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Decomposition method and its application
to the extremal problems

HENRYK GÓRECKI and MIECZYSŁAW ZACZYK

In the article solution of the problem of extremal value of x(τ) is presented, for the n-th
order linear systems. The extremum of x(τ) is considered as a function of the roots s1, s2, ... sn
of the characteristic equation. The obtained results give a possibility of decomposition of the
whole n-th order system into a set of 2-nd order systems.
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1. Introduction

Let us consider the differential equation with constant and real parameters ai > 0,
i = 1,2, . . . ,n

dnx(t)
dtn +a1

dn−1x(t)
dtn−1 + · · ·+an−1

dx(t)
dt

+anx(t) = 0 (1)

with the initial conditions x(i−1)(0) = ci ̸= 0, i = 1,2, . . . ,n. The solution of equation (1)
takes the following form:

x(t) =
n

∑
k=1

Akeskt (2)

where sk are the simple roots of the characteristic equation

sn +a1sn−1 + · · ·+an−1s+an = 0. (3)

Theorem 3 The explicit form of the coefficient A1 is as follows [2]:

A1 =
cn −

(
∑n

j ̸=1 s j

)
cn−1 +

(
∑n

i, j ̸=i=1 sis j

)
cn−2 + · · ·+(−1)n−1 ∏n

i=1 sic1

(sn − s1)(sn−1 − s1) · · ·(s2 − s1)
, (4)
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then the coefficients A2, A3, ..., An can be obtained by the sequential change of the indices
of si according to the rule

s1 → s2 → s3 → ·· ·sn−1 → sn → s1.

2. Problem formulation

Let us determine the extremal times τ1, τ2, ..., τn−1 at which the solution x(t) of the
equation (1) assumes extremal values x1(τ1), x2(τ2), ..., xn−1(τn−1). The conditions for
the extremum of x(t) are

x(1)(τ) = 0 (5)

x(2)(τ) ̸= 0. (6)

We consider x(τ), representing dynamic error of the system, as the function of the roots
s1, s2, . . . , sn and look for necessary conditions for x[τ(s1, s2, . . . , sn)] to have an ex-
tremum with respect to (s1, s2, . . . , sn).

3. Solution of the problem

Theorem 4 In the paper [1] it is proved that the necessary condition for
x[τ(s1, s2, . . . , sn)] to have an extremum with respect to (s1, s2, . . . , sn) is

(−1)nτn
n

∏
k=1

Ak = 0. (7)

It is concluded from (7) that either
τ = 0 (8)

which means that
c2 = 0 (9)

or
Ak = 0 (10)

for some values of k from [1,2, . . . ,n].
The relation (10) gives some relations between roots si and initial conditions ci. From

the relation (4) we have that the coefficients Ak are given by

Ak =
cn −∑n

v=1,v ̸=k cn−1sv +∑n
v=1,v ̸=k svskcn−2 + · · ·+(−1)n−1c1 ∏n

v=1,v ̸=k sv

∏n
v=1,v ̸=k(sv − sk)

. (11)
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From (11) it is evident that for sv ̸= sk, Ak = 0 if

cn −
n

∑
v=1,v ̸=k

cn−1sv +
n

∑
v=1,v ̸=k

svskcn−2 + · · ·+(−1)n−1c1

n

∏
v=1,v̸=k

sv = 0 (12)

for some k = 1,2, . . . ,n.
The relation (12) can be transformed, using Vietta’s formulae, to show the depen-

dence between one root s1 and initial conditions ci, i = 1,2, . . . ,n, so

a1 =−
n

∑
v=1

sv =−s1 −
n

∑
v=2

sv (13)

from which we have
n

∑
v=2

sv =−(a1 + s1) (14)

n

∑
v=2,v ̸=k

svsk = a2 + s1(a1 + s1) (15)

n

∏
v=2,v̸=1

s2sv · · ·sn = (−1)n an

s1
. (16)

Substituting (14),(15),(16) into relation (12) we obtain the following basic theorem.

Theorem 5 The root s1 can be calculated as a common root of the equation

sn−1
1 cn−2 + sn−2

1 (cn−1 +a1cn−2)+ sn−3
1 (cn +a1cn−1 +a2cn−2 +a3cn−3)+

(17)
· · ·+anc1 = 0

and the characteristic equation for s = s1

sn
1 +a1sn−1

1 +a2sn−2
1 + · · ·+an−1s1 +an = 0.

Theorem 6 The equation (17) can be obtained directly using the Laplace-transform of
the equation (1)

X(s) = (18)

sn−1
1 cn−2 + sn−2

1 (cn−1 +a1cn−2)+ sn−3
1 (cn +a1cn−1 +a2cn−2 +a3cn−3)+ · · ·+anc1

sn
1 +a1sn−1

1 +a2sn−2
1 + · · ·+an−1s1 +an

.

Taking into account the Theorem 2 and the relations (11), (12) and (18) we obtain
the following theorem.

Theorem 7 The vanishing of one of the coefficients Ak in the relation (2) is possible if
the numerator and denominator of the transform X(s) have a common root.
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For the calculation the common root s1 the algorithm of Euclid can be used and the
necessary and sufficient conditions for the existence of the common root of the two
equations.

In what follows we will use two theorems:

Theorem 8 [4] Two polynomials

P1 = sn +a1sn−1 + · · ·+an−1s+an (19)

P1 = sm +d1sm−1 + · · ·+dm−1s+dm, m¬ n (20)

are not relative prime if the rest R(s) of the division of the polynomial P1(s) by the
polynomial P2(s) is equal to zero.

Theorem 9 [4] The necessary and sufficient condition for the two polynomials (19) and
(20) to have a common root is that their discriminant D is equal to zero.

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a1 · · · · · · an 0 0 0
0 1 · · · · · · an−1 an 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 1 a1 · · · an 0
1 d1 · · · · · · dm 0 0 · · ·
0 1 d1 · · · · · · dm 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 d1 · · · dm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (21)

In general we can conclude these considerations in the following theorem.

Theorem 10 [2] The relations

x(t) =
n

∑
i=1

Aiesit (22)

or

x(1)(t) =
n

∑
i=1

siAiesit (23)

or

x(2)(t) =
n

∑
i=1

s2
i Aiesit

can be decomposed into a system of relations containing a set of relations which have
only two terms.
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The set contains (
n

n−2

)
=

1
2

n(n−1) (24)

relations with only two exponential terms. This can be obtained under the restriction
that the two coefficients A j ̸= 0, Ak ̸= 0, ( j,k = 1, . . . ,n) and the remaining coefficients
Ai = 0, (i ̸= j, i ̸= k).

4. Calculation of the extremal time τ

Using the necessary condition for the extremum x(τ), i.e.

x(1)(τ) = 0
(25)

x(2)(τ) ̸= 0

and the Theorem 8 we can calculate the extremal time τ.

Theorem 11 Let the roots of the characteristic equation be ordered in the following way

sn < sn−1 < sn−2 < · · ·< s1 < 0 (26)

and the coefficients satisfy Ai = 0, i = 1,2, . . . ,n, i ̸= k, i ̸= l, then

skAkeskτ + slAleslτ = 0. (27)

Let us denote

x(p−1)(0) = cp = sp−1
k Ak + sp−1

l Al, k = 1,2, . . . ,n, p = 1,2, . . . ,n
(28)

x(q−1)(0) = cq = sq−1
k Ak + sq−1

l Al , q > p.

Then from (28) we obtain

Ak =
cpsq−1

l − cqsp−1
l

sp−1
k sq−1

l − sq−1
k sp−1

l

(29)

Al =−
cpsq−1

k − cqsp−1
k

sp−1
k sq−1

l − sq−1
k sp−1

l

. (30)

Usually p = 1, q = 2 and

A1 =
c1s2 − c2

s2 − s1
(31)

A2 =−c1s1 − c2

s2 − s1
. (32)
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From (27) using (31), (32) we have

τ =
1

sk − sl
ln
[
− slAl

skAk

]
(33)

and
x(τ) = Akeskτ +Aleslτ (34)

has minimum value.

5. Illustrative example

Let us consider a 3rd order equation

a0x(3)(t)+a1x(2)(t)+a2x(1)(t)+a3x(t) = 0 (35)

with initial conditions

x(0) = c′1, x(1)(0) = c′2, x(2)(0) = c′3. (36)

The coefficients a0,a1, . . . ,an represent some parameters. The characteristic equation of
the equation (35) is

a0s3 +a1s2 +a2s+a3 = 0. (37)

We assume that the coefficients a0,a1, . . . ,an fulfill the Hurwitz stability conditions and
the roots of equation (37) are different and nonzero, so s1 ̸= s2 ̸= s3 ̸= 0.

After dividing equation (37) by a0 > 0 we obtain

s3 +
a1

a0
s2 +

a2

a0
s+

a3

a0
= 0. (38)

Putting

s = 3

√
a3

a0
z (39)

and dividing the equation (38) by a3
a0

we obtain the equation with only two parameters
b1, b2 as follows

z3 +b1z2 +b2z+1 = 0 (40)

where

b1 =
a1
a3

3

√(
a3
a0

)2

b2 =
a2
a3

3
√

a3
a0

 (41)

and

c1 =
c′1

3
√

a3
a0

, c2 =
c′2

3

√
a2

3
a2

0

, c3 =
c′3
a3
a0

.
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The solution of the equation (35) is

x(t) =
3

∑
k=1

Akezkt (42)

where zk, k = 1,2,3 are the roots of equation (40) and coefficients Ak are equal

A1 =
c3 − (z2 + z3)c2 + z2z3c1

(z2 − z1)(z3 − z1)
(43)

A2 =
c3 − (z3 + z1)c2 + z1z3c1

(z3 − z2)(z1 − z2)
(44)

A3 =
c3 − (z1 + z2)c2 + z1z2c1

(z1 − z3)(z2 − z3)
. (45)

The equation (18) in this case has the form

X(z) =
c1z2 + z(c2 +b1c1)+ c3 +b1c2 +b2c1

(z3 +b1z2 +b2z+1)
(46)

where
z3 +b1z2 +b2z+1 = 0

is the characteristic equation of the equation (35).
The common root of the equation (40) and

c1z2 + z(c2 +b1c1)+ c3 +b1c2 +b2c1 = 0 (47)

is obtained using Euclid algorithm. The first division of equation (40) by equation (47)
gives that

z
c1

− c2

c2
1
= 0

and from this relation we have

z1 =
c2

c1
, c1 ̸= 0, c2 ̸= 0. (48)

The division of the numerator of (46) by (z− z1) gives

(c1z2 + z(c2 +b1c1)+ c3 +b1c2 +b2c1)÷
(

z− c2

c1

)
= c1z+(2c2 +b1c1) (49)

and the rest
b2c2

1 + c1c3 +2c1c2b1 +2c2
2

c1
= 0 (50)

which must be zero.
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The division of denominator of (46) by (z− z1) gives

(z3 +b1z2 +b2z+1)÷
(

z− c2

c1

)
= z2 +

(c1c2 +b1c2
1)

c2
1

z+
b2c2

1 + c1c2b1 + c2
2

c2
1

(51)

and the rest of which must be zero

b2c2
1c2 +b1c1c2

2 + c3
1 + c3

2

c3
1

= 0. (52)

From equations (50) and (52) we obtain coefficients

b2 =
c2c3 −2c2

1
c1c2

, c1c2 ̸= 0 (53)

b1 =
c3

1 − c3
2 − c1c2c3

c1c2
2

, c1c2 ̸= 0. (54)

The transform (46) takes now the form

X(z) =
c2

1(c1z+b1c1 +2c2)

c2
1z2 +(c2

1b1 + c1c2)z+b2c2
1 +b1c1c2 + c2

2
. (55)

The characteristic equation becomes

z2 +
c2

1b1 + c1c2

c2
1

z+
b2c2

1 +b1c1c2 + c2
2

c2
1

= 0, c1 ̸= 0. (56)

From (56) and taking into account (48) we obtain

z2 =−1
2
(b1 + z1)+

1
2

√
b2

1 −2z1b1 −3z2
1 −4b2 (57)

z3 =−1
2
(b1 + z1)−

1
2

√
b2

1 −2z1b1 −3z2
1 −4b2. (58)

After substitution (53) and (54) we calculate

z2 =
1
2

c1c2c3 − c3
1 +

√
c2

1(4c1c3
2+c2

2c2
3−2c2

1c2c3+c4
1)

c4
2

c2
2

c2
2c1

(59)

z3 =
1
2

c1c2c3 − c3
1 −
√

c2
1(4c1c3

2+c2
2c2

3−2c2
1c2c3+c4

1)

c4
2

c2
2

c2
2c1

. (60)

The solution of (55) is

X(t) =
c1(b1c1 +2c2 + z2c1)

2z2c1 +b1c1 + c2
ez2t +

c1(b1c1 +2c2 + z3c1)

2z3c1 +b1c1 + c2
ez3t . (61)



DECOMPOSITION METHOD AND ITS APPLICATION TO THE EXTREMAL PROBLEMS 57

5.1. Stability analysis

We apply the Hurwitz stability criterion to the characteristic equation (40)

z3 +b1z2 +b2z+1 = 0.

1. b1 > 0, b2 > 0 (62)

2. ∆ =

∣∣∣∣∣∣∣
b1 1 0
1 b2 b1

0 0 1

∣∣∣∣∣∣∣> 0. (63)

Explicitly
b1b2 −1 > 0. (64)

The limit of stability is obtained when

b1b2 −1 = 0. (65)

Using the relation (48), the characteristic equation (56) can be written in the following
form

z2 +(b1 + z1)z+(b2 +b1z1 + z2
1) = 0. (66)

From the relations (57) and (58) it is evident that the stability limit is obtained when

z1 =−b1 (67)

z2,3 =±i
√

b2. (68)

Using the relations (53) and (54) we have

c1

c2
=−b2, c2 ̸= 0 (69)

c3

c2
=

b2

b1
, c2 ̸= 0. (70)

Finally using the relation (65) we obtain

c1

c2
=− 1

b1
(71)

c3

c2
=

1
b2

1
(72)

and
c3

c2
=

(
c1

c2

)2

. (73)

In Fig. 1 this relation is shown, where b1 is the parameter.



58 H. GÓRECKI, M. ZACZYK

Figure 1. Limit of stability

5.2. Calculation of the extremal value of τ > 0 and the extremal value of x(τ) for z2 ̸= z3
real and negative

Let us consider relations (43), (44) and (45) assuming A1 = 0. The necessary condi-
tions for extremal time τ are

x(1)(τ) = 0 (74)

and ∆ > 0, where ∆ is the discriminant of the equation (56). Substitution (43) and (44)
into (74) gives

z2A2ez2τ + z3A3ez3τ = 0. (75)

From (75) we obtain that for real z1, z2, z3

τ =
1

z2 − z3
ln
(
−z3A3

z2A2

)
(76)

or explicitly using (57) and (58)

τ =
1

z2 − z3
ln

−−z3
c3−(z1+z2)c2+z1z2c1

(z1−z3)(z2−z3)

z2
c3−(z3+z1)c2+z3z1c1

(z3−z2)(z1−z2)

 .
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After elimination of c3 using (43) and A1 = 0 we have finally

τ =
1

z2 − z3
ln

z3

(
z2 − c2

c1

)
z2

(
z3 − c2

c1

)
 , c1 ̸= 0 (77)

where z2, z3 are described by the relations (59), (60).
Using the relations (59), (60) we can express τ as the function of c3

c2
and c1

c2
, c2 ̸= 0.

Note that for c2 = 0, τ = 0. The extremal value of

x(τ) = A2ez2τ +A3ez3τ (78)

may be obtained explicitly using the relation in [7], pp.101

x2(τ)e(b1+z1)τ = c2
1 +

(b1 + z1)c1c2

b2 + z1(b1 + z1)
+

c2
2

b2 + z1(b1 + z1)
. (79)

5.3. Existence of the extremal time τ > 0

Let us consider the case when the roots z1, z2, z3 of the characteristic equation are
negative, different and real. It is always possible to arrange these roots as follows

z3 < z2 < 0. (80)

The relation (77) may be expressed in the form

e(z2−z3)τ =
z3

(
z2 − c2

c1

)
z2

(
z3 − c2

c1

) , c1 > 0. (81)

Theorem 12 The necessary and sufficient conditions for existence of τ > 0 are

z2 − z3 > 0 (82)

and c2

c1
< z3. (83)

Proof The inequality (82) results from the assumption (80). Taking into account
(82) and τ > 0 it is evident that

e(z2−z3)τ > 1. (84)

From (84) and (81) we obtain
z3

(
z2 − c2

c1

)
z2

(
z3 − c2

c1

) > 1. (85)
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Let

z3

(
z2 −

c2

c1

)
< 0 (86)

then (
z2 −

c2

c1

)
> 0 (87)

because z3 < 0. Also we must put

z2

(
z3 −

c2

c1

)
< 0. (88)

Then (
z3 −

c2

c1

)
> 0. (89)

because z2 < 0. From (87) we have

c2

c1
< z2. (90)

Similarly from (89)
c2

c1
< z3. (91)

But z3 < z2, so finally we have
c2

c1
< z3. (92)

which ends the proof.

If we assume that inequalities (86) and (88) both change their signs, then the basic
assumption is not fulfilled. From the stability condition we know that

z1 =
c2

c1
< 0 (93)

z2 =
1
2

[
−
(

b1 +
c2

c1

)
+
√

∆
]

(94)

z3 =
1
2

[
−
(

b1 +
c2

c1

)
−
√

∆
]

(95)

where

∆ =

[(
b1 +

c2

c1

)]2

−4

[
b2 +

c2

c1
b1 +

(
c2

c1

)2
]

(96)

z2 − z3 =
√

∆ > 0 (97)
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and from (92)
c2

c1
− z3 < 0. (98)

In a particular case when z3 = z2 = z1 = z it is easy to prove that inequality (87) holds
and c2

c1
< z. (99)

In this case
x(t) = [c1 +(c2 − zc1)t]ezt (100)

dx(t)
dt

= [c1 +(c2 − zc1)zt]ezt . (101)

From the necessary condition we obtain using (101) that

τ =
c2
c1(

z− c2
c1

)
z

(102)

but c2
c1
< 0 and z < 0. Finally we obtain the condition for τ > 0, so

c2

c1
< z. (103)

The third case arises when the roots z2, z3 are complex conjugate. The relation (74) after
substitution A2 and A3 from (44) and (45) takes the form

dz
dt

=
(z3c1 − c2)z2

z3 − z2
ez2τ − (z2c1 − c2)z2

z3 − z2
ez3τ = 0 (104)

where

z2 = α+ jωτ
(105)

z3 = α− jωτ.

Substitution (105) into (104) gives

ωc2 cos(ωτ)− [c1(α2 +ω2)− c2α]sin(ωτ)
ω

eατ = 0. (106)

From (106) we obtain that

τ =
1
ω

[
arctg

ω c2
c1

(α2 +ω2)−α c2
c1

+ kπ

]
, c1 ̸= 0, k = 0,1,2, . . . (107)

and

x(τ) =
[c1ωcos(ωτ)− (c1α− c2)sin(ωτ)]

ω
eατ. (108)

Domains of the different kinds of roots z1, z2, z3 and the extremal time τ are presented
in Fig. 2.

Extremal transients of the error in terms of the initial conditions from different do-
mains of the roots are presented in Figs. 3, 4, 5, 6 and 7.
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Figure 2. Domains of the different kinds of roots

Figure 3. Transient of the error for
{

c1
c2

=−1, c3
c2

= 0.5
}
→ {z1 = −1, z2,3 = −0.25± j0.9682458365}.

From (107) τ1 = 2.302983683, x(τ1) =−0.688656.
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Figure 4. Transient of the error for
{

c1
c2

=−2, c3
c2

= 3
}
→{z1 =−0.5, z2,3 =−0.5± j1.322875656}. From

(107) τ1 = 2.101652954, x(τ1) =−0.327066.

Figure 5. Transient of the error for
{

c1
c2

=−2, c3
c2

= 2.5
}
→ {z1 = −0.5, z2,3 = −0.75± j1.19895788}.

From (107) τ1 = 2.32549596, x(τ1) =−0.151379.

Figure 6. Transient of the error for
{

c1
c2

=−0.5, c3
c2

=−1.5
}
→ {z1 = −2, z2 = −0.3596117969, z3 =

−1.390388203}. From (107) τ = 2.272247399, x(τ1) =−0.19366.
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Figure 7. Transient of the error for
{

c1
c2

=−0.5, c3
c2

=−2.5
}
→ {z1 = −2, z2 = −0.19575235, z3 =

−2.55424764}, z1 > z3, τ < 0.

6. Practical example

Let us consider the optimal choice of gain and time constant of the differential net-
work of the compensator, Fig.8.

Figure 8. Voltage compensator: 1– galvanometer, 2 – photocell, 3 – amplifier, 4 – motor, 5 – potentiometer

Optimal choice ensures the minimal value of dynamic error. The difference between
the measured voltage u and that on the potentiometer 5 is fed through the network RC to
the galvanometer 1. The light signal from the galvanometer mirror is sent to the photocell
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2, which through the amplifier 3 supplies the two-phase motor 4. The motor rotates the
potentiometer 5 until the balance between the voltage x on the potentiometer and the
measured voltage u is reached.

The compensator is described by the following equations

(T1s+1)X1(s) = k1(1+T2s)[U(s)−X(s)]

(2ξT3s+1)X2(s) = k2X1(s)

sX(s) = k3X2(s)

where:
U(s), X(s) – Laplace transforms of the voltages,
X1(s) – Laplace transform of the galvanometer current,
X2(s) – Laplace transform of the angle of the galvanometer frame,
1
T3

– natural frequency of the galvanometer,
ξ – damping coefficient of the galvanometer,
T1 =

RgR
Rg+RC,

T2 = RC,
R+Rg – resistance of the galvanometer circuit,
R,C – resistance and capacitance of the correction-circuit,
k1, k2, k3 – gain coefficients.

Taking into account that the resistance Rg is very small we can neglect the time constant
T1. Assuming that u(t) is the unit step function, we can write the transform of the output
as

X(s) =
1
s

K +KT2s
a0s3 +a1s2 +a2s+a3

where
K = k1k2k3, a0 = T 2

3 , a1 = 2ξT3
a2 = (1+KT2), a3 = K.

The steady state error is equal to zero as

lim
s→0

sX(s) =
K
a3

= 1.

The transform of the error is

E(s) =
1
s
− K +KT2s

a3 +a2s+a1s2 +a0s3
1
s
=

1+a1s+a0s2

a3 +a2s+a1s2 +a0s3

E(s) =
1+2ξT3s+T 2

3 s2

K +(1+KT2)s+2ξT3s2 +T 2
3 s3 .
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We look for optimal K and T2, for which dynamic error x(τ) assumes a minimal value.
Putting

s = 3

√
K
T 2

3
z

we obtain characteristic equation

z3 +b1z2 +b2z+1 = 0

where  b1 =
2ξT3

K
3

√(
K
T 2

3

)2

b2 =
1+KT2

K
3
√

K
T 2

3
.

Comparing with the corresponding initial conditions

b1 =

(
c1

c2

)2

− c2

c1
− c3

c2

and
b2 =

c3

c1
−2

c1

c2
=

c3

c2

c2

c1
−2

c1

c2

we obtain that

K =
(2ξ)3

T3

[(
c1
c2

)2
− c2

c1
− c3

c2

]3

T2 =


[

c3
c2

c2
c1
−2 c1

c2

]
K

3
√

K
T 2

3

−1

 1
K
.

In our example we take T3 = 0.1s, ξ = 0.75, then a1 = 0.15, a0 = 0.01.
For

{
c1
c2
=−2 and c3

c2
= 2
}

the optimal K = 2.16 and the optimal coefficient of the
derivative T2 = 0.037037.

For
{

c1
c2
=−2 and c3

c2
= 3
}

the optimal K = 10 and the optimal coefficient of the
derivative T2 = 0.15.

For
{

c1
c2
=−2 and c3

c2
= 3.5

}
the optimal K = 33.75 and the optimal coefficient of

the derivative T2 = 0.12037.

Remark. In the article [5] the solution of the extremal value of τ(s1, . . . ,sn) as the func-
tion of the roots s1, . . . ,sn has been presented, with the assumption that the roots are
real and negative. In the next article [6] this problem has been solved for the complex-
conjugate roots of the characteristic equation.
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7. Conclusions

In the article it is proved that, from the condition Ak = 0 for the extremum of x(τ),
the method results for decomposition of the nth order system into the set of 2nd order
subsystems. It is also proved that the condition Ak = 0 is equivalent to the condition that
the numerator and denominator of the transmittance X(s) have a common root.
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