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Abstract. Chronic heart failure is a syndrome consisting in clinical symptoms that arise as a result of complications of many disease entities. 
According to the definition it is a condition in which, as a consequence of permanent heart dysfunction, cardiac output is reduced in relation 
to tissues' metabolic demand. This results in subjective symptoms or proper cardiac output is sustained over higher filling pressure of the left 
heart ventricle. The occurrence of disease among adults in Europe and North America is 0.4–2%. Heart dysfunction detected by echocardiog-
raphy appears with the frequency of 3%, and in people over 60 years of age it doubles with each decade of life, reaching 10% after 80 years of 
age. The aim of the study is to make an acquisition of fremitus in apex beat place and quantitative evaluation of some of their features which 
are correlated with the advanced syndrome. We have built the apparatus for the heart signal recording and proposed the original method of its 
analysis based on the theory of chaos and recurrence plots. It gave us, on the group of 85 patients, sensitivity equal to 0.896 specificity equal 
to 0.676 and the accuracy of diagnostics of the chronic heart failure equal up to 80%.
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chronic heart failure is often called geriatric syndrome and be-
cause of its increasing frequency, we can refer to the epidemic 
character of this disease [1, 2].

The concept of detecting chronic heart failure described in 
this paper comprises the observation that the character of move-
ments of a healthy heart in the chest differs from the character 
of movements of an unhealthy heart. An experienced cardiolo-
gist is able to subjectively assess if the sensed fremitus may be 
a symptom of pathology only by putting a hand in the place of 
apex beat. The aim of the study is to make an acquisition of such 
fremitus and quantitative evaluation of some of their features 
that are correlated with the advanced syndrome [3]

Heart failure is evaluated with the use of four-stage NYHA 
(New York Heart Association) scale. According to this scale, in 
the first stage a patient with no symptoms is able to perform ac-
tivities causing regular effort; in fourth stage every effort causes 
ailments, such as tiredness, heart palpitation, and difficulties 
in breathing that may occur even at rest. In diagnosing CHF 
a significant role is played by the established sets of criteria 
(the so-called Framingham Criteria). If they are even partially 
met, it may suggest a disease.

Among laboratory analyses which can be taken into consid-
eration in diagnosing CHF, only checking the concentration of 
Brain Natriuretic Peptide (BNP) and N-terminal Pro-Brain Na-
triuretic Peptide (NT-proBNP) can be directly associated with 
the influence of damaging factors on the heart. Among other 
analyses aiming to determine the type and causes of heart fail-
ure, ECG, chest X-ray examination, and echocardiogram are 
used. The last one is currently the most important in diagnosing 
CHF. It enables the evaluation of the contraction activity by the 
assessment of the sectional and global contractility of the left 

1. Introduction

Chronic heart failure (CHF) is a syndrome consisting in clin-
ical symptoms that arise as a result of complications of many 
disease entities. According to the definition, CHF is a condition 
in which, as a consequence of permanent heart dysfunction, car-
diac output is reduced in relation to tissues’ metabolic demand. 
This results in subjective symptoms, or proper cardiac output is 
sustained over higher filling pressure of the left heart ventricle. 
The syndrome is multifactorial and due to its pathomechanisms, 
its clinical image may be different. The fundamental phenome-
non is heart remodelling, which is a compensation mechanism. 
This, in unfavourable conditions, may increase pathology lead-
ing to the described syndrome. Heart remodelling lasts for many 
years and at some point becomes an irreversible process. When 
clinical symptoms are noticeable, a heart is most often in such 
an advanced remodelling phase that the changes are irrevers-
ible. Nowadays, patients with diagnosed heart failure are mostly 
people in the 6th or 7th decade of their life with a limited ability 
to perform physical activity. Frequently, the only form of treat-
ment is transplantation. That is why detecting the risk of the 
disease in an early stage is so important – it can offer a chance 
for successful pharmacotherapy [1, 2, 24].

The occurrence of CHF among adults in Europe and North 
America is 0.4–2%. Heart dysfunction detected by echocardi-
ography appears with the frequency of 3%, and in people over 
60 years of age it doubles with each decade of life, reaching 
10% after 80 years of age. Due to the age range of the patients, 
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ventricle and the measurement of the ejection fraction [1]. Other 
methods, based on long term heart rate variability analysis, are 
still not often used. A cardiologist needs to use almost all of 
those expensive diagnostic tools, which makes the detection of 
preliminary CHF state challenging. Finally, it should be stated 
that there is no single procedure for testing CHF. Usually almost 
all methods mentioned above have to be used. In our paper, we 
propose a new approach to diagnosing CHF, which could be 
easy to use and much cheaper.

2. Methods

2.1. Experimental setup. The analysis of movements per-
formed by the beating heart moving in the chest is not an easy 
task. While ECG signal has a characteristic course, the pro-
cess of mechanical contraction of the organ is individualized 
and depends on its shape and the surrounding chest cavity. We 
can then assume that the pressure on the surface of the chest 
coming from the beating heart has different courses for every 
person. The analysis of vibrations from above the left ventri-
cle, performed with the use of accelerometer, confirms such an 
observation [3]. However, people with diagnosed CHF have 
very accidental course, which suggests irregular organ activity.

Measurement post for the acquisition of signal from the 
surface of the chest, constructed in the course of the studies, 
consists of ECG apparatus, a set of sensors (microphone and 
accelerometer), preamplifiers system, synchronizing module, 
data acquisition card and a computer. The signal from the two 
mentioned sensors, amplified in the preamplifier, is sampled 
with the frequency of 800 Hz by 12 bit ADC converter of a NI 
USB 6008 data acquisition card. The preamplifier with a battery 
supply enables audio monitoring of the microphone’s signal by 
earphones. The ECG signal received from Einthoven I and II 
leads and V6 Wilson precordial lead is transmitted to the com-
puter using Bluetooth. [4]

Due to such a choice of ECG leads, we are able to determine 
mathematically the signals of Einthoven III leads and Goldberg-
er leads; V6 lead receives signal mainly from the left ventricle, 
which is very important in CHF. ECG signals are filtered only 
with the use of anti-aliasing filters.

The preamplifier amplifies the signal from the accelerome-
ter, as well as from the microphone. These signals are sampled 
by the measuring card; internal timer of 800 Hz works inde-
pendently of the timer of a sampling system located in ECG ap-
paratus. This results in synchronization problems that are solved 
and described in details in our previous paper [4].

Figures 1 and 2 present exemplary records of parts of the 
ECG, microphone and accelerometer signals taken from healthy 
and unhealthy persons, respectively. Even a quick look at the 
presented courses allows to notice their strongly stochasto-cha-
otic character, more apparent especially in a group of unhealthy 
patients. What particularly draws attention is a weak correlation 
of changes for the signals from the microphone and the acceler-
ometer in unhealthy patients with heart rhythm in ECG signal. 
Such correlation seems to be noticeable in corresponding records 
taken form healthy persons. When analyzing similar records, the 

indicated lack of correlation seems to increase with the intensi-
fication of the disease. It altogether stipulates difficulties in the 
future analysis. A complicated measurement procedure impedes 
usage of the apparatus by medical staff. In order to avoid the 
influence of the human factor on the quality of the data obtained 
during the measurements, a specially designed, user-friendly 
software for an acquisition was prepared. Figure 3 presents the 
image of a screen – user’s interface containing buttons for the 
acquisition process control. The record of the courses is not pos-
sible unless national identification number (PESEL) is entered 
and a correct system synchronization is performed. The duration 
of the record has been arbitrarily set to 30 seconds. When an 
error occurs in transmission between the apparatus and a com-

Fig. 1. Records of the parts of the signals from a healthy person

Fig. 2. Records of the parts of the signals from an unhealthy person
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puter, the record is stopped and the announcement is shown with 
information about actions that have to be undertaken. The num-
ber of errors in transmission depends mainly on electromagnetic 
interference in the room where the examination takes place [4]. 
The next part of the examination is the collection of medical 

information that are significant in terms of CHF diagnostics. 
For this purpose, a dedicated application containing a form for 
entering relevant information about the patient was designed.

Figure 4 presents an interface of the application. The pre-
viously mentioned medical information refers to echocardio-

Fig. 3. User’s interface of a program for examination record service

Fig. 4. Application’s interface for entering medical data
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graphic examination (the dimension of the left ventricle, ejec-
tion fraction, and diastolic dysfunction), ECG test, six-minute 
walk test and analysis of the presence of NT-proBNP in venous 
blood. NT-proBNP parameter evaluates the heart’s load – this 
quantitative information serves as a reference to the patient’s 
condition. Its increased value demonstrates overload and is cur-
rently the most sensitive indicator of unfavourable conditions 
of the heartbeat. Moreover, unhealthy patients were classified 
according to NYHA scale and Framingham classification; the 
phase of their heart insufficiency was determined according to 
ACC/AHA guidelines. When a radiograph was available ad-
ditional parameters were analyzed, such as cardiopulmonary 
index, presence of fluid in pleural cavity and pulmonary ve-
nostasis.

2.2. Human subjects. Patients with diagnosed chronic heart 
failure were included in the examined group. The only dis-
qualifying criterion was ventricular extrasystoles or stimulation 
generated by the pacemaker. Volunteers with no chronic heart 
diseases were included in the group of healthy patients. In order 
to obtain a group of people with a healthy myocardium, a re-
quirement was established that volunteers’ age should be 18 to 
40 years. The final group of all the examined people consisted 
of 85 individuals of age ranging from 21 to 87 years. Healthy 
people constituted a group of 37 and the unhealthy – 48.

2.3. Recurrence plots. As it was mentioned before, the analy-
sis of the registered signals directed into CHF diagnostics aid 
is not an easy task. It is known that the work of the human 
heart is governed by many systems using different physiological 
phenomena, such as contraction force regulators, rhythm, coro-
nary blood flow or blood pressure. They are very complex and 
non-linear, and they depend on a number of factors. The effect 
of their operation is an unsteadiness of signals generated by 
a beating heart. For the purpose of the tests of such type of dy-
namical systems, a non-linear analysis was implemented. This 
allowed for the evaluation of chaotic activity demonstrating the 
relation between time courses and initial conditions [5–8]. The 
most often analyzed parameter in this way is a heart rate vari-
ability in a 24-hours recording of ECG signal with the use of 
the Holter method [9, 10]. In this paper, the registered courses 
are many times shorter (from 25 to 100 cycles of heart beat) 
and the most interesting and evaluated feature is repeatability 
of the mechanical course of heart contraction. It is assumed that 
while at rest, a healthy heart should generate pressure courses 
similar to each other in each cycle. Whereas in unhealthy pa-
tients, for which the pathological processes led to changes in 
the heart structure, this repeatability is disturbed. Observation 
of several dozens of heartbeat cycles should allow for evaluat-
ing this type of phenomena, despite the individual character of 
the pressure courses.

In the initial period of the tests, we tried to define a cor-
relation dimension and the Lyapunov exponent calculated with 
the use of Nonlinear Dynamic accuracy as dominant features. 
However, due to relatively short recording time, we encountered 
problems with precise determination of the aforementioned pa-
rameters. Particularly, strong dependence of their values on the 

choice of the conditions during algorithms operation describing 
them in general disqualifies these methods as satisfactory CHF 
factors [6–8, 11].

The indicated methods of non-linear dynamics also offer 
more modern tools that enable testing based on the short re-
cordings of unsteady signals, such as Recurrence Plot Method. 
It consists in embedding the signal in the phase space (Taken’s 
Theory) [8, 11, 12]:

y  [x (t), x (t + Δ t), x (t + 2Δ t), …, x  (t + mΔ t)] (1)

(where m – embedding dimension and delta t – time delay), 
and then presenting some of its features in the recurrence plot 
[13–16, 19]. Both axes of the plot represent indexes of the 
signal samples and the coordinates of the point on the plot 
determine the numbers of the samples which values are eval-
uated. The basic recurrence plot is a dependence described by 
the following equation:

Ri, j = Θ ( εi − || xi − xj||), xi ∈ℜm, i, j = 1…N, (2)

where N is the length of the analyzed time course, i,j are the 
coordinates on the surface, ɛi is a radius, ║∙║is a norm in the 
metric space and Θ is a Heaviside function [16].

The procedure of generating the signal is as follows:
1. Determining delta t with the use of the Average Mutual In-

formation method.
2. Determining embedding dimension with the use of the Near-

est False Neighbors method.
3. Embedding the signal in the phase space.
4. Assessing recurrence plots for the estimated ɛi.
5. Empirically selecting ɛi by assigning recurrence plots until 

the moment of obtaining the image of the signal’s structure.
6. Visual assessment of the plot allowing for quantitative eval-

uation of the signal.
Exemplary recurrence plots presented in Fig. 5 (point 6) 

show visual evaluation of the effect of algorithm operation. 
It makes the analysis difficult and its result – subjective; the 
quality of the signal depends on the experience of the person 
performing the test. This problem may be omitted with the use 
of parameters specially calculated for this purpose. The list and 
the way of defining these parameters is gathered in Table 1.

The option of quantitative signal evaluation is a crucial ad-
vantage of the method allowing for processing the signal into 
an image and then calculating the parameters. They can become 
a prognostic or diagnostic information in chronic heart failure. 
It may also be the basis for applying computer, automated clas-
sification system [20].

When analyzing the obtained images, we can observe an in-
crease in number of points in the recurrence plot together with 
the increase of ɛi radius. At the beginning, they appear in new 
places, but after reaching a certain border – they thicken the 
already existing structures. It means that increasing number of 
points makes sense only to a certain border. Depending on the 
features of given signal, such border is located in different plac-
es. However, regardless of the choice of percentage value of the 
imaging points, they present the structure of the signal dynamics.
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In order to make calculations with the use of a modified 
automatic method [21], a dedicated application was designed, 
in which the algorithm was implemented. The program makes 
calculations for the signal from the microphone, as well as from 
the accelerometer. It performs the analysis of all the given sig-
nals and records images and the results of RQA on a disc, in 
a form of a collective file with the results of all the examined 
patients. That makes further calculations of Ñ – the biggest 
number of diagonals parallel to the diagonal – easier.

a) 

b) 

c) 

Indicator Definition

Recurrence 
Ratio RR

Percent of points on the Recurrence Plot

 N – the number of trajectories in a phase space 
 Nl – the number of the longest line parallel to the diagonal in the recurrence plot 
 Nv – the number of the longest horizontal line in the recurrence plot 
 P(l), P(v) – histograms of the lengths of the lines parallel to diagonal/horizontal in the recurrence 

plot 

Indicator Definition 
Recurrence Ratio RR Percent of points on the Recurrence Plot 

𝑅𝑅𝑅𝑅 = 1
𝑁𝑁2 ∑ 𝑅𝑅𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑖𝑖,𝑗𝑗=1
 

Determinism DET Percentage of points on the lines parallel to a 
diagonal 

𝐷𝐷𝐷𝐷𝐷𝐷 =
∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑅𝑅𝑖𝑖,𝑗𝑗𝑁𝑁
𝑖𝑖,𝑗𝑗

 

 
Laminarity LAM Percentage of points on the horizontal lines 

 
𝐿𝐿𝐿𝐿𝐿𝐿 =

∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁
𝑣𝑣=1

 

 
Ratio Relation between DET and RR 

 

𝑅𝑅𝐿𝐿𝐷𝐷𝑅𝑅𝑅𝑅 = 𝑁𝑁2 ∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

(∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=1 )2 

 
Average diagonal length L Average length of a parallel line to the diagonal 

 

𝐿𝐿𝐷𝐷𝐿𝐿𝐿𝐿 =
∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚
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∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
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𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚({𝑙𝑙𝑖𝑖; 𝑖𝑖 = 1…𝑁𝑁𝑙𝑙}) 

 
The longest diagonal line Vmax The longest horizontal line 
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𝑁𝑁

𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚
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 P(l), P(v) – histograms of the lengths of the lines parallel to diagonal/horizontal in the recurrence 
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∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁
𝑣𝑣=1

 

 
Ratio Relation between DET and RR 

 

𝑅𝑅𝐿𝐿𝐷𝐷𝑅𝑅𝑅𝑅 = 𝑁𝑁2 ∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

(∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=1 )2 

 
Average diagonal length L Average length of a parallel line to the diagonal 

 

𝐿𝐿𝐷𝐷𝐿𝐿𝐿𝐿 =
∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

 

 
Trapping time TT Average length of a horizontal line 

 

𝐷𝐷𝐷𝐷 =
∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
 

 
The longest diagonal line Lmax The longest line parallel to the diagonal 

 
𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚({𝑙𝑙𝑖𝑖; 𝑖𝑖 = 1…𝑁𝑁𝑙𝑙}) 

 
The longest diagonal line Vmax The longest horizontal line 

 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚({𝑣𝑣𝑖𝑖; 𝑖𝑖 = 1…𝑁𝑁𝑣𝑣}) 

 
Divergence Inverse of Lmax 

𝐷𝐷𝑅𝑅𝑉𝑉 = 1
𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

 

 

Shannon Entropy ENTR Shannon Entropy of probability distribution of 
the lines parallel to the diagonal 
 

𝐷𝐷𝑁𝑁𝐷𝐷𝑅𝑅 = − ∑ 𝑝𝑝(𝑙𝑙)
𝑁𝑁

𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

ln 𝑝𝑝(𝑙𝑙) 

 

Ratio Relation between DET and RR

 N – the number of trajectories in a phase space 
 Nl – the number of the longest line parallel to the diagonal in the recurrence plot 
 Nv – the number of the longest horizontal line in the recurrence plot 
 P(l), P(v) – histograms of the lengths of the lines parallel to diagonal/horizontal in the recurrence 

plot 

Indicator Definition 
Recurrence Ratio RR Percent of points on the Recurrence Plot 

𝑅𝑅𝑅𝑅 = 1
𝑁𝑁2 ∑ 𝑅𝑅𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑖𝑖,𝑗𝑗=1
 

Determinism DET Percentage of points on the lines parallel to a 
diagonal 

𝐷𝐷𝐷𝐷𝐷𝐷 =
∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑅𝑅𝑖𝑖,𝑗𝑗𝑁𝑁
𝑖𝑖,𝑗𝑗

 

 
Laminarity LAM Percentage of points on the horizontal lines 

 
𝐿𝐿𝐿𝐿𝐿𝐿 =

∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁
𝑣𝑣=1

 

 
Ratio Relation between DET and RR 

 

𝑅𝑅𝐿𝐿𝐷𝐷𝑅𝑅𝑅𝑅 = 𝑁𝑁2 ∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

(∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=1 )2 

 
Average diagonal length L Average length of a parallel line to the diagonal 

 

𝐿𝐿𝐷𝐷𝐿𝐿𝐿𝐿 =
∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

 

 
Trapping time TT Average length of a horizontal line 

 

𝐷𝐷𝐷𝐷 =
∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
 

 
The longest diagonal line Lmax The longest line parallel to the diagonal 

 
𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚({𝑙𝑙𝑖𝑖; 𝑖𝑖 = 1…𝑁𝑁𝑙𝑙}) 

 
The longest diagonal line Vmax The longest horizontal line 

 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚({𝑣𝑣𝑖𝑖; 𝑖𝑖 = 1…𝑁𝑁𝑣𝑣}) 

 
Divergence Inverse of Lmax 

𝐷𝐷𝑅𝑅𝑉𝑉 = 1
𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

 

 

Shannon Entropy ENTR Shannon Entropy of probability distribution of 
the lines parallel to the diagonal 
 

𝐷𝐷𝑁𝑁𝐷𝐷𝑅𝑅 = − ∑ 𝑝𝑝(𝑙𝑙)
𝑁𝑁

𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

ln 𝑝𝑝(𝑙𝑙) 

 

Average diagonal 
length L

Average length of a parallel line 
to the diagonal

 N – the number of trajectories in a phase space 
 Nl – the number of the longest line parallel to the diagonal in the recurrence plot 
 Nv – the number of the longest horizontal line in the recurrence plot 
 P(l), P(v) – histograms of the lengths of the lines parallel to diagonal/horizontal in the recurrence 

plot 

Indicator Definition 
Recurrence Ratio RR Percent of points on the Recurrence Plot 

𝑅𝑅𝑅𝑅 = 1
𝑁𝑁2 ∑ 𝑅𝑅𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑖𝑖,𝑗𝑗=1
 

Determinism DET Percentage of points on the lines parallel to a 
diagonal 

𝐷𝐷𝐷𝐷𝐷𝐷 =
∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑅𝑅𝑖𝑖,𝑗𝑗𝑁𝑁
𝑖𝑖,𝑗𝑗

 

 
Laminarity LAM Percentage of points on the horizontal lines 

 
𝐿𝐿𝐿𝐿𝐿𝐿 =

∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁
𝑣𝑣=1

 

 
Ratio Relation between DET and RR 

 

𝑅𝑅𝐿𝐿𝐷𝐷𝑅𝑅𝑅𝑅 = 𝑁𝑁2 ∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

(∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=1 )2 

 
Average diagonal length L Average length of a parallel line to the diagonal 

 

𝐿𝐿𝐷𝐷𝐿𝐿𝐿𝐿 =
∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

 

 
Trapping time TT Average length of a horizontal line 

 

𝐷𝐷𝐷𝐷 =
∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
 

 
The longest diagonal line Lmax The longest line parallel to the diagonal 

 
𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚({𝑙𝑙𝑖𝑖; 𝑖𝑖 = 1…𝑁𝑁𝑙𝑙}) 

 
The longest diagonal line Vmax The longest horizontal line 

 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚({𝑣𝑣𝑖𝑖; 𝑖𝑖 = 1…𝑁𝑁𝑣𝑣}) 

 
Divergence Inverse of Lmax 

𝐷𝐷𝑅𝑅𝑉𝑉 = 1
𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

 

 

Shannon Entropy ENTR Shannon Entropy of probability distribution of 
the lines parallel to the diagonal 
 

𝐷𝐷𝑁𝑁𝐷𝐷𝑅𝑅 = − ∑ 𝑝𝑝(𝑙𝑙)
𝑁𝑁

𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

ln 𝑝𝑝(𝑙𝑙) 

 

Trapping time TT Average length of a horizontal line

 N – the number of trajectories in a phase space 
 Nl – the number of the longest line parallel to the diagonal in the recurrence plot 
 Nv – the number of the longest horizontal line in the recurrence plot 
 P(l), P(v) – histograms of the lengths of the lines parallel to diagonal/horizontal in the recurrence 

plot 

Indicator Definition 
Recurrence Ratio RR Percent of points on the Recurrence Plot 

𝑅𝑅𝑅𝑅 = 1
𝑁𝑁2 ∑ 𝑅𝑅𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑖𝑖,𝑗𝑗=1
 

Determinism DET Percentage of points on the lines parallel to a 
diagonal 

𝐷𝐷𝐷𝐷𝐷𝐷 =
∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑅𝑅𝑖𝑖,𝑗𝑗𝑁𝑁
𝑖𝑖,𝑗𝑗

 

 
Laminarity LAM Percentage of points on the horizontal lines 

 
𝐿𝐿𝐿𝐿𝐿𝐿 =

∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁
𝑣𝑣=1

 

 
Ratio Relation between DET and RR 

 

𝑅𝑅𝐿𝐿𝐷𝐷𝑅𝑅𝑅𝑅 = 𝑁𝑁2 ∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

(∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=1 )2 

 
Average diagonal length L Average length of a parallel line to the diagonal 

 

𝐿𝐿𝐷𝐷𝐿𝐿𝐿𝐿 =
∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

 

 
Trapping time TT Average length of a horizontal line 

 

𝐷𝐷𝐷𝐷 =
∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
 

 
The longest diagonal line Lmax The longest line parallel to the diagonal 

 
𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚({𝑙𝑙𝑖𝑖; 𝑖𝑖 = 1…𝑁𝑁𝑙𝑙}) 

 
The longest diagonal line Vmax The longest horizontal line 

 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚({𝑣𝑣𝑖𝑖; 𝑖𝑖 = 1…𝑁𝑁𝑣𝑣}) 

 
Divergence Inverse of Lmax 

𝐷𝐷𝑅𝑅𝑉𝑉 = 1
𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

 

 

Shannon Entropy ENTR Shannon Entropy of probability distribution of 
the lines parallel to the diagonal 
 

𝐷𝐷𝑁𝑁𝐷𝐷𝑅𝑅 = − ∑ 𝑝𝑝(𝑙𝑙)
𝑁𝑁

𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

ln 𝑝𝑝(𝑙𝑙) 

 

The longest 
diagonal line Lmax

The longest line parallel to the diagonal

 N – the number of trajectories in a phase space 
 Nl – the number of the longest line parallel to the diagonal in the recurrence plot 
 Nv – the number of the longest horizontal line in the recurrence plot 
 P(l), P(v) – histograms of the lengths of the lines parallel to diagonal/horizontal in the recurrence 

plot 

Indicator Definition 
Recurrence Ratio RR Percent of points on the Recurrence Plot 

𝑅𝑅𝑅𝑅 = 1
𝑁𝑁2 ∑ 𝑅𝑅𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑖𝑖,𝑗𝑗=1
 

Determinism DET Percentage of points on the lines parallel to a 
diagonal 

𝐷𝐷𝐷𝐷𝐷𝐷 =
∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑅𝑅𝑖𝑖,𝑗𝑗𝑁𝑁
𝑖𝑖,𝑗𝑗

 

 
Laminarity LAM Percentage of points on the horizontal lines 

 
𝐿𝐿𝐿𝐿𝐿𝐿 =

∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁
𝑣𝑣=1

 

 
Ratio Relation between DET and RR 

 

𝑅𝑅𝐿𝐿𝐷𝐷𝑅𝑅𝑅𝑅 = 𝑁𝑁2 ∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

(∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=1 )2 

 
Average diagonal length L Average length of a parallel line to the diagonal 

 

𝐿𝐿𝐷𝐷𝐿𝐿𝐿𝐿 =
∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑙𝑙(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

 

 
Trapping time TT Average length of a horizontal line 

 

𝐷𝐷𝐷𝐷 =
∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
 

 
The longest diagonal line Lmax The longest line parallel to the diagonal 

 
𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚({𝑙𝑙𝑖𝑖; 𝑖𝑖 = 1…𝑁𝑁𝑙𝑙}) 

 
The longest diagonal line Vmax The longest horizontal line 

 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚({𝑣𝑣𝑖𝑖; 𝑖𝑖 = 1…𝑁𝑁𝑣𝑣}) 

 
Divergence Inverse of Lmax 

𝐷𝐷𝑅𝑅𝑉𝑉 = 1
𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

 

 

Shannon Entropy ENTR Shannon Entropy of probability distribution of 
the lines parallel to the diagonal 
 

𝐷𝐷𝑁𝑁𝐷𝐷𝑅𝑅 = − ∑ 𝑝𝑝(𝑙𝑙)
𝑁𝑁

𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

ln 𝑝𝑝(𝑙𝑙) 

 

The longest 
diagonal line Vmax

The longest horizontal line

 N – the number of trajectories in a phase space 
 Nl – the number of the longest line parallel to the diagonal in the recurrence plot 
 Nv – the number of the longest horizontal line in the recurrence plot 
 P(l), P(v) – histograms of the lengths of the lines parallel to diagonal/horizontal in the recurrence 

plot 

Indicator Definition 
Recurrence Ratio RR Percent of points on the Recurrence Plot 

𝑅𝑅𝑅𝑅 = 1
𝑁𝑁2 ∑ 𝑅𝑅𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑖𝑖,𝑗𝑗=1
 

Determinism DET Percentage of points on the lines parallel to a 
diagonal 

𝐷𝐷𝐷𝐷𝐷𝐷 =
∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁
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● N – the number of trajectories in a phase space
● Nl – the number of the longest line parallel to the diagonal 

in the recurrence plot
● Nv – the number of the longest horizontal line in the recur-

rence plot
● P (l), P (v) – histograms of the lengths of the lines parallel 

to diagonal/horizontal in the recurrence plot.

Table 1 
Recurrence Quantification Analysis (RQA) [16–18]

Fig. 5. Recurrence plot for ɛi radius covering a) 10% b) 30% c) 50% 
of all points of the signal
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3. Results

For each patient recurrence plots and RQA were calculated from 
microphone and accelerometer for 10, 30 and 50% of points. In 
order to determine for which sensor and for which parameter 
the classification healthy-unhealthy in heart failure is the most 
favorable, the whole group of 85 patients was subjected to ROC 
(Receiver Operating Characteristic) analysis. The curves are the 
tool allowing for finding the same value of the parameter with 
optimal distinguishing values. They are the plots of relation 
between the sensitivity of this method and its specificity, which 
are defined as follows:
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where TP and TN describe the number of the 
detected positive and negative cases, and FP 
and FN – similarly, but falsely. Vmax 
parameter for the microphone with 50% of 
points on the recurrence plot proved to be the 
best predictor. For the cut-off limit Vmax=573, 
we obtained sensitivity equal to 0.896 and 
specificity equal to 0.676; the accuracy of 
diagnostics was 80%. The results of the 
classification are presented in Table 2. 
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Despite the fact that the best distinguishability 
was offered by the signals from accelerometer, 
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from the accelerometer. Taking the above into 
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classifier constructed with the use of artificial 
neural network modeled in MatLab 
environment with the use of Neural Network 
Toolbox2 for the five parameters, for which the 
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patients was the highest. The list of the above 
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sensor over the other. Despite the fact that the best distinguish-
ability was offered by the signals from accelerometer, the next 
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modeled in MatLab environment with the use of Neural Net-
work Toolbox1 for the five parameters, for which the distin-
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● RATIO – Vmin = 1 for 10% of points – signal from accel-
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● Vmax – for 50% of points – signal from the microphone
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After calibrating the data to the values included in the range 
[0, 1] we created a featured (healthy – 1, unhealthy – 0) base 
of patients made of 85 records. This base was then applied 
in training and testing of feed-forwarded neural networks of 
sigmoid-shaped neurons. Treating this test as initial, the archi-
tecture of the network was chosen arbitrarily selecting 5 input 
neurons, 10 hidden neurons and 1 output decision neuron. The 
network was tested by a five group cross-validation in which 
the accuracy of diagnosis of 83% was obtained.

4. Discussion

The aim of the study was to develop a method of non-invasive 
acquisition of a signal coming from the heart and processing 
it in a way that would enable finding the features indicating 
a high probability of heart failure. In the authors’ opinion, the 
aforementioned goal was achieved by processing and analyz-
ing registered signals from accelerometer and infrasonic micro-
phone. The presented and applied method of recurrence plots 
derived from the Chaos Theory is easy in its idea and offers 
a possibility of introducing modifications, which could increase 
the sensitivity and specificity of the method in the future. One 
or few parameters were used for diagnosing and only 85 cases 
were analyzed. In the situation of disposing of a more numerous 
base, together with a possibility to add other medical parameters 
to the classifying system, its effectiveness could be significantly 
increased. In the paper we attempted to compare the results of 
the signal analysis obtained by two different sensors – infrasonic 
microphone and accelerometer. A significant issue is population 
efficacy of the method, which evaluates the effect of the classifi-
cation in the set acknowledging cases that were not used to teach 
the neural network. According to the literature, such a test was 
performed with the result of 83% correct diagnoses. The result 
is higher than for the best single classifying parameter (80%), 
what indicates more complex nature of the diagnosis and at the 
same time encourages to optimize the list of features describing 
the patient, as well as the architecture or even the classifier.

5. Conclusions

In conclusion, it should be emphasized that the results obtained 
suggest a possibility of applying the method in screening exam-
ination of cardiac insufficiency. However, practical use requires 
conducting further tests, including cohort analysis, in order to 
cover a much larger number of cases. In the paper we have 
presented the experiment with only 85 subjects – 37 healthy 
and 48 unhealthy (CHF) individuals were examined. For such 
a preliminary group we have obtained quite satisfying results 
– more than 80% correct detections of CHF with the use of 
non-optimized feature set describing patients, and also the sim-
plest feed forward neural network classifier. There is no doubt 
that using a better classifying tool and a better set of features 
will improve the results.

Maybe a special approach for image analysis, for example 
the one proposed in paper [23], and the application of different 
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tools – k-nearest neighbors or radial basis function neural net-
work classifier – will lead us to a success.

Another problem that has to be solved in the future is the re-
peatability of the method. When there is more than one operator 
or the procedure is repeated several times, the measurement has 
to be the same. The conclusions from the results direct further 
works towards performing tests and further signal acquisition. 
It can be achieved on the basis of Bland-Altman plots [22], 
analyzing the relation between the result and the operator to 
present the signal record and repeatability of the records in 
time on the plot.

At the end, we would like to emphasize that we are very 
far from the final goal, which is clinical use of the newly pro-
posed method. Nevertheless, we are determined to continue 
the research.
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