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Abstract. A new approach to the realization problem for fractional discrete-time linear systems is proposed. A procedure for computation

of fractional realizations of given transfer matrices is presented and illustrated by numerical examples.
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1. Introduction

Determination of the state space equations for given transfer

matrices is a classical problem, called the realization problem,

which has been addressed in many papers and books [1–8].

An overview of the positive realization problem is given in [1,

2, 6, 9]. The realization problem for positive continuous-time

and discrete-time linear system has been considered in [6, 7,

10–22] and for linear systems with delays in [6, 10, 15, 21–

24]. The realization problem for fractional linear systems has

been analyzed in [6, 7, 25–30] for positive 2D hybrid linear

systems in [24, 31, 32] and for fractional systems with delays

in [33, 34]. A new modified state variable diagram method for

determination of positive realizations with reduced number of

delays for given proper transfer matrices has been proposed

in [35].

In this paper a new approach to the realization problem for

fractional discrete-time linear systems will be proposed. The

paper is organized as follows. Some preliminaries and prob-

lem formulation are given in Sec. 2. In Sec. 3 the solution

to the realization problem for fractional discrete-time linear

systems is presented and illustrated by numerical examples.

Concluding remarks are given in Sec. 4.

The following notation will be used: ℜ – the set of real

numbers, ℜn×m – the set of n×m real matrices, ℜn×m(w) -

the set of n×m rational matrices in w with real coefficients,

Z+ – the set of nonnegative integers, In – the n× n identity

matrix.

2. Preliminaries and problem formulation

Consider the fractional discrete-time linear system

∆αxi = Axi + Bui, i ∈ Z+ = {0, 1, ...}, (1a)

yi = Cxi + Dui, (1b)

where

∆αxi =

i
∑

j=0

cjxi−j ,

cj = (−1)j

(

α

j

)

=

{

1

(−1)j α(α−1)...(α−j+1)
j!

for

for

j = 0

j = 1, 2, ...
,

(1c)

xi ∈ ℜn, ui ∈ ℜm, yi ∈ ℜp are the state, input and output

vectors and A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜp×n, D ∈ ℜp×m.

Using the Z-transformation to (1a) and (1b) for zero initial

conditions we obtain [6]

Z[∆αxi] = wX(z) = AX(z) + BU(z),

i ∈ Z+ = {0, 1, ...}
(2a)

Y (z) = CX(z) + DU(z), (2b)

where

Z[∆αxi] = (1 − z−1)αX(z) = w(z)X(z) = wX(z),

w = w(z) = (1 − z−1)α =

∞
∑

i=0

ciz
−i,

X(z) = Z[xi] =
∞
∑

i=0

xiz
−i,

U(z) = Z[ui], Y (z) = Z[yi].

(2c)

From (2) we have the transfer matrix

T (w) = C[Inw − A]−1B + D. (3)

The transfer matrix T (z) is called proper if and only if

lim
w→∞

T (w) = D ∈ ℜp×m (4)

and it is called strictly proper if and only if D = 0.

From (3) we have

lim
w→∞

T (w) = D (5)

since lim
w→∞

[Inw − A]−1 = 0.
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Definition 1. The matrices A, B, C, D are called a fractional

realization of a given transfer matrix T (w) if they satisfy the

equality (3).

A fractional realization A, B, C, D is called minimal if

the dimension of the matrix A is minimal among all realiza-

tions of T (w).
The fractional realization problem can be stated as fol-

lows. Given a proper transfer matrix T (w) ∈ ℜp×m(w) find

a fractional realization A, B, C, Dof the matrix T (w).

3. Problem solution

3.1. Single-input single-output systems. First the essence

of the proposed method is presented for single-input single-

output (SISO) fractional discrete-time linear systems with the

transfer function

T (w) =
bnwn + bn−1w

n−1 + ... + b1w + b0

wn + an−1wn−1 + ... + a1w + a0
. (6)

Using (4) for (6) we obtain

D = lim
w→∞

T (w) = bn (7)

and

Tsp(w) = T (w) − D =
bn−1w

n−1 + ... + b1w + b0

wn + an−1wn−1 + ... + a1w + a0
,

(8a)

where

bk = bk − akbn, k = 0, 1, ..., n− 1. (8b)

Therefore, the realization problem has been reduced to find-

ing matrices A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜp×n for given

strictly proper transfer function (8a).

Multiplying the numerator and the denominator of (8a) by

w−n we obtain

Tsp(w) =
Y

U
=

bn−1w
−1 + ... + b1w

1−n + b0w
−n

1 + an−1w−1 + ... + a1w1−n + a0w−n
,

(9)

where Y and U are the Z-transforms of yi and ui, respectively.

Define

E =
U

1 + an−1w−1 + ... + a1w1−n + a0w−n
. (10)

From (9) and (10) we have

E = U − (an−1w
−1 + ... + a1w

1−n + a0w
−n)E, (11a)

Y = (bn−1w
−1 + ... + b1w

1−n + b0w
−n)E. (11b)

From (11) follows the block diagram shown in Fig. 1.

Assuming as the state variables x1,i, x2,i,. . . , xn,i the

outputs of the delay elements we may write the equations

∆αx1,i = x2,i,

∆αx2,i = x3,i,
...

∆αxn−1,i = xn,i,

∆αxn,i = −a0x1,i − a1x2,i − ... − an−1xn,i + ui

(12a)

and

yi = b0x1,i + b1x2,i + ... + bn−1xn,i. (12b)

The Eq. (12) can be written in the form

∆αxi = Axi + Bui, (13a)

yi = Cxi, (13b)

where

xi = [ x1,i x2,i . . . xn,i ]T , i ∈ Z+,

A =

















0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1

















,

B =













0
...

0

1













, C = [ b0 b1 · · · bn−1 ].

(14)

Fig. 1. State diagram for transfer function (9)
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Remark 1. If we choose the state variables so that xk =
xn−k+1 for k = 1, ..., n then the realization of (8) has the

form

A1 =

















−an−1 −an−2 · · · −a1 −a0

1 0 . . . 0 0
...

...
. . .

...
...

0 1 · · · 0 0

0 0 · · · 1 0

















,

B1 =













1

0
...

0













, C1 = [ bn−1 bn−2 · · · b0 ].

(15)

Remark 2. Note that the transposition (denoted by T ) of the

transfer function does change it, i.e. [Tsp(w)]T = Tsp(w) =
[C[Inw−A]−1B]T = BT [Inw−AT ]−1CT and the matrices

A2 = AT =

















0 0 · · · 0 −a0

1 0 . . . 0 −a1

0 1 · · · 0 −a2

...
...

. . .
...

...

0 0 · · · 1 −an−1

















,

B2 = CT =













b0

b1

...

bn−1













,

C2 = BT = [ 0 · · · 0 1 ]

(16)

and

A3 = AT
1 =

















−an−1 1 0 · · · 0

−an−2 0 1 . . . 0
...

...
...

. . .
...

−a1 0 0 · · · 1

−a0 0 0 · · · 0

















,

B3 = CT
1 =













bn−1

bn−2

...

b0













,

C3 = BT
1 = [ 1 0 · · · 0 ]

(17)

are also the realizations of the transfer function (8).

Example 1. Find the fractional realization of the transfer func-

tion

T (w) =
2w2 + 11w + 10

w2 + 3w + 4
. (18)

Using (7) we obtain

D = lim
w→∞

T (w) = 2 (19)

and

Tsp(w) = T (w)−D =
5w + 2

w2 + 3w + 4
=

5w−1 + 2w−2

1 + 3w−1 + 4w−2
.

(20)

In this case we have

E =
U

1 + 3w−1 + 4w−2
(21)

and

E = U − (3w−1 + 4w−2)E, (22a)

Y = (5w−1 + 2w−2)E. (22b)

The block diagram corresponding to (22) is shown in Fig. 2.

Fig. 2. State diagram for transfer function (20)

For the choice of the state variables shown in Fig. 2 we

obtain the equations

∆αx1,i = x2,i,

∆αx2,i = −4x1,i − 3x2,i + u,
(23a)

yi = 2x1,i + 5x2,i (23b)

and the realization

A =

[

0 1

−4 −3

]

, B =

[

0

1

]

, C = [ 2 5 ]. (24)

3.2. Multi-input multi-output systems. Consider a strictly

proper transfer matrix Tsp(w) ∈ ℜp×m(w). Let

Di(w) = wdi − (ai,di−1w
di−1 + ... + ai,1w + ai,0),

i = 1, ..., m
(25)

be the least common denominator of all entries of the i-th

column of Tsp(w).
Using (25) we may write Tsp(w) in the form

Tsp(w) =















N11(w)

D1(w)
· · ·

N1m(w)

Dm(w)
...

. . .
...

Np1(w)

D1(w)
· · ·

Npm(w)

Dm(w)















= N(w)D−1(w),

(26a)

where

N(w) =









N11(w) · · · N1m(w)
...

. . .
...

Np1(w) · · · Npm(w)









,

D(w) = diag[ D1(w) · · · Dm(w) ].

(26b)
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From (25) it follows that

D(w) = diag[ wdi · · · wdm ] − AmW, (27a)

where
Am = blockdiag[ a1 · · · am ],

ai = [ ai,0 · · · ai,di−1 ],
(27b)

W = blockdiag[ W1 · · · Wm ],

Wi = [ 1 w · · · wdi−1 ].
(27c)

Note that if

Nij(w) = c
dj−1
ij wdj−1 + ... + c1

ijw + c0
ij , (28a)

then

N(w) = CW, (28b)

where

C =

2664 c
0

11 c
1

11 · · · c
d1−1

11
· · · c

0

1m c
1

1m · · · c
dm−1

1m

...
...

...
...

. . .
...

...
...

...

c
0

p1 c
1

p1 · · · c
d1−1

p1
· · · c

0

pm c
1

pm · · · c
dm−1

pm

3775.

(28c)

We shall show that the matrices

A = blockdiag[ A1 · · · Am ],

Ai =

















0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

ai,0 ai,1 ai,2 · · · ai,di−1

















,

i = 1, ..., m,

B = blockdiag[ b1 · · · bm ],

bi = [0 · · · 0 1]T ∈ ℜdi , i = 1, ..., m

(29)

and (28c) are the desired realization of (26).

Using (27) and (28) it is easy to verify that

biDi(w) = [Inw − Ai]













1

w
...

wdi−1













(30)

and

BD(w) = [Inw − A]W. (31)

Premultiplication of (31) by C[Inw −A]−1 and postmultipli-

cation by D−1(w) yields

C[Inw − A]−1B = CWD−1(w)

= N(w)D−1(w) = Tsp(w).
(32)

Therefore, we have the following procedure for finding a frac-

tional realization of a given proper transfer matrix T (w).

Procedure 1.

Step 1. Using (4) find the matrix D and the strictly proper

transfer matrix Tsp(w).

Step 2. Find the least common denominators D1(w), . . .,
Dm(w) and write Tsp(w) in the form (26).

Step 3. Knowing D(w) find the indices d1, . . ., dm and the

matrices W and Am.

Step 4. Knowing N(w) find the matrix C defined by (28c).

Step 5. Using (29) find the matrices A and B.

Remark 3. Similar results can be obtained for the least com-

mon denominator of all entries of the j-th row of Tsp(w).

Example 2. Find the fractional realization of the transfer ma-

trix

T (w) =









2w + 1

w

w + 3

w + 1

3w + 8

w + 2

2w + 5

w + 2









. (33)

Using Procedure 1 and (33) we obtain the following:

Step 1. Using (4) and (33) we obtain

D = lim
w→∞

T (w)

= lim
w→∞









2w + 1

w

w + 3

w + 1

3w + 8

w + 2

2w + 5

w + 2









=

[

2 1

3 2

]

(34)

and

Tsp(w) = T (w) − D =









1

w

2

w + 1

2

w + 2

1

w + 2









. (35)

Step 2. From (35) we have D1(w) = w(w + 2), D2(w) =
(w + 1)(w + 2) and

Tsp(w) = N(w)D−1(w), (36a)

where

N(w) =

[

w + 2 2(w + 2)

2w w + 1

]

,

D(w) =

[

w(w + 2) 0

0 (w + 1)(w + 2)

]

.

(36b)

Step 3. From (36b) we have d1 = d2 = 2 and

W =











1 0

w 0

0 1

0 w











, Am =

[

0 −2 0 0

0 0 −2 −3

]

(37)

since

D(w) =

[

w(w + 2) 0

0 (w + 1)(w + 2)

]

=

[

w2 0

0 w2

]

−

[

0 −2 0 0

0 0 −2 −3

]











1 0

w 0

0 1

0 w











.

(38)

12 Bull. Pol. Ac.: Tech. 64(1) 2016



A new approach to the realization problem for fractional discrete-time linear systems

Step 4. Using (36b) we obtain

N(w) =

[

w + 2 2w + 4

2w w + 1

]

=

[

2 1 4 2

0 2 1 1

]











1 0

w 0

0 1

0 w











= CW

(39a)

and

C =

[

2 1 4 2

0 2 1 1

]

. (39b)

Step 5. Using (29) and (37) we obtain

A =











0 1 0 0

0 −2 0 0

0 0 0 1

0 0 −2 −3











, B =











0 0

1 0

0 0

0 1











. (40)

The desired fractional realization of (33) is given by (40),

(39b) and (34).

4. Concluding remarks

A new approach to finding fractional realizations of given

transfer matrices of discrete-time linear systems has been pro-

posed. It has been shown that for any given proper trans-

fer matrix there exist always many fractional realizations. A

procedure for computation a fractional realization of a giv-

en transfer matrix has been proposed. The effectiveness of

the procedure has been demonstrated on numerical examples.

The classical Gilbert method [29] can also be applied to com-

pute the fractional realizations of the given transfer matrices

of discrete-time linear systems.

The presented method can be easily extended to positive

fractional linear discrete-time systems without and with de-

lays.

Acknowledgements. This work was supported by the grant

No. S/WE/1/2015.

REFERENCES

[1] L. Benvenuti and L. Farina, “A tutorial on the positive real-

ization problem”, IEEE Trans. on Automatic Control 49 (5),

651–664 (2004).

[2] L. Farina and S. Rinaldi, Positive Linear Systems. Theory and

Applications, J. Wiley, New York, 2000.

[3] T. Kaczorek, “Existence and determination of the set of Met-

zler matrices for given stable polynomials”, Int. J. Appl. Math.

Comput. Sci. 22 (2), 389–399 (2012).

[4] T. Kaczorek, Linear Control Systems, vol. 1, Research Studies

Press, J. Wiley, New York, 1992.

[5] T. Kaczorek, Polynomial and Rational Matrices, Springer,

London, 2009.

[6] T. Kaczorek and Ł. Sajewski, The Realization Problem for

Positive and Fractional Systems, Springer, London, 2014.

[7] T. Kaczorek, Selected Problems in Fractional Systems Theory,

Springer, London, 2011.

[8] U. Shaker and M. Dixon, “Generalized minimal realization

of transfer-function matrices”, Int. J. Contr. 25 (5), 785–803

(1977).

[9] T. Kaczorek, Positive 1D and 2D Systems, Springer, London,

2002.

[10] T. Kaczorek, “A realization problem for positive continuous-

time linear systems with reduced numbers of delays”, Int. J.

Appl. Math. Comput. Sci. 16 (3), 325–331 (2006).

[11] T. Kaczorek, “Computation of positive stable realizations

for discrete-time linear systems”, Computational Problems of

Electrical Engineering 2 (1), 41–48 (2012).

[12] T. Kaczorek, “Computation of positive stable realizations for

linear continuous-time systems”, Bull. Pol. Ac.: Tech. 59 (3),

273–281 (2011).

[13] T. Kaczorek, “Computation of realizations of discrete-time

cone systems”, Bull. Pol. Ac.: Tech. 54 (3), 347–350 (2006).

[14] T. Kaczorek, “Positive and asymptotically stable realizations

for descriptor discrete-time linear systems”, Bull. Pol. Ac.:

Tech. 61 (1), 229–237 (2013).

[15] T. Kaczorek, “Positive minimal realizations for singular

discrete-time systems with delays in state and delays in con-

trol”, Bull. Pol. Ac.: Tech. 53 (3), 293–298 (2005).

[16] T. Kaczorek, “Positive realizations for descriptor continuous-

time linear systems”, Measurement Automation and Monitoring

56 (9), 815–818 (2012).

[17] T. Kaczorek, “Positive realizations for descriptor discrete-time

linear systems”, Acta Mechanica et Automatica, 6 (2), 58–61

(2012).

[18] T. Kaczorek, “Positive stable realizations of continuous-time

linear systems”, Proc. Conf. Int. Inf. and Eng. Syst. 1, CD-

ROM (2012).

[19] T. Kaczorek, “Positive stable realizations of discrete-time lin-

ear systems”, Bull. Pol. Ac.: Tech. 60 (3), 605–616 (2012).

[20] T. Kaczorek, “Positive stable realizations with system Met-

zler matrices”, Archives of Control Sciences 21 (2), 167–188

(2011).

[21] T. Kaczorek, “Realization problem for positive discrete-

time systems with delays”, System Science 30 (4), 117–130

(2004).

[22] T. Kaczorek, “Realization problem for positive multivariable

discrete-time linear systems with delays in the state vector

and inputs”, Int. J. Appl. Math. Comput. Sci. 16 (2), 101–106

(2006).

[23] T. Kaczorek, “Determination of positive realizations with re-

duced numbers of delays or without delays for discrete-time

linear systems”, Archives of Control Sciences 22 (4), 371–384

(2012).

[24] T. Kaczorek, “Positive realizations with reduced numbers of

delays for 2-D continuous-discrete linear systems”, Bull. Pol.

Ac.: Tech. 60 (4), 835–840 (2012).

[25] T. Kaczorek, “Positive stable realizations for fractional descrip-

tor continuous-time linear systems”, Archives of Control Sci-

ences 22 (3), 255–265 (2012).

[26] T. Kaczorek, “Positive stable realizations of fractional

continuous-time linear systems”, Int. J. Appl. Math. Comput.

Sci. 21 (4), 697–702 (2011).

[27] T. Kaczorek, “Realization problem for descriptor positive frac-

tional continuous-time linear systems”, Theory and Applica-

tions of Non-integer Order Systems, eds. W. Mitkowski, pp.

3–13, Springer, London, 2013.

Bull. Pol. Ac.: Tech. 64(1) 2016 13



T. Kaczorek

[28] T. Kaczorek, “Realization problem for fractional continuous-

time systems”, Archives of Control Sciences 18 (1), 43–58

(2008).

[29] Ł. Sajewski, “Positive stable minimal realization of fraction-

al discrete-time linear systems”, Advances in the Theory and

Applications of Non-integer Order Systems eds. W. Mitkowski,

pp. 257, 15–30, Springer, London, 2013.

[30] Ł. Sajewski, “Positive stable realization of fractional discrete-

time linear systems”, Asian J. Control 16 (3), DOI:

10.1002/asjc.750 (2014).

[31] T. Kaczorek, “Positive realizations of hybrid linear systems

described by the general model using state variable diagram

method”, J. Automation, Mobile Robotics and Intelligent Sys-

tems 4, 3–10 (2010).

[32] T. Kaczorek, “Realization problem for positive 2D hybrid sys-

tems”, COMPEL 27 (3), 613–623 (2008).

[33] Ł. Sajewski, “Positive realization of fractional continuous-time

linear systems with delays”, Measurement Automation and

Monitoring 58 (5), 413–417 (2012).

[34] Ł. Sajewski, “Positive realization of fractional discrete-time

linear systems with delays”, Measurements, Automatics, Ro-

botics 2, CD-ROM, (2012).

[35] T. Kaczorek, “A modified state variables diagram method for

determination of positive realizations of linear continuous-

time systems with delays”, Int. J. Appl. Math. Comput. Sci.

22 (4), 897–905 (2012).

14 Bull. Pol. Ac.: Tech. 64(1) 2016


