed.  

In the LBM method, it is necessary to set the grid in 
such a way that  the result is independent of the grid size. 
Generally, this can be achieved with a lattice spacing 
shorter than the phonon mean free path. 
 

 

 
 

Fig. 1. One-dimensional 2-speed lattice Boltzmann model 
 

The equations (22) and (23) should be supplemented by 
the boundary conditions [28], for example of the 2nd type 
on the left boundary and the 1st type on the right boundary 
as follows 
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and the initial conditions 
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where 2
e
bT  and 2

ph
bT  are boundary temperatures of 

electrons and phonons respectively,  0eT and  1eT  are 

temperatures of electrons in the first and second node, 
 0phT  and  1phT  are temperatures of phonons in the 

first and second node, 0
eT  is the electron’s initial 

temperature and 0
phT  is the phonon’s initial temperature. 

Taking into account equations (30, 31), the set of four 
interval partial differential equations is obtained 
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Introducing discretizing form, time and position 
derivatives  may be written as follows  
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For example, for the interval phonon relaxation time 
 0.76, 0.84ph  ps and the time step 0.01t  ps, the 

value of the quotient / pht   is calculated according to 
the formula (see (13)) 

    /  / 0.01, 0.01 / 0.76, 0.84ph pht t      D . (36) 

Taking into account the assumption that , pht \  D Z  
one obtains the following formula 

 σ( τ ) σ( τ )σ( ) σ( )/ τ /τ , /τph pht t
ph ph pht = t t        . (37) 

For the interval values  0.01, 0.01t  ps and

 0.76, 0.84ph  ps the sign variables are ( ) ,t   

. (35)

For example, for the interval phonon relaxation time 
τ̄ph = [0.76, 0.84]ps and the time step Δt = 0.01ps, the value 
of the quotient Δt / τ̄ph is calculated according to the formula 
(see (13))
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As a result, the interval obtained is proper. 
For one-dimensional model the discrete set of 

propagation velocities in two lattice directions (1 and 2) 
for electrons and phonons is defined as (see Fig. 1) 
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such a way that  the result is independent of the grid size. 
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The equations (22) and (23) should be supplemented by 
the boundary conditions [28], for example of the 2nd type 
on the left boundary and the 1st type on the right boundary 
as follows 
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and the initial conditions 
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where 2
e
bT  and 2

ph
bT  are boundary temperatures of 

electrons and phonons respectively,  0eT and  1eT  are 

temperatures of electrons in the first and second node, 
 0phT  and  1phT  are temperatures of phonons in the 

first and second node, 0
eT  is the electron’s initial 

temperature and 0
phT  is the phonon’s initial temperature. 

Taking into account equations (30, 31), the set of four 
interval partial differential equations is obtained 
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Introducing discretizing form, time and position 
derivatives  may be written as follows  
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For example, for the interval phonon relaxation time 
 0.76, 0.84ph  ps and the time step 0.01t  ps, the 

value of the quotient / pht   is calculated according to 
the formula (see (13)) 

    /  / 0.01, 0.01 / 0.76, 0.84ph pht t      D . (36) 

Taking into account the assumption that , pht \  D Z  
one obtains the following formula 

 σ( τ ) σ( τ )σ( ) σ( )/ τ /τ , /τph pht t
ph ph pht = t t        . (37) 

For the interval values  0.01, 0.01t  ps and

 0.76, 0.84ph  ps the sign variables are ( ) ,t   

 (36)

Taking into account the assumption that Δ̄t,  τ̄ph 2 D\Z one ob-
tains the following formula
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As a result, the interval obtained is proper. 
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propagation velocities in two lattice directions (1 and 2) 
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and electron to travel from one lattice site to the 
neighboring lattice site. In the paper the equality of ex  
and pfx  is assumed.  

In the LBM method, it is necessary to set the grid in 
such a way that  the result is independent of the grid size. 
Generally, this can be achieved with a lattice spacing 
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Fig. 1. One-dimensional 2-speed lattice Boltzmann model 
 

The equations (22) and (23) should be supplemented by 
the boundary conditions [28], for example of the 2nd type 
on the left boundary and the 1st type on the right boundary 
as follows 
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and the initial conditions 
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where 2
e
bT  and 2

ph
bT  are boundary temperatures of 

electrons and phonons respectively,  0eT and  1eT  are 

temperatures of electrons in the first and second node, 
 0phT  and  1phT  are temperatures of phonons in the 

first and second node, 0
eT  is the electron’s initial 

temperature and 0
phT  is the phonon’s initial temperature. 

Taking into account equations (30, 31), the set of four 
interval partial differential equations is obtained 
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Introducing discretizing form, time and position 
derivatives  may be written as follows  
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(35) (35) 

For example, for the interval phonon relaxation time 
 0.76, 0.84ph  ps and the time step 0.01t  ps, the 

value of the quotient / pht   is calculated according to 
the formula (see (13)) 

    /  / 0.01, 0.01 / 0.76, 0.84ph pht t      D . (36) 

Taking into account the assumption that , pht \  D Z  
one obtains the following formula 

 σ( τ ) σ( τ )σ( ) σ( )/ τ /τ , /τph pht t
ph ph pht = t t        . (37) 

For the interval values  0.01, 0.01t  ps and

 0.76, 0.84ph  ps the sign variables are ( ) ,t   

. (37)

For the interval values Δ̄t = [0.01, 0.01]ps and τ̄ph = [0.76, 0.84]ps 
the sign variables are σ(̄Δt) = +, σ(̄τph) = + so the quotient Δt / τ̄ph 
can be calculated according to the formula
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( )ph    , so the quotient / pht   can be calculated 
according to the formula 
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. (38) 

and finally the quotient is computed as follows 

   / τ 0.01/ 0.76, 0.01/ 0.84 0.013, 0.012pht   . (39) 

As a result, the interval obtained is improper. 
The total energy density for electrons and phonons is 

defined as the sum of discrete energy densities in all the 
lattice directions and takes the form 
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The equilibrium electron energy density and phonon 
energy density is the same in all lattice directions and can 
be calculated using the formula [32]: 
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After subsequent computations the lattice temperature is 
determined using the formula 
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5. Results of computations 

As a numerical example the heat transport in a gold 
thin film of thickness 200 nm has been analyzed. The most 
common values of phonon relaxation time is 0.8 ps and 
electron relaxation time 0.04 ps [33], while the value of 
the electron-phonon coupling factor is 162.3 10  W/m3K 
[12]. In numerical examples the following input data have 
been introduced: the relaxation time 

 0.038, 0.042 ps,e    0.76, 0.84 psph  , the Debye 
temperature 170KD  , the internal source function 

2010Q  W/m3, the interval coupling factor 
16 162 10 , 2.5 10G     W/m3K in the first variant and 

16 161.8 10 , 2.7 10G       W/m3K in the second variant, 

the boundary conditions of the 2nd type on the left 
boundary (0, ) (0, ) 0e ph

b bq t q t   and the 1st type on the 
right boundary 2 2 300Ke ph

b bT T  , the initial temperature 

0 300KT  . The lattice step 20nmx   and the time step 
0.01pst   have been assumed.  

 
Fig. 2. The interval temperature distribution  

of electrons in a gold film 
 

Figure 2 illustrates the interval temperature 
distribution of electrons in the domain considered for the 
chosen times, while in Fig. 3 the interval temperature 
distribution of electrons for wider interval of the coupling 
factor for the same chosen times is shown.  

 
Fig. 3. The interval temperature distribution of electrons 

in a gold film for wider interval  
of the coupling factor 
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and finally the quotient is computed as follows
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according to the formula 
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and finally the quotient is computed as follows 
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As a result, the interval obtained is improper. 
The total energy density for electrons and phonons is 

defined as the sum of discrete energy densities in all the 
lattice directions and takes the form 
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As a result, the interval obtained is improper.
The total energy density for electrons and phonons is de-

fined as the sum of discrete energy densities in all the lattice 
directions and takes the form

Fig. 1. One-dimensional 2-speed lattice Boltzmann model
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For the interval values 16 162 10 , 2.5 10G      and 

 827.6, 799dT   the sign variables are ( ) ,G  

( )dT   , so the product of G  and dT  can be calculated 
according to the formula 

, ,d d d d dG T = G T G T = G T G T                     (28) 

and the directed interval phonon energy source is 
computed as follows 
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As a result, the interval obtained is proper. 
For one-dimensional model the discrete set of 

propagation velocities in two lattice directions (1 and 2) 
for electrons and phonons is defined as (see Fig. 1) 

 1 2[ , 0] [ , 0]e e e ec c  c c  (30) 
 1 2[ , 0] [ , 0]ph ph ph phc c  c c , (31) 

 
where / , /e e ph phc x t c x t       are the components of 
velocity along the x-axis for electrons and phonons 
respectively,  ,e phx x   are the lattice distances from site 
to site,  1f ft t t   is the time step needed for a phonon 
and electron to travel from one lattice site to the 
neighboring lattice site. In the paper the equality of ex  
and pfx  is assumed.  

In the LBM method, it is necessary to set the grid in 
such a way that  the result is independent of the grid size. 
Generally, this can be achieved with a lattice spacing 
shorter than the phonon mean free path. 
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The equations (22) and (23) should be supplemented by 
the boundary conditions [28], for example of the 2nd type 
on the left boundary and the 1st type on the right boundary 
as follows 
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and the initial conditions 
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where 2
e
bT  and 2

ph
bT  are boundary temperatures of 

electrons and phonons respectively,  0eT and  1eT  are 

temperatures of electrons in the first and second node, 
 0phT  and  1phT  are temperatures of phonons in the 

first and second node, 0
eT  is the electron’s initial 

temperature and 0
phT  is the phonon’s initial temperature. 

Taking into account equations (30, 31), the set of four 
interval partial differential equations is obtained 
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Introducing discretizing form, time and position 
derivatives  may be written as follows  
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For example, for the interval phonon relaxation time 
 0.76, 0.84ph  ps and the time step 0.01t  ps, the 

value of the quotient / pht   is calculated according to 
the formula (see (13)) 

    /  / 0.01, 0.01 / 0.76, 0.84ph pht t      D . (36) 

Taking into account the assumption that , pht \  D Z  
one obtains the following formula 

 σ( τ ) σ( τ )σ( ) σ( )/ τ /τ , /τph pht t
ph ph pht = t t        . (37) 

For the interval values  0.01, 0.01t  ps and

 0.76, 0.84ph  ps the sign variables are ( ) ,t   

The equations (22) and (23) should be supplemented by the 
boundary conditions [28], for example of the 2nd type on the 
left boundary and the 1st type on the right boundary as follows

4 

For the interval values 16 162 10 , 2.5 10G      and 

 827.6, 799dT   the sign variables are ( ) ,G  

( )dT   , so the product of G  and dT  can be calculated 
according to the formula 

, ,d d d d dG T = G T G T = G T G T                     (28) 

and the directed interval phonon energy source is 
computed as follows 

 

 16 16

16 16

19 19 3

2 10 , 2.5 10 827.6, 799

2 10 827.6, 2.5 10 799

1.65 10 , 2 10 W/m K

phQ      
      
    

. (29) 

As a result, the interval obtained is proper. 
For one-dimensional model the discrete set of 

propagation velocities in two lattice directions (1 and 2) 
for electrons and phonons is defined as (see Fig. 1) 
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and electron to travel from one lattice site to the 
neighboring lattice site. In the paper the equality of ex  
and pfx  is assumed.  

In the LBM method, it is necessary to set the grid in 
such a way that  the result is independent of the grid size. 
Generally, this can be achieved with a lattice spacing 
shorter than the phonon mean free path. 
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where 2
e
bT  and 2

ph
bT  are boundary temperatures of 

electrons and phonons respectively,  0eT and  1eT  are 

temperatures of electrons in the first and second node, 
 0phT  and  1phT  are temperatures of phonons in the 

first and second node, 0
eT  is the electron’s initial 

temperature and 0
phT  is the phonon’s initial temperature. 

Taking into account equations (30, 31), the set of four 
interval partial differential equations is obtained 
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Introducing discretizing form, time and position 
derivatives  may be written as follows  
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For example, for the interval phonon relaxation time 
 0.76, 0.84ph  ps and the time step 0.01t  ps, the 
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and the initial conditions
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where 2
e
bT  and 2

ph
bT  are boundary temperatures of 

electrons and phonons respectively,  0eT and  1eT  are 

temperatures of electrons in the first and second node, 
 0phT  and  1phT  are temperatures of phonons in the 

first and second node, 0
eT  is the electron’s initial 

temperature and 0
phT  is the phonon’s initial temperature. 

Taking into account equations (30, 31), the set of four 
interval partial differential equations is obtained 
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Introducing discretizing form, time and position 
derivatives  may be written as follows  
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For example, for the interval phonon relaxation time 
 0.76, 0.84ph  ps and the time step 0.01t  ps, the 

value of the quotient / pht   is calculated according to 
the formula (see (13)) 

    /  / 0.01, 0.01 / 0.76, 0.84ph pht t      D . (36) 

Taking into account the assumption that , pht \  D Z  
one obtains the following formula 

 σ( τ ) σ( τ )σ( ) σ( )/ τ /τ , /τph pht t
ph ph pht = t t        . (37) 

For the interval values  0.01, 0.01t  ps and

 0.76, 0.84ph  ps the sign variables are ( ) ,t   

, (33)

where Te
b2 and T p

b
h
2 are boundary temperatures of electrons and 

phonons respectively, (̄Te)0 and (̄Te)1 are temperatures of elec-
trons in the first and second node, (T̄ph)0 and (̄Tph)1 are tem-
peratures of phonons in the first and second node, T e

0 is the 
electron’s initial temperature and T0

ph is the phonon’s initial 
temperature. Taking into account equations (30, 31), the set of 
four interval partial differential equations is obtained
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The equilibrium electron energy density and phonon 
energy density is the same in all lattice directions and can 
be calculated using the formula [32]: 
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determined using the formula 
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5. Results of computations 

As a numerical example the heat transport in a gold 
thin film of thickness 200 nm has been analyzed. The most 
common values of phonon relaxation time is 0.8 ps and 
electron relaxation time 0.04 ps [33], while the value of 
the electron-phonon coupling factor is 162.3 10  W/m3K 
[12]. In numerical examples the following input data have 
been introduced: the relaxation time 
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the boundary conditions of the 2nd type on the left 
boundary (0, ) (0, ) 0e ph

b bq t q t   and the 1st type on the 
right boundary 2 2 300Ke ph

b bT T  , the initial temperature 

0 300KT  . The lattice step 20nmx   and the time step 
0.01pst   have been assumed.  

 
Fig. 2. The interval temperature distribution  

of electrons in a gold film 
 

Figure 2 illustrates the interval temperature 
distribution of electrons in the domain considered for the 
chosen times, while in Fig. 3 the interval temperature 
distribution of electrons for wider interval of the coupling 
factor for the same chosen times is shown.  
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The equilibrium electron energy density and phonon energy 
density is the same in all lattice directions and can be calculated 
using the formula [32]:
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As a numerical example the heat transport in a gold 
thin film of thickness 200 nm has been analyzed. The most 
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electron relaxation time 0.04 ps [33], while the value of 
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Figure 2 illustrates the interval temperature 
distribution of electrons in the domain considered for the 
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distribution of electrons for wider interval of the coupling 
factor for the same chosen times is shown.  
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and finally the quotient is computed as follows 
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The equilibrium electron energy density and phonon 
energy density is the same in all lattice directions and can 
be calculated using the formula [32]: 
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5. Results of computations 

As a numerical example the heat transport in a gold 
thin film of thickness 200 nm has been analyzed. The most 
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electron relaxation time 0.04 ps [33], while the value of 
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Figure 2 illustrates the interval temperature 
distribution of electrons in the domain considered for the 
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distribution of electrons for wider interval of the coupling 
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After subsequent computations the lattice temperature is deter-
mined using the formula
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The equilibrium electron energy density and phonon 
energy density is the same in all lattice directions and can 
be calculated using the formula [32]: 

    0

2

f
f e i

e i

e
e  . (41) 

    0

2

f
f ph i

ph i

e
e   (42) 

After subsequent computations the lattice temperature is 
determined using the formula 

 

   

 
 

221

3
1

/4 3

0

2

9 d
exp( ) 1

b

f
D ph

f f
e e e ei i

F

f

ph Df i
ph Ti

b

k
T e T n

e T
T

zk z
z







          

   




. (43) 
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thin film of thickness 200 nm has been analyzed. The most 
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electron relaxation time 0.04 ps [33], while the value of 
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Figure 2 illustrates the interval temperature 
distribution of electrons in the domain considered for the 
chosen times, while in Fig. 3 the interval temperature 
distribution of electrons for wider interval of the coupling 
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5. Results of computations

As a numerical example the heat transport in a gold thin film of 
thickness 200 nm has been analyzed. The most common values 
of phonon relaxation time is 0.8 ps and electron relaxation time 
0.04 ps [33], while the value of the electron-phonon coupling 
factor is 2.3×1016 W/m3K [12]. In numerical examples the 
following input data have been introduced: the relaxation time 
τ̄e = [0.038, 0.042]ps, τ̄ph = [0.76, 0.84]ps the Debye tempera-
ture ΘD = 170K, the internal source function Q' = 1020 W/m3, 

the interval coupling factor Ḡ = [2×1016, 2.5×1016]W/m3K in 
the first variant and Ḡ = [1.8×1016, 2.7×1016]W/m3K in the 
second variant, the boundary conditions of the 2nd type on the 
left boundary q̄ e

b(0, t) = q̄b
ph(0, t) =  0̄ and the 1st type on the right 

boundary Te
b2 = T p

b
h
2  = 300K, the initial temperature T0 = 300K. 

The lattice step Δx = 20nm and the time step Δt  = 0.01ps have 
been assumed.

Figure 2 illustrates the interval temperature distribution of 
electrons in the domain considered for the chosen times, while 
in Fig. 3 the interval temperature distribution of electrons for 
wider interval of the coupling factor for the same chosen times 
is shown. 

Fig. 2. The interval temperature distribution of electrons in a gold film
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The equilibrium electron energy density and phonon 
energy density is the same in all lattice directions and can 
be calculated using the formula [32]: 
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5. Results of computations 

As a numerical example the heat transport in a gold 
thin film of thickness 200 nm has been analyzed. The most 
common values of phonon relaxation time is 0.8 ps and 
electron relaxation time 0.04 ps [33], while the value of 
the electron-phonon coupling factor is 162.3 10  W/m3K 
[12]. In numerical examples the following input data have 
been introduced: the relaxation time 
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Figure 4 presents the interval temperature distribution 
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Figure 5 illustrates the interval temperature distribution of 
phonons for wider interval of the coupling factor for the same 
chosen times.

In Fig. 6 the courses of the temperature of electrons at 
the internal nodes 1 (20 nm), 2 (80 nm) and 3 (140 nm) are 
shown.

Figure 7 illustrates the interval heating curves at the same 
internal nodes for wider interval of the coupling factor and then 
the interval temperatures are wider, of course.
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coupling factor (temperature of electrons)
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6. Conclusions 

In the paper the coupled lattice Boltzmann equations 
for electrons and phonons are applied to analyze the 
heating process of the thin metal films via laser pulse. The 
Boltzmann transport equations with the interval values of 
the relaxation time and the phonon-electron coupling 
factor  have been considered. The interval version of the 
lattice Boltzmann method for solving 1D problems has 
been presented using the rules of directed interval 
arithmetic. The generalization of LBM allows one to find  
the numerical solution in the interval form and such an 
information may be important especially for the 
parameters which are estimated experimentally, for 
example the relaxation times. The main advantage of the 
directed interval arithmetic upon the classical interval 
arithmetic is that the obtained temperature intervals are 
much narrower. It should be pointed out that the method 
proposed can be extended to multi-layered domains  
[34, 35].  
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Figure 4 presents the interval temperature distribution 
of phonons in the domain considered for the chosen times. 

Figure 5 illustrates the interval temperature 
distribution of phonons for wider interval of the coupling 
factor for the same chosen times. 
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Figures 8 and 9 show the phonon interval heating curves at 
the same internal nodes for narrow and wider interval of the 
coupling factor, respectively.
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6. Conclusions

In the paper the coupled lattice Boltzmann equations for elec-
trons and phonons are applied to analyze the heating process of 
the thin metal films via laser pulse. The Boltzmann transport 
equations with the interval values of the relaxation time and 
the phonon-electron coupling factor have been considered. The 
interval version of the lattice Boltzmann method for solving 1D 
problems has been presented using the rules of directed inter-
val arithmetic. The generalization of LBM allows one to find 
the numerical solution in the interval form and such an infor-
mation may be important especially for the parameters which 
are estimated experimentally, for example the relaxation times. 
The main advantage of the directed interval arithmetic upon 
the classical interval arithmetic is that the obtained tempera-
ture intervals are much narrower. It should be pointed out that 
the method proposed can be extended to multi-layered domains 
[34, 35].
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