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and implies that the number of arcs which can be packed in the 
clique defined by the set of nodes S cannot exceed jSj  ¡  1. 
Formula (6) introduces O(2n) constraints and defines facets 
of the ATSP polytope. A practical importance owns two-node 
version of (6), namely

subject to
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i:(i,j)∈A

xij = 1, j ∈ V (2)

∑

j:(i,j)∈A

xij = 1, i ∈ V (3)

{(i, j) ∈ A : xij = 1} do not contain subtours (4)

xij ∈ {0, 1}; (i, j) ∈ A, (5)

where xij = 1, if directed arc (i, j) ∈ A is in the tour; otherwise xij = 0.

Constraints (4) eliminate subtours not containing the depot node 1. The subtour elimi-

nation condition (4) can be formulated in different ways. One of the most efficient approach

derives from the paper [2] of Dantzig, Fulkerson, and Johnson
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Inequality (7) means that the tour may contain either arc (i, j), (xij = 1), or arc (j, i),

(xji = 1) or neither of these two arcs, (xij = 0 and xji = 0).

Another most-known tractable formulation of subtour elimination constraints (MTZ) fol-

lows from Miller, Tucker, and Zemlin [3] and has the form of

ui − uj + nxij ≤ n− 1; i, j ∈ {2, . . . n}, i �= j (8)

ui ∈ R; i ∈ V : i > 1, (9)

where the additional real variables ui are used to give an ordering to all nodes excluding the

depot to prevent the formation of illegal subtours. The ui variables are unrestricted in the

original paper [3]. Since the tour begins in the depot node i = 1, (9) can be replaced by the

following constraints (10), (11), that do not affect the LP bound of the ATSP

u1 = 1 (10)

2 ≤ ui ≤ n; i ∈ V : i > 1, (11)

where ui denotes the position of node i in the tour.

The polynomial in number (O(n2)), MTZ constraints are known to produce a weak LP

relaxation of the ATSP. However, they are flexible and capable of solving small to medium
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where the additional real variables ui are used to give an order-
ing to all nodes excluding the depot to prevent the formation of 
illegal subtours. The ui variables are unrestricted in the original 
paper [3]. Since the tour begins in the depot node i =  1, (9) can 
be replaced by the following constraints (10), (11), that do not 
affect the LP bound of the ATSP

u1  =  1, (10)

2 ∙ ui ∙ n; i 2  V : i > 1, (11)

where ui denotes the position of node i in the tour.
The polynomial in number (O(n2)), MTZ constraints are 

known to produce a weak LP relaxation of the ATSP. However, 
they are flexible and capable of solving small to medium sized 
problems to optimality, using commercially available optimiz-
ers for mixed integer programming (MIP). The commercially 
available solvers focus on identifying efficient cutting planes 

1. Introduction

The asymmetric traveling salesman problem (ATSP) is defined 
on a directed network in which travels are allowed only in the di-
rection specified. Given a network of n nodes i 2 V = f1,… ,ng, 
set A ½ V £ V of directed arcs between the nodes and the dis-
tance cij associated with each arc (i,  j)  2 A. A salesman who 
begins trip in node 1, which is the depot, must visit each node 
exactly once and return to the node 1. The problem is to find the 
shortest directed tour for visiting n nodes. The basic formulation 
for the ATSP problem is as follows (see e.g. [1]).

Minimize
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during branch-and-bound-and-cut process, to successively re-
duce the size of the feasible polyhedral region. On the other 
hand the researchers seek to tighten the polyhedral represen-
tation of the initial ATSP formulation to use the best bounds 
produced by the linear programming relaxation of the initial 
formulation that guides branching decisions, regardless of the 
run-time actions taken by the MIP optimizers. There exists an 
extensive literature on the MTZ constraints, e.g., [4–8]. For 
a recent overview, see [9].

In this note a simple enhancement of the MTZ constraints 
is presented, The constraints account for ordering of boundary 
nodes, immediate neighbours of the depot node, as well as all 
intermediate nodes in the salesman tour. The boundary con-
straints restrict the selection of the first and the last arc of the 
salesman tour, while the intermediate constraints restrict the 
selection of all intermediate arcs. The intermediate constraints 
include the basic MTZ subtour elimination constraints. The 
proposed enhancement of the MTZ formulation leads to an 
improved performance of the MTZ-based subtour elimination 
constraints, which will be illustrated with a set of computa-
tional examples.

2. Enhancement of the MTZ formulation

The MTZ formulation for the ATSP (minimize (1) subject to 
(2, 3, 5, 7, 8, 10, 11)) is enhanced by the addition of new con-
straints derived in this section. The constraints account for or-
dering of boundary nodes as well as all intermediate nodes in 
the salesman tour.

2.1. Boundary conditions. First, the boundary conditions are 
formulated for the immediate successor and immediate prede-
cessor of the depot node.

If node j > 1 is the first one in the tour, i.e., the salesman 
travels from the depot node 1 directly to node j, (x1j =  1), 
then the position of node j in the tour is uj =  u1 + 1. Thus, if 
x1j =  1 then uj =  u1 + 1. This condition can be modeled with 
the following inequality

uj ¡  u1 + (n ¡  2)x1j ∙ n  ¡  1; j 2  V : j > 1 (12)

If x1j =  1 then Eqs. (10‒12) imply uj = 2; otherwise Eq. (12) 
implies uj ∙ n, and hence is inactive.

If node i > 1 is the last one in the tour, i.e., the salesman 
returns from node i directly to the depot node 1, (xi1  =  1), then 
the position of node i in the tour is ui = u1 + n ¡  1. Thus, if 
xi1  =  1 then ui = u1 + n ¡  1. This condition can be modelled 
with the following inequality

u1 ¡ ui + (n ¡ 1)xi1 ∙ 0; i 2  V : i > 1 (13)

If xi1  =  1 then  Eqs. (10, 11) and (13) imply ui = n; otherwise 
Eq. (13) implies ui ̧  1, and hence is inactive.

Equations (12) and (13) define the boundary conditions for 
the salesman tour.

2.2. Intermediate conditions. The intermediate conditions for 
any pair of successive nodes in the tour are formulated below.

If the salesman travels from node i directly to node j, (xij = 1 
and xji = 0) then uj = ui + 1. If neither arc (i, j) or arc (j, i) 
are in the tour (xij = 0 and xji = 0) then juj ¡ uij ∙ n ¡ 1 or 
equivalently 1 ¡ n ∙ uj ¡ ui ∙ n ¡ 1. The above conditions 
can be modelled with the following inequalities

if xi1 = 1 then ui = u1 + n− 1. This condition can be modelled with the following inequality

u1 − ui + (n− 1)xi1 ≤ 0; i ∈ V : i > 1 (13)

If xi1=1 then Eqs. (10), (11) and (13) imply ui = n; otherwise Eq. (13) implies ui ≥ 1, and

hence is inactive.

Eqs. (12) and (13) define the boundary conditions for the salesman tour.

Intermediate conditions
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The lifted MTZ constraints (17), which are considered to be one 
of the most efficient improvements (e.g., [9]), will be computa-
tionally compared with the proposed enhanced MTZ constraints.

Denote by ATSP_MTZen, the formulation with the en-
hanced MTZ constraints (12, 13, 15, 16),
ATSP_MTZen: Minimize (1) subject to (2, 3, 5, 7, 10, 
11, 12, 13, 15, 16), 

by  ATSP_MTZen-, the formulation ATSP_ MTZen without 
Eqs. (10) and (12),
ATSP_MTZen-: Minimize (1) subject to (2, 3, 5, 7, 11, 
13, 15, 16), 

by  ATSP_MTZ, the formulation with the basic MTZ con-
straints (15),
ATSP_MTZ: Minimize (1) subject to (2, 3, 5, 7, 10, 
11, 15), 

and  by ATSP_DL, the formulation with the lifted MTZ con-
straints (17) and without Eq. (10),
ATSP_DL: Minimize (1) subject to (2, 3, 5, 7, 11, 17).
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Note that removing of Eq. (10) leads to the ATSP models 
with a greater number of active constraints, which may result 
in tighter MIP formulations.

The performance of the above four ATSP formulations will 
be compared on a set of test instances.

3. Computational examples

The computational experiments were performed using the AMPL 
programming language and the CPLEX 12.6.2 solver with the 
default setting, on a MacBookPro laptop with Intel Core i7 pro-
cessor running at 2.8 GHz and with 16 GB RAM. Table 1 pres-
ents comparison of computational results on a number of asym-
metric TSPLIB [10] instances with the number of nodes ranging 
from 17 to 443. Of the two enhanced models ATSP_MTZen and 
ATSP_MTZen-, the results of that requiring smaller CPU time 
are presented only. For each of the ATSP formulations, the table 
presents optimal solution value Opt., (1), solution value of the 
LP relaxation, CPU time in seconds required to find proven op-
timal solution or GAP% after 3600 CPU seconds, and the size 

of the ATSP model after presolving: number of variables, Var., 
number of binary variables, Bin., and number of constraints, 
Cons. The models have identical number of variables and differ 
in the number of constraints, which is largest for ATSP_MTZen-, 
and identical for ATSP_MTZ and ATSP_DL models.

The LP relaxation of the ATSP models is obtained by replac-
ing constraints (5) by 0 ∙ xij ∙ 1; 8(i, j)  2  A. In most cases, 
the LP relaxation values are identical for all models, which 
indicates that the polyhedral representation of the initial ATSP 
formulation has not been tightened by the proposed MTZ en-
hancement.

Model ATSP_MTZen- with the enhanced MTZ constraints 
was capable of finding proven optimal solution for all test in-
stances within 3600 CPU seconds, while models ATSP_MTZ 
and ATSP_DL failed to prove optimality for the most challeng-
ing problem p43.atsp. Neither ATSP_MTZ nor ATSP_DL were 
able to close the LP-IP gap within the preset CPU time limit. In 
addition, model ATSP_DL failed to find any feasible solution 
for rbg358.atsp using the CPLEX solver with the default set-
ting. A custom setting or using a different MIP optimizer might 
overcome the above difficulties.

br17.atsp 17 39 22 <1 288, 272, 818 22 <1 546 22 <1 546

ftv33.atsp 34 1286 1215 <1 1155, 1122, 3368 1215 <1 2246 1217 <1 2246

ftv35.atsp 36 1473 1413 <1 1295, 1260, 3782 1413 <1 2522 1413 <1 2522

ftv38.atsp 39 1530 1476 <1 1520, 1582, 4482 1476 <1 2966 1476 <1 2966

p43.atsp 43 5620 216 967(−) 1849, 1806, 5504 216 0.14% 3616 216 0.11% 3616

ftv47.atsp 48 1776 1725 3 2303, 2256, 6770 1725 3 4514 1725 2 4514

ry48p.atsp 48 14422 13809 20 2303, 2256, 6770 13809 10 4514 13809 18 4514

ft53.atsp 53 6905 6011 18 2808, 2756, 8270 6010 19 5514 6011 23 5514

ft55.atsp 56 1608 1511 4 3135, 3080, 9242 1510 1 6162 1511 3 6162

ft70.atsp 70 38673 38333 9 4899, 4830, 14492 38325 5 9662 38326 4 9662

ftv70.atsp 71 1950 1859 12 5040, 4970, 14912 1858 7 9942 1859 7 9942

kro124p.atsp 100 36230 34974 140 10000, 9900, 29801 34977 77 19802 34977 77 19802

ftv170.atsp 171 2755 2698 45 29240, 29070, 87212 2698 195 58412 2698 460 58142

rbg323.atsp 323 1326 1326 59 104328, 104006, 312020 1326 428 208014 1326 434 208014

rbg358.atsp 358 1163 1163 173(−) 128164, 127806, 384134 1163 579 255614 1163 † 255614

rbg403.atsp 403 2465 2465 187 162408, 162006, 486020 2465 503 324014 2465 31 324014

rbg443.atsp 443 2720 2720 1885 196248, 195806, 587420 2720 1735 391614 2720 1129 391614

Table 1  
Comparison of ATSP_MTZen (or ATSP_MTZen-), ATSP_MTZ and ATSP_DL formulations

(−) – CPU seconds for model ATSP_MTZen-
Opt. – optimal solution value of (1), LP = LP relaxation solution value of (1)
Var. – number of variables, Bin. – number of binary variables, Cons. – number of constraints
CPU[sec]/GAP% – CPU seconds for proven optimal solution or GAP% after 3600 CPU seconds
† – no feasible solution within 3600 CPU seconds

  Model ATSP_MTZen (or ATSP_MTZen-) Model ATSP_MTZ Model ATSP_DL
 Instance n Opt. LP CPU[sec] Var., Bin., Cons.  CPU[sec] Cons. LP CPU[sec] Cons.
 Instance n Opt. LP CPU[sec] Var., Bin., Cons. LP /GAP[%] Cons. LP /GAP[%] Cons.
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Except for the smallest size problems, where CPU time re-
quired finding proven optimal solutions was less than one second 
for all models, the performance of the four ATSP models was 
mixed. However, the enhanced MTZ formulation outperforms 
the other two models on the most challenging problem instances.

4. Conclusions

In this paper an enhancement of the MTZ subtour elimination 
constraints is presented by the addition of more constraints to 
the initial formulation. The constraints account for ordering of 
boundary nodes, immediate neighbours of the depot node, as 
well as all intermediate nodes in the salesman tour. The bound-
ary constraints restrict the selection of the first and the last arc 
of the salesman tour, while the intermediate constraints restrict 
the selection of all intermediate arcs. The intermediate con-
straints include the basic MTZ subtour elimination constraints.

The computational results indicate that the proposed MTZ 
enhancement does not tighten the polyhedral representation of 
the initial ATSP formulation to obtain better bounds produced 
by the linear programming relaxation of the initial formulation. 
However, the computational results clearly demonstrate that the 
enhancement of the MTZ formulation by introducing additional 
constraints to the initial formulation may improve performance 
of subtour elimination constraints for the asymmetric traveling 
salesman problem and shorten CPU time required to find prov-
en optimal solutions. The further research should concentrate on 
identifying special data structure of the ATSP and deriving the 
corresponding cuts that can be added to the initial formulations.

While the purpose of this paper was to enhance an exact 
ATSP formulation capable of solving small to medium sized 
problems to optimality using commercially available optimiz-
ers for MIP, there is a large body of literature on heuristics for 
large sized problems, e.g. [11]. There are three general classes 
of such heuristics: classical tour construction heuristics such 
as the greedy-type algorithms, e.g. [12], local search algo-
rithms based on re-arranging segments of the tour, such as 
the Kanellakis-Papadimitriou algorithm [13], and algorithms 
based on patching together the cycles in a minimum cycle 
cover, such as Zhang algorithm [14].
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