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Pinning synchronization of two general complex
networks with periodically intermittent control

FANYU MENG, BOHUI WEN, MO ZHAO, WEICHUAN BAO

In this paper, the method of periodically pinning intermittent control is introduced to solve 
the problem of outer synchronization between two complex networks. Based on the Lyapunov 
stability theory, differential inequality method and adaptive technique, some simple synchro-
nous criteria have been derived analytically. At last, both the theoretical and numerical analysis 
illustrate the effectiveness of the proposed control methodology. This method not only reduces 
the conservatism of control gain but also saves the cost of production.These advantages make 
this method having a large application scope in the real production process. 
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1.  Introduction

Nowadays, the development of society is becoming more and more complicated 
and networked, thus complex networks have emerged and aroused much attention [1-4].  
A complex network is a large set of interconnected nodes, in which the nodes and connec-
tions can denote everything. So, complex networks are useful tools to describe and rep-
resent complex systems, such as food webs, communication networks, social networks, 
power grids, cellular networks, metabolic systems, disease transmission networks, etc.

Over the past few years, as a kind of basic and important behavior of dynamics, 
synchronization has become a hot topic in various fields of science and engineering. 
Usually, synchronization can be divided into “inner synchronization” and “outer syn-
chronization”. “Inner synchronization” denotes the behavior of all the nodes among one 
complex networks become synchronous [5, 6, 7]. Up to now, many different criteria for 
inner synchronization have been investigated [8]–[15].
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“Outer synchronization” refers to the synchronization occurring between two or 
more coupled complex networks regardless of happening of inner synchronization [16, 
17, 18, 19]. Since the time of Li first proposed the concept of outer synchronization 
in 2007 [16], it has quickly become a  focus point of researching. In our lives, out-
er synchronization exists everywhere. From the angle of sociology, the countries can 
be divided into developed countries and developing countries which consisted of the 
developed networks and developing networks. With the gradual increase of interna-
tional exchange, the two networks will be synchronized. In the animal world, if no 
external intervention appears, the synchronization phenomena will exist universally. 
For example, the number of prey and that of predators are usually invariant under no 
outside invasion[16,  20]. All these challenging topics show the great importance of 
outer synchronization between coupled networks. In some cases, some networks have 
the character of achieving outer synchronization by themselves. However, there is still 
the situation that the complex networks can not achieve synchronization by themselves, 
thus some control techniques become useful [21]–[25].

Because of the complexity of the complex networks, it is difficult or even unfeasible 
to add controllers to every node in the complex networks. Pinning control is a method 
of adding controllers to partial nodes in the network. In 1999, the concept of pinning 
control was first proposed by Hu [26], and several good results have been obtained from 
then on [23, 27, 28]. In the view of the complexity of complex networks and the char-
acters of the pinning control, the method not only simplifies the coupling structure, but 
also saves the production costs [23, 27]. Therefore, pinning control has large application 
scope in the real production process.

In the process of signal transmission, the signal will become weaker and weaker 
due to the character of the system’s dissipativeness, then some external controllers are 
needed for making the signal back to an upper level. Consider the cost of controlling, 
the external controllers can be removed when the signals are in upper level and this 
method is a kind of discontinuous control. In many control techniques, both impulsive 
control and intermittent control are discontinuous controls and the intermittent control 
has attracted more interest due to its wide applications in engineering fields [29]–[32]. 
In the period of intermittent control, the time can be divide into two parts, one is “work-
ing time”, and the other is “rest time” (see Fig.1) [33]. Because the pinning control and 
the intermittent control both could save product cost, if we combine two kinds of control 
together tactfully, the production cost will be greatly saved. This method should been 
paid much more attention, especially in the engineering applications.

In this paper, we introduced the periodically pinning intermittent control technique 
to outer synchronization between two general complex networks for the first time. By 
utilizing mathematical induction method and the adaptive analysis technique, some 
novel synchronization criteria are derived. This method not only reduces the conserva-
tism of control gain but also saves the cost of production. All these advantages lead this 
method to a larger application scope in the real production process.

The rest of this paper is organized as follows. In Section 2, some general driver 
and response complex dynamical network models are introduced, and some necessary 
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preliminaries are given. In Section 3, based on the Lyapunov stability theorem and 
mathematical induction, some periodically pinning intermittent controllers are designed 
to ensure the driver and response systems achieve outer synchronization. In Section 4, 
some numerical simulations are given to verify the effectiveness of proposed theoretical 
results and the Section 5 is the conclusion of this paper.

2.  Model and preliminaries

Consider a complex network consisting of N identical linearly and diffusively cou-
pled nodes. Every node in the network is an m dimensional dynamical unit. Then the 
network model can be denoted as:

	 =1

( ) = ( , ( )) ( ),    = 1,2, , ,
N

i i ij j
j

x t f t x t c g Ax t i N+ ∑
 		  (1)

where 1 2( ) = ( ( ), ( ), , ( ))T m
i i i imx t x t x t x t R∈  is the state vector of the ith node, : mf R R×   

is a continuous vector-valued function. m mA R ×∈  is the inner connecting matrix, > 0c  
is the coupling strength, = ( )ij N NG g ×  is the coupling configuration matrix which rep-
resent the topological structure of the whole network. In terms of the physical inter-
pretation of whole networks, the elements ijg  of matrix G  are usually been chosen as 
positive constant and denote the relationship among every nodes. Thus, the matrix ele-
ment ijg R∈  are defined as follows : if there is a coupling from node i to node j ( )i j≠  ,  

> 0ijg ; otherwise, = 0ijg . In general, we assume that the coupling configuration 
matrix G  satisfies the following properties: 

=1
= 0

N

ijj
g∑ .

Compared with the response system mentioned, the drive complex network is de-
noted as:

	 =1

( ) = ( , ( )) ( ),    = 1,2, , ,
N

i i ij j
j

y t f t y t c g Ay t i N+ ∑
 		  (2)

Figure 1: Sketch map of intermittent control.
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where 1 2( ) = ( ( ), ( ), , ( ))T m
i i i imy t y t y t y t R∈  still represents the state variable of the ith  

node in the response system, and other parameters are the same with the corresponding 
parameters in the drive system (1).

Remark 1 In the drive and response systems, the outer coupling configuration matrix G 
does not need to be symmetric or irreducible.

From the expression of the drive system and response system, error variables be-
tween the two complex networks are denoted as 

	 ( ) = ( ) ( ),    = 1,2, , .i i ie t x t y t i N− 
		  (3)

In this paper, we assume that = > 0A α  , and minρ  denotes the minimum eigen-
value of matrix ( ) / 2TA A+ . Ĝ  is a modifying matrix of G  via replacing the diagonal 
elements iig  by min( / ) iigρ α . Choose the matrix ˆ ˆ ˆ= ( ) / 2s TG G G+  and its eigenvalues 
are expressed as 1 2 Nλ λ λ≥ ≥ .

Notations: Throughout this paper, we let ⋅  be Euclidean norm. mI  is an m m×  
identity matrix. If A  is a vector or matrix, its transpose is denoted by TA . 

3.  Main results

In this part, the outer synchronization between the drive network (1) and the re-
sponse network (2) will be investigated. With the purpose of reducing the cost of pro-
duction, some extra controllers are required to add on the partial nodes of the drive 
system. Without loss of generality, we choose the first l  nodes in the drive system as 
the pinning nodes. Then the response network with suitable controllers are described as:

	

=1

=1

( ) = ( , ( )) ( ) ( ),    = 1,2, , ,

( ) = ( , ( )) ( ),          = 1, , .

N

i i ij j i
j

N

i i ij j
j

x t f t x t c g Ax t u t i l

x t f t x t c g Ax t i l N


+ +



 + +


∑

∑







		  (4)

Usually, it is not allowed the control gain k  to be much larger than the real need. 
So, it is necessary to adopt the adaptive control method to obtain a proper control gain. 
In this part, we will design some adaptive periodically pinning intermittent controllers 
to make the drive system (1) and the response system (2) achieve synchronization.

Based on the expression of (4), the adaptive periodically pinning intermittent con-
trollers are designed as

	

( ) ( ),           1 ,           [ , ),

( ) =   0,                      1 ,    [ , ),

  0,                      1 ,         [ , ( 1) ),

i i

i

k t e t i l t nT nT h

u t l i N t nT nT h

i N t nT h n T

− ≤ ≤ ∈ +
 + ≤ ≤ ∈ +
 ≤ ≤ ∈ + +

		  (5)
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and the updating laws 

	

2
1 2exp( ) ( ) ,          ( , ],

( ) =
0,                                ( , ( 1) ],

i i
i

a t e t t nT nT h
k t

t nT h n T

α ∈ +


∈ + +


 

		  (6)

where ( = 1,2, , )i i Nα   and 1a  are positive constants, (0) > 0( = 1,2, , )ik i N  are ini-
tial values and (( 1) ) = ( )i ik n T k nT h+ + , = 0,1,2 .n   > 0T  denotes the control pe-
riod, (0, )h T∈  denotes the working time. Then, the error system (3) can be rewritten as

	

=1

=1

( ) = ( , ( )) ( , ( )) ( ) ( ) ( ),      

= 1,2, , , [ , ),                              

( ) = ( , ( )) ( , ( )) ( ),                    

= 1, 2, , , [ ,

N

i i i ij j i i
j

N

i i i ij j
j

e t f t x t f t y t c g Ae t k t e t

i l t nT nT h

e t f t x t f t y t c g Ae t

i l l N t nT n

− + −

∈ +

− +

+ + ∈

∑

∑







 ), [ , ( 1) ).T h ort nT h n T










+ ∈ + +

		  (7)

According to the expressions mentioned above, it is obvious that the objective of 
control is to find an appropriate controllers to make the solutions of the controlled net-
work (4) synchronize with the solution of system (2), in the sense that

	
( ) ( ) = 0,    = 1,2, , .lim i i

t
x t y t i N

→∞
−   		  (8)

In the following, lemma and assumption will be presented.

Lemma 1. (Schur complement) [34]. The following linear matrix inequality (LMI) 

( ) ( )

( ( )) ( ) > 0,T

x x

x x

 
 
 
 
 

 
 

where ( ) = ( )) , ( ) = ( ))T Tx A x x C x   is equivalent to one of the following conditions:

(a) ( ) > 0x  and 1( ) ( ) ( ) ( ) > 0Tx x x x−−    ;

(b) ( ) > 0x  and 1( ) ( ) ( ) ( ) > 0Tx x x x−−    .

Assumption 1 The nonlinear function ( )f ⋅  satisfies the following Lipschitz condition:
 

( , ( )) ( , ( )) ( ( ) ( )) , ( ) , ( ) ,m
i i i i i if t x t f t y t L x t y t x t y t R− ≤ − ∀ ∈

where L is a known positive constant.
Next, we will give the main results as below.
Based on the Assumption 1, the synchronization criteria of system (1) and (2) by 

adaptive periodically pinning controllers will be deduced as follows.
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Theorem 1 Under Assumption 1, if there exist positive constants 1 2, ,a aε , such that

 
1

1 ˆ 0,
2

s
NL a I c Gα + + ≤ 

 

	
2 1

1 ˆ( ( )) 0,
2

s
NL a a I c Gα− − + ≤ 		  (9)

1 2= (1 ) > 0.
h

a a
T

ε − −

then the drive system (1) and the response system (2) could achieve synchronization 
under the adaptive periodically pinning intermittent controllers (5) and the updating 
law (6).

Proof Define the Lyapunov function as 

2

1
=1 =1

1 1 ( ( ) )
( ) = ( ) ( ) exp( ) ,

2 2

N l
T i
i i

i i i

k t k
V t e t e t a t

α
′−

+ −∑ ∑

where k′  is a undetermined sufficiently large positive constant. The derivative of ( )V t  
with respect to time t  along with the solutions of (7) can be calculated as follows.

When [ , )t nT nT h∈ + , for = 0,1,2 .n   
 

1
=1 =1 1

( )
( ) = ( ) ( ) exp( ) ( )

N l
T i
i i i

i i

k t k
V t e t e t a t k t

α
′−

+ −∑ ∑ 




2
1

1
=1

( ( ) )
exp( )

2

l
i

i i

a k t k
a t

α
′−

− −∑

=1 =1 =1

= ( )[ ( , ( )) ( , ( ))] ( ) ( )
N N N

T T
i i i i ij j

i i j

e t f t x t f t y t c e t g Ae t− +∑ ∑∑

=1 =1

( ) ( ) ( ) ( ( ) ) ( ) ( )
l l

T T
i i i i i i

i i

k t e t e t k t k e t e t′− + −∑ ∑
2

1
1

=1

( ( ) )
exp( )

2

l
i

i i

a k t k
a t

α
′−

− −∑

=1 =1 =1,

( ) ( ) ( ) ( )
N N N

T
i i ij i j

i i j j i

L e t e t c g e t e tα
≠

≤ +∑ ∑ ∑   
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min
=1 =1

( ) ( ) ( ) ( )
N l

T T
ii i i i i

i i

c g e t e t k e t e tρ ′+ −∑ ∑
2

1
1

=1

( ( ) )
exp( )

2

l
i

i i

a k t k
a t

α
′−

− −∑

=1 =1

ˆ= ( ) ( ) ( ) ( )
N l

T T
i i i i

i i

L e t e t c G k e t e tα ′+ −∑ ∑
2

1
1

=1

( ( ) )
exp( )

2

l
i

i i

a k t k
a t

α
′−

− −∑

1 1ˆ= ( )(( ) ) ( ) ( ) ( ).
2 2

T s T
N

a a
e t L I c G K e t e t e tα ′+ + − −

	

2
1

1
=1

( ( ) )
exp( )

2

l
i

i i

a k t k
a t

α
′−

− −∑ 	 (10)

where 

= ( , , ,0, , 0).
l N l

K diag k k
−

′ ′ ′
 

 

since k′  is an undetermined sufficiently large positive constant.

Here we let 1 ˆ= ( )
2

s
N

a
Q L I c Gα+ + , and '1 ˆ= ( )

2
s

N

a
M L I c G Kα+ + − . 

Rewrite the matrix M  as 1 ˆ= ( ) =
2

s
N T

E K B
M L I c G K

B Q
α

′− 
′+ + −  

 
 where 

= ( , , )
l

K diag k k′ ′




and Q  is obtained by removing the first 1,2,..., l  row-column pairs of matrix M . Thus
1 ˆ= ( )

2
s

N l

a
Q L I c Gα−+ + , and ,

ˆ ˆ=s
l i l jG G + + , for = 1,2,...i N l− . The matrix E and B are

matrix with appropriate dimensions.
Then according to the lemma 1 and the first condition of Theorem 1, we obtain the 

result that as long as 1
max> ( )Tk E BQ Bλ −′ −  and < 0Q  , the matrix

1 ˆ= ( ) = < 0
2

s
N T

E K B
M L I c G K

B Q
α

′− 
′+ + −  

 
 will hold. Thus there is 

	 1( ) ( ).V t a V t≤ − 	 (11)
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Similarly, when [ , ( 1) )t nT h n T∈ + + , we have

1
=1 =1

( )
( ) = ( ) ( ) exp( ) ( )

N l
T i
i i i

i i i

k t k
V t e t e t a t k t

α
′−

+ −∑ ∑ 




2
1

1
=1

( ( ) )
exp( )

2

l
i

i i

a k t k
a t

α
′−

− −∑

=1 =1 =1

= ( )[ ( ( )) ( ( ))] ( ) ( )
N N N

T T
i i i i ij j

i i j

e t f x t f y t c e t g Ae t− +∑ ∑∑
2

1
1

=1

( ( ) )
exp( )

2

l
i

i i

a k t k
a t

α
′−

− −∑

=1 =1 =1,

( ) ( ) ( ) ( )
N N N

T
i i ij i j

i i j j i

L e t e t c g e t e tα
≠

≤ +∑ ∑ ∑   

2
1

min 1
=1 =1

( ( ) )
( ) ( ) exp( )

2

N l
T i

ii i i
i i i

a k t k
c g e t e t a tρ

α
′−

+ − −∑ ∑
2

1
1

=1 =1

( ( ) )ˆ= ( ) ( ) exp( )
2

N l
T i
i i

i i i

a k t k
L e t e t c G a tα

α
′−

+ − −∑ ∑

2 1 2 1

1 1ˆ( )(( ( )) ) ( ) ( ) ( ) ( )
2 2

T s T
Ne t L a a I c G e t a a e t e tα≤ − − + + −

2 2
1 2

1 1
=1 =1

( ( ) ) ( ( ) )
exp( ) exp( )

2 2

l l
i i

i ii i

a k t k a k t k
a t a t

α α
′ ′− −

− − + −∑ ∑

	 2 1( ) ( ).a a V t≤ − 	 (12)

Choose ˆ = (0)Q V  and 1
ˆ ( ) = exp( ) ( )P t a t V t . Let ˆˆ( ) = ( )t P t QβΦ − , where > 1β  is 

a constant. One gets

	 ( ) < 0,tΦ 	 (13)

for all = 0t .
In the follows, we will use the reduction to absurdity to proof ( ) < 0tΦ , for all 
[0, )t h∈ .
Since (0) < 0,Φ  we assume that there exists 0 [0, )t h∈ , such that 

	 0 0( ) = 0, ( ) > 0,t tΦ Φ 	 (14)

	 0( ) < 0,0 < .t t tΦ ≤ 	 (15)
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Calculating the value of ( )tΦ  at 0t , we have 

0 0
ˆ( ) = ( )t P tΦ 



                  1 1 0 0 1 0 0= exp( ) ( ) exp( ) ( )a a t V t a t V t+ 

                  1 0 1 1 0 0
ˆ ( ) exp( ) ( )a P t a a t V t≤ −

                  1 1 0
ˆ= ( ) ( )a a P t−

                  = 0

and this result is contradict with the assumption of 0( ) > 0tΦ  in (14). Thus, ( ) < 0tΦ , 
for all [0, )t h∈ .

Next, we will adopt the similar method to proof that 2
ˆˆ( ) = ( ) exp( ( )) < 0t P t Q a t hβΨ − − ,  

for [ , )t h T∈ . Assume that there exists 1 [ , )t h T∈ , such that 

	 1 1( ) = 0, ( ) > 0,t tΨ Ψ 	 (16)

	 1( ) < 0,  < .t h t tΨ ≤ 	 (17)

Calculating the value of ( )tΨ  at 1t , we have 

1 1 2 2 1
ˆˆ( ) = ( ) exp( ( ))t P t a Q a t hβΨ − −



     1 1 1 1 1 1 2 2 1
ˆ= exp( ) ( ) exp( ) ( ) exp( ( ))a a t V t a t V t a Q a t hβ+ − −

     1 1 1 1 2 1 1 2 2 1
ˆˆ( ) exp( )( ) ( ) exp( ( ))a P t a t a a V t a Q a t hβ≤ + − − −

     1 1 2 1 1 1 2 2 1
ˆˆ ˆ ˆ= ( ) ( ) ( ) exp( ( ))a P t a P t a P t a Q a t hβ+ − − −

     2 1 2 1
ˆˆ= ( ( ) exp( ( ))).a P t Q a t hβ− − 	                                          (18)

According to the assumption of 1( ) = 0tΨ  in (16), we know 1 2 1
ˆˆ( ) = exp( ( ))P t Q a t hβ − .

Then the inequation (18) can be simplified as 

1( ) 0tΨ ≤

and this result is contradict with 1( ) > 0tΨ  in (16).
Hence, for [ , )t h T∈ , 2

ˆˆ( ) = ( ) exp( ( )) < 0t P t Q a t hβΨ − −  holds, that is, for [ , )t h T∈ ,  
we have 

	 2 2
ˆ ˆˆ( ) < exp( ( )) exp( ( )).P t Q a t h Q a T hβ β− ≤ − 	 (19)
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On the other hand, from ( ) < 0,tΦ  for [0, )t h∈ , we have 

	 2
ˆ ˆˆ( ) < < exp( ( )).P t Q Q a T hβ β − 	 (20)

Thus, combine (19) and (20), there is 

2
ˆˆ( ) < exp( ( ),P t Q a T hβ −

for all [0, )t T∈ .
Similarly, we can prove that for [ , )t T h T∈ + , 

2
ˆ ˆˆ( ) < < exp( ( )).P t Q Q a t hβ β −

and for [ ,2 )T h T∈ + , 

2
ˆ ˆˆ( ) < < exp( ( 2 )).P t Q Q a t hβ β −

Through the mathematical induction, we can estimate the value of ˆ( )P t  for any 
integer n . That is for [ , ), = 0,1,2,t nT nT h n∈ +  .

2 2
ˆ ˆˆ( ) < exp( ( )) exp( (1 ) ).

h
P t Q a n T h Q a t

T
β β− ≤ −

And for [ , ( 1) ), = 0,1,2, .t nT h n T n∈ + + 

2 2
ˆ ˆˆ( ) < exp( ( ( 1) )) exp( (1 ) ).

h
P t Q a t n h Q a t

T
β β− + ≤ −

Here, we let 1β →  and from the definition of ˆ( )P t , we have 

1 2
ˆ( ) exp( ( (1 ) ))

h
V t Q a a t

T
≤ − − −

= (0)exp( ),    0.V t tε− ≥

In conclusion, according to the third condition in the Theorem, the drive system (1) 
and response system (2) can achieve synchronization with adaptive periodically pinning 
intermittent controllers when t →∞ . The proof has been completed.  		       □

From the matrix characteristics and the theory of Schur complement, we can obtain 
the following corollary,
Corollary 1 If there exist positive constants 1a  and 2a , such that 

1 max

1 ˆ < 0,
2

sL a c Gαλ+ +
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	 2 1 1

1
( ) 0,

2
L a a cαλ− − + ≤ 	 (21)

1 2= (1 ) > 0.
h

a a
T

ε − −

then the drive system (1) and the response system (2) could achieve synchronization 
under the adaptive periodically pinning intermittent controllers (5) and the updating 
law (6).

4.  Numerical Simulations

In this section, we will take a concrete example to illustrate the effectiveness of the 
proposed method. In the computer world, all educators computers form education net-
works while all researchers computers compose research networks. These two networks 
are coupled via the Internet. If all educators and researchers explore the same Internet 
source, the congestion will appears, which is harmful and should be avoided [16]. Thus, 
it is necessary to study the outer synchronization between the two coupled networks. 
In this example, we choose ten computers as the nodes in education networks and re-
searcher networks respectively. The Chen system is selected to describe the dynamical 
behavior of every computer and its dynamical equation are described as follows,

Figure 2: Chaotic behavior of Chen attractors.
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From the chaotic behavior of Chen system shown in Fig.1, it is found that the cha-
otic attractor is bounded in a  certain region. Our theoretical and numerical analysis 
show that there exist constants 1 2= 23, = 32,M M  and 3 = 61M  satisfying ij jx M≤   
for 1 6i≤ ≤  and 1 3j≤ ≤ . Thus one gets 

( , ( )) ( , ( ))i if t x t f t y t− 

2 2
1 3 1 3 1 2 1 2= [ ( )] [ ]i i i i i i i ix x y y x x y y− − − + −

2
3 1 1 3 2 1 1 2= [ ] [ ]]i i i i i i i ix e y e x e y e− − + +

	 2 ( ) .iM e t≤  
	 (23)

Thus, the Chen system satisfies the Assumption 1, and choose = 117.6291L .
In this example, we assume the connection of computers in the education and re-

search networks obey the scale-free distribution of the BA model. The parameters of the 
BA model are given by 0 = = 3, = 10m m N . The inner connecting matrix A  are chosen 
as = (1,1.2,1)A diag . In that case, we choose 6  computers from education network 
as the control object. Thus, 1 = 0.6790λ , the Maximum eigenvalue of matrix ˆ sG  is 

max
ˆ = 1.4999sGλ − . Other suitable parameters are chosen as = 0.2, = 0.178,T h  = 80c ,  

1 = 52a , 2 = 418a . So it is easy to verify that Eq.(21) in Corollary 1 is satisfied. The 
initial conditions of the simulations are chosen randomly in (0,1) . Then, the synchroni-
zation errors ( )ie t  are illustrated in Figs.3–5, and the adaptive control gain are shown in 
Fig.6. From the simulations, we know that the controllers in education networks needn’t 
to work all the time, the education networks and the research networks can also achieve 
outer synchronization.

5.  Conclusion

In this paper, we introduced the periodically pinning intermittent control method to 
resolve the problem of outer synchronization between two complex networks. Based on 
the Lyapunov stability theory and differential inequality method, some simple synchro-
nous criteria have been derived analytically. At last, both the theoretical and numerical 
analysis illustrate the effectiveness of the proposed control methodology. Considering 
the complexity of the complex networks, this method not only reduce the constraint of 
configuration matrix, such as symmetry or reducibility, but also save the cost of produc-
tion. Especially, we adopt a adaptive technique to keep the control gain k more suitable, 
which could avoid the control gain k much larger than the actual need. So, in the real 
production process, this method has important significance.
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Figure 3: Synchronization errors 1( ), = 1,2,...10ie t i .between the drive and response systems for 0 1.5t≤ ≤ .

Figure 4: Synchronization errors 2 ( ), = 1,2,...10ie t i .between the drive and response systems for 0 1.5t≤ ≤ .

Figure 5: Synchronization errors 3( ), = 1,2,...10ie t i .between the drive and response systems for 0 1.5t≤ ≤ .



510 F. MENG, B. WEN, M. ZHAO, W. BAO

Figure 6: Adaptive control gain of controllers.
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