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Tracking control of an underactuated rigid body
with a coupling input force

SEBASTIAN KORCZAK

This paper presents a set of basic problems concerning the control of an underactuated dy-
namic system. Exemplary system of a planar rigid body with a coupling input force is described.
Lie brackets method is used to show accessibility of the system. A tracking problem is solved
with computed torque algorithm. The coupling force makes the convergence to zero of all state
variables errors impossible. After numerical simulation, stability of the system is mentioned.
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1. Introduction

The dynamic system described by a set of second order ordinary differential equa-
tions in form

q̈(q, q̇, t) = f1(q, q̇, t)+ f2(q, q̇, t)u(t) (1)

is called underactuated if control input u(t) cannot produce accelerations q̈ in arbitrary
direction. This happens when rank[ f2]< dim[q]. A system controlled by less number of
inputs than the number of degrees of freedom is called trivially underactuated. There are
many typical systems of that type, e.g. acrobot [2], pendubot, autonomous underwater
vehicles [10, 11] or hovercrafts [6]. Underactuated systems are usually nonlinear, so the
problem of controlability may be solved using the Lie theory. In [3, 5] one finds this
theory described. The tracking problem is usually solved using the passive velocity field
method [9], backstepping techniques [10] or the computed torque algorithm [13]. Usu-
ally control inputs of underactuated systems are described as independent which means
that the force appears at most in one right hand side of equations [1, 6]. Impossibility of
such separation makes design of a control law difficult and motivate this research.
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2. Description of the system

Consider a planar rigid body in R2 space (Fig. 1). The object consists of mass m
and inertia Ic around the center of mass (point C). Introducing the global coordinate
system Oxy, we denote by x and y the position of C, φ denotes angle between the object
symmetry line and X axis (counter clockwise direction). The vector of force F acts on
the object in a point away from C by distance a. The angle β indicates force direction. We
assume that the object is moving in a viscous environment where the force is proportional
to velocity with a constant drag coefficient (c for linear motion and cφ for rotation). The
equations of motion for the system are as follows

mẍ(t)+ cẋ(t) = |F⃗(t)|cos
(
φ(t)+β(t)

)
(2)

mÿ(t)+ cẏ(t) = |F⃗(t)|sin
(
φ(t)+β(t)

)
(3)

Icφ̈(t)+ cφφ̇(t) = |F⃗(t)|asin
(
β(t)

)
(4)

with initial conditions x(0) = x0, ẋ(0) = vx0, y(0) = y0, ẏ(0) = vy0, φ(0) = φ0, φ̇(0) =
ω0.

Figure 1. Object in the global coordinate system and its velocities in the local coordinate system.

It can be seen from (2-4) that the force binds the object movements in the X and
Y directions and its rotation. The F cosβ acts only in the longitudinal direction, while
F sinβ acts laterally causing rotation. Generalized coordinates [3] allows for decoupling,
however, physical interpretation is missed.

Introduce a state space vector q = [x(t),y(t),φ(t),v1(t),v2(t),ω(t)]T , where v1 and
v2 are object velocities in the local coordinate and ω is rotation velocity. We rewrite
equations (2-4) into one dynamic equation of motion in a matrix form of the first order
ordinary differential equations

q̇(t) = f (q)+g1u1(t)+g2u2(t) (5)
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where the vector field f is called a drift function, and has a form

f (q) =



v1 cosφ− v2 sinφ
v1 sinφ+ v2 cosφ

ω
− c

m
v1 + v2ω

− c
m

v2 + v1ω

−
cφ

IC
ω


(6)

u1 and u2 are the controls
u1(t) = F(t)cosβ(t) (7)

u2(t) = F(t)sinβ(t) (8)

where F(t) ∈ R denote the magnitude of the force and β(t) ∈ R denotes its angular
orientation. g1 and g2 are constant control vector fields

g1 =

[
0,0,0,

1
m
,0,0

]T

(9)

g2 =

[
0,0,0,0,

1
m
,

a
Ic

]T

. (10)

The force u1 affects only the rate of change of the v1 velocity. The force u2 changes
the velocities v2 and ω. The rates of change of x(t), y(t) and φ(t) are not directly affected
by the u1 and u2 but by a part of the drift function that cause inertial behavior of the
system. The drift function may also contain gyroscopic and centripetal components.

3. Controlability

Control law design should be followed by checking accessiblility and controlability
of the system [3]. Solution of the problem

q̇(t) = g0(q)+
w

∑
i=1

gi(q)ui(t) (11)

is (q(t),u1(t), ...,uw(t)) where time t ∈ [0,T ] for arbitrary T > 0 and q(t) is a piecewise
smooth curve in state manifold M = Rn. Admissible control inputs u1(t), ...,uw(t) are
locally integrable functions: [0,T ]→U . A set

S = (M ,g0,g1, ...,gw,U) (12)
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is called a control affine system. We define three types of a reachable set of the system S
from state q0:

RS(q0,T ) = {q(T ) ∈ M | such that there exists solution for q(0) = q0} (13)

RS(q0,¬ T ) =
∪

t∈[0.T ]
RS(q0, t) (14)

RS(q0) =
∪
t­0

RS(q0, t). (15)

Set (13) defines a set of all possible system states q at the time T when starting from the
initial condition q0 at the time zero. Set (14) is a sum of all possible reachable sets in the
whole time interval [0,T ]. Set (15) holds all possible reachable states of the system in all
the time.

Definition 2 [8] A system defined by (12) is:

a) accessible from the state q0 if the internal of set RS(q0) is not empty,

b) strongly accessible from the state q0 if the internal of set RS(q0,T ) is not empty
for all T > 0,

c) locally controllable from the state q0 if this state lies inside the reachable set
RS(q0),

d) small-time locally controllable from the state q0 if there exists time T > 0 such
that the state q0 is inside the set RS(q0,¬ T ) for each time in [0,T ],

e) globally controllable from the state q0 if the reachable set RS(q0) is equal to the
manifold M .

Discussion of higher dimensional system is difficult if accessibility and controlability
are concerned because it is hard to calculate the above defined reachable sets.

Definition 3 [4] The Lie bracket (Jacobi bracket) of two vector fields f (x) and g(x) is
a vector field defined as

[ f ,g] =
∂g
∂x

f − ∂ f
∂x

g (16)

where x ∈ Rn and

∂
∂x

=


∂

∂x1

∂
∂x2

. . . ∂
∂xn

∂
∂x1

∂
∂x2

. . . ∂
∂xn

. . . . . .
. . . . . .

∂
∂x1

∂
∂x2

. . . ∂
∂xn

 . (17)
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One can find an interesting interpretation of the Lie bracket in [8].

Definition 4 [4] The system defined by (12) is locally accessible from q0 ∈ M when a
distribution

C(q) = [g0|g1|...|gw|...|[gi,g j]|...|[gk, [gi,g j]]|...] (18)

has the rank equal to a number of the system independent variables n (size of state space
vector).

Distribution (18), called accessible algebra, includes all possible Lie brackets of the
vector fields qi but in the case of the rank condition zero vectors are not useful. One
should remember properties of the Lie bracket

[qi,qi] = 0 (19)

[qi,q j] =−[q j,qi]. (20)

The number of r-th order Lie brackets is equal to w(w+1)r/2.

Theorem 6 [12] The system with drift which is locally accessible is also a small-time
locally controllable system.

Theorem 7 [12] The system without drift which is locally accessible is globally con-
trollable.

The definition of small-time locally controllable used for a linear system implies the
classical controllability condition [5].

For the exemplary system defined by (5), the distribution algebra is proposed as first
six non-zero brackets

C = [ f |g1|g2|[ f ,g1]|[ f ,g2]|[g1, [ f ,g2]]] (21)

where

[ f ,g1] =



−cosφ
m

−sinφ
m

0

− c
m2

−ω
m

0


, [ f ,g2] =



sinφ
m

−cosφ
m

− a
IC

−v2a
IC

− ω
m

c
m2 −

v1a
I

acφ

I2
C



, [g1, [ f ,g2]] =



0
0
0
0

− a
mIC

0


.
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Also:
[g1,g2] = [g1, [g1,g2]] = [ f1, [g1,g2]] = [g1, [ f ,g1]] = 0,

[g2, [ f ,g1]] = [g1, [ f ,g2]]

and [g2, [ f ,g2]] is parallel to g1.
One should check that rank(C) = dim(q) = 6 for ω ̸= am

IC
v2. This implies from defi-

nition 4 and theory 7 that the system is locally accessible and small-time locally control-
lable for q0 ∈ Rn\{(ω,v2) such that ω =

am
IC

v2}.

4. Tracking problem

After the statement of the small-time local controllability of the exemplary system
we can put a task of tracking control. Let us describe the system (2-4) using a matrix
form of the second order ordinary differential equations

Mz̈+N(ż,z) = Q(t) (22)

where

z=

 x(t)
y(t)
φ(t)

 , M=

 m 0 0
0 m 0
0 0 IC

 , N=

 cẋ
cẏ

cφφ̇

 , Q(t)=

 F cos(φ(t)+β)
F sin(φ(t)+β)

Fasin(β)

 .

In this paper it is proposed to use the computed torque technique to control in closed-
loop system with PD feedback. In this method necessary forces are calculated by substi-
tuting state variable z(t) by desired trajectory functions. To achieve feedback reaction for
disturbances, forces generated by a system state error and its rate of change are attached.
Control forces τ(t) = [τx,τy,τφ]

T are then calculated as

τ(t) = Mz̈d +N(z, ż)+Kv(żd − ż)+Kp(zd − z) (23)

where zd(t) denotes a desired system trajectory in the configuration space, Kv and Kp
are diagonal matrix of constants. Substituting new forces (23) into the right hand side of
equation (22) with a new error variables matrix e(t) = zd(t)− z(t) leads to the formula

Më(t)+Kvė(t)+Kpe(t) = 0. (24)

This formula proves exponential convergence of the errors to zero providing M, Kv and
Kp are positive defined.
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The problem concerns presenting of necessary forces (23) by available right hand
side of equations of motion Q(t). One can try to search step by step for values of F and
β minimizing ||τ−Q||2. This optimization problem will not be solved in this paper. The
second possibility is to neglect the rotation control, what entails simple relationships

F(t) =
√

τ2
x + τ2

y (25)

β(t) = Arg
(

τx + τy
√
−1
)
−φ(t) (26)

where equation (26) returns the angle between the objects symmetry line and the vector
given by the coordinates [τx,τy].

Let us propose two tracking problems: circular motion with tangential orientation
described by desire state function

zd(t) =

 Rcos(θt)
Rsin(θt)
θt + π

2

 (27)

where R is the circle radius and θ is the angular velocity; and eight curve motion de-
scribed by function

zd(t) =

 0.5Rsin(2θt)
Rsin(θt)

Arg(cos2θt +
√
−1cosθt)

 . (28)

5. Numerical simulation

Let us show example effects of numerical simulation for the tracking task introduced
in previous section using inputs defined by equations (23, 25, 26). Tab. 1 presents system
and control parameters, Fig. 2 shows the results for circular trajectory. From equation
(24) one can proof that

lim
t→∞

(x(t)− xd(t)) = 0 (29)

lim
t→∞

(y(t)− yd(t)) = 0. (30)

Additionally, for a set of initial conditions, it is possible to achieve the condition

lim
t→∞

(φ(t)−φd(t)) = const. (31)

Negligence of rotation control causes non-zero rotation error values and implies the
need of stability analysis. The problem of rotation behavior is more visible at tracking
of the eight curve (Fig. 3).
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Table 5. System and control parameters

symbol value

System parameters

m 2kg
IC 0.1kgm2

a 0.4m
c 0.6 Ns

m

cφ 0.1Nms

Initial conditions
x(0),y(0),φ(0) 1m,0m, π

2

ẋ(0), ẏ(0), φ̇(0) 0 m
s ,0

m
s ,0

1
s

Feedback parameters
Kp diag(5.2 N

m)

Kv diag(
√

10.4 Ns
m )

Circular trajectory parameters
R 2m
θ π

4

Figure 2. Numerical simulation of circle tracking: a) achieved trajectory of the object with exemplary ori-
entations and force directions, b) evolution of position and rotation errors.

In practice, steering signals are limited – exemplary simulation of the system with a
limited maximum force is presented in Fig. 4. Insufficient maximum force value causes
a non zero periodic position error. The force angle limit may cause quasi-periodic or cha-
otic behavior of errors. One can watch simulation effects in video format at Internet [7].
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Figure 3. Numerical simulation of eight curve tracking: a) reference trajectory, achieved trajectory and
some exemplary orientations of the object, b) evolution of position and rotation errors.

Figure 4. Numerical simulation of eight curve tracking with the maximum force limitation to 4 newtons: a)
reference and achieved trajectory, b) evolution of position and rotation errors.

6. 6. Stability analysis

Let us analyze stability of rotational motion of the system when steering without
rotation control. For initial conditions corresponding to the desire trajectory z(0) =
zd(0), ż(0) = żd(0) equation of rotational motion has the form

Iφ̈+ cφφ̇ = τyacosφ− τxasinφ. (32)
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After substituting control functions (23), desired circular trajectory functions and new
error variable p = φ−θt − π

2 the equation (32) takes the form

ṗ = vp

v̇p =−
cφ

I
vp −

acΘR
I

sin p− amΘ2R
I

cos p−
cφθ

I
.

(33)

Equilibrium points of the system exists when (m2Θ2 + c2)a2R2/c2
φ > 1 and are described

by (p(k)0 ,vp0), where vp0 = 0, p(k)0 = kπ−arctan mΘ
c −arcsin

(
cφ/acRcoskπ

√
m2Θ2

c+1

)
and

k ∈ Z.
For stability analysis of the first equilibrium (p(1)0 ,vp0) Lyapunov’s linearization

method was used. Linear approximation of the system around the first equilibrium has a
form [

ṗ
v̇p

]
=

 0 1

−acΘR
I

cos p(1)0 − amΘ2R
I

sin p(1)0 −
cφ

I

[ p
vp

]
(34)

and its characteristic equation

λ2 +
cφ

I
λ+

Θ
I

√
(a2m2θ2 +a2c2)R2 − cφ2 = 0. (35)

Linearization of the system is asymptotically stable around the first equilibrium from
Routh-Hurwitz criterion. Linearization and characteristic equation of the system around
the second equilibrium (p(2)0 ,vp0) are similar to (34) and (35), however Routh-Hurwitz
criterion argues its instability. Other equilibria do not require analysis because of system
periodicity. The error of presented object’s rotation while tracking a circular curve is
therefore globally asymptotically stable for a trajectory satisfying condition

R >
cφ

a
√

m2θ2 + c2
. (36)

The equation of rotational motion of the system while tracking eight curve using
computed torque algorithm with PD feedback has a form

Iφ̈+ cφφ̇ = aΘR((ccosΘt −mΘsinΘt)cosφ− (ccos2Θt −2mΘsin2Θt))sinφ. (37)

After substituting new error variable - angle between the object’s center line and tangent
to the trajectory p=φ−Arg(cos2Θt+

√
−1cosΘt) the equation cannot be simplified for

stability analysis purposes. The error variable approximation p ≈ φ− (π−2.26cosΘt −
0.24cos3Θt + 0.16cos5Θt) cause extremely great length of the equation, therefore nu-
merical simulation was used for tracking error analysis. Fig. 5 presents range of the
rotation error changing with R and Θ patch parameters, also points of loss of stability
are included.
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Figure 5. Range of rotation error varying with parameters of the eight curve tracked patch. Empty circles
denotes loss of stability.

7. Conclusion

In this paper, a problem of control of an underactuated system was shown. Based on
an exemplary planar rigid body subjected to an eccentric external force, the accessibil-
ity and controllability was presented. Usage of the computed torque algorithm for the
tracking problem was proposed. Two trajectories, circular and eight-shaped, were used
for examples of numerical simulation. Because of the coupled input force components,
we cannot take control on all state variables. Therefore after proposition of control of the
system position without rotation control, a computed torque technique with proportional-
derivative feedback was investigated. This new method reduce the complexity of method
in comparison with full state control algorithms. Stability analysis using the first Lya-
punov method allows to obtain a stability criterion for circular motion. Eight curve path
tracking stability could be checked only by numerical simulation.

Future research will be aimed to control of an underactuated vehicle with caster
wheels and vision based feedback signals.
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