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Reduced order hybrid function projective combination
synchronization of three Josephson junctions

KAYODE. S. OJO, ABDULAHI N. NJAH, SAMUEL T. OGUNJO and OLASUNKANMI I. OLUSOLA

In this paper, we examine reduced order hybrid function projective combination synchro-
nization of three chaotic systems consisting of: (i) two third chaotic Josephson junctions as
drives and one second order chaotic Josephson junction as response system; (ii) one third order
chaotic Josephson junction as the drive and two second order chaotic Josephson junctions as the
slaves using active backstepping technique. The analytic results confirm the realization of re-
duced order hybrid function projective combination synchronization using active backstepping
technique. Numerical simulations are performed to validate the analytical results.

Key words: function projective synchronization, Josephson junction, backstepping con-
trol, chaos, reduced order synchronization, combination synchronization

1. Introduction

Chaotic systems exhibit sensitive dependence on initial conditions, hence, the con-
vergence of the trajectory of two similar or different chaotic systems originating from
different initial conditions seems improbable. Pecora and Caroll [11] pioneered the stud-
ies of synchronization of two chaotic systems in 1990. Since then many types of syn-
chronization methods including lag synchronization [3], complete synchronization [11],
phase synchronization [1], projective synchronization [7] have been proposed while
many techniques have been by employed to design suitable control functions for syn-
chronization of chaotic systems. These techniques include optimal control, active con-
trol, sliding mode control, impulsive control, backstepping control, etc.

Backstepping scheme has been efficient in the design technique for stabilization,
tracking and synchronization of chaotic systems. According to Tian et al., [13], some
of the advantages of the method include: applicability to a variety of chaotic systems
irrespective of whether they contain external excitation or not; needs only one controller
to realize synchronization of chaotic systems and finally there is no derivative in the
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controller. Backstepping technique offers faster and better transient error dynamics con-
vergence and synchronization time than the active control technique [8].

The idea of projective synchronization was proposed by Mainieri and Rehacek [7].
Projective Synchronization (PS)refers to the dynamical behavior in which the responses
of two identical systems synchronize up to a constant scaling factor α ∈ ℜ [14]. When
α = 1 we have complete synchronization and α = −1 gives antisynchronization of the
systems. Chen and Li [17] designed a new form of projective synchronization between
two identical systems using a scaling function factor. This new scheme was extended to
two different systems by Du et al [2]. Function projective synchronization in addition to
faster communication, enhances security in communication due to the unpredictability
in scaling function [16].

Hybrid function projective synchronization (HFPS) extends function projective syn-
chronization by using scaling functions which consists of different time varying func-
tions [4, 10]. When the scaling function is a matrix, a new form of function projective
synchronization called generalized function projective synchronization is achieved [16].
This scheme has been implemented for chaotic systems with unknown parameters [5],
fractional order [14], and other systems.

All of the synchronization schemes mentioned above and many others [8, 9] are be-
tween two similar or different chaotic systems. However, Runzi and Yinglan [12] have
proposed a communication scheme (combination synchronization) whereby the signal to
be transmitted is split between two drive systems so it can be transmitted at different in-
tervals. If this is effective, the transmitted signal may have stronger anti-attack ability and
antitranslated capability than that transmitted by the usual transmission model. Further-
more, in a communication network, there are many users (slave) but one control (master)
which connects different users to one another. There is the need to implement a synchro-
nization scheme whereby many users can be connected to and routed through a single
master securely. Combination synchronization of three classic systems was achieved by
Luo et al [6].

Although, reduced order and increased order synchronization have been imple-
mented between two systems, research on reduced order combination synchronization
are few. Increased order and reduced order combination synchronization of three differ-
ent nonlinear systems was implemented using active backstepping design [15] but the
reduced order hybrid function projective combination synchronization has not been im-
plemented. This scheme has great prospect in secure communication and other allied
fields. Hence, in this paper, we intend to design controllers to achieve reduced order hy-
brid function projective synchronization among three chaotic Josephson junction under
two conditions: i) two third order chaotic Josephson junctions as drives and one second
order chaotic Josephson junction as response system; (ii) one third order chaotic Joseph-
son junction as the drive and two second order chaotic Josephson junctions as the slaves
using active backstepping technique.
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2. Reduced order hybrid function projective combination synchronization of two
third order and one second order Josephson junctions

2.1. Design of controller via active backstepping technique

In this section, two third order Josephson junction in (1) and (2) are taken as the
drive system while one second order non-autonomous Josephson junction (3) is taken as
the response system in order to achieve generalized reduced order combination synchro-
nization among the three chaotic Josephson junctions.

ẋ1 = x2

ẋ2 =
1

βC
(i−g(x2)x2− sinx1− x3) (1)

ẋ3 =
1

βL
(x2− x3)

the second drive system is

ẏ1 = y2

ẏ2 =
1

βC
(i−g(y2)y2− siny1− y3) (2)

ẋ3 =
1

βL
(y2− y3)

while the response system is given as

ż1 = z2 +u1
(3)

ż2 = −αz2− sinz1 +a+bsinωt +u2

where ui(t), i = 1,2 are the controllers to be designed. We define the error systems as
follows

e1 = z1− (α1(t)x1 +β1(t)y1 +α3(t)x3 +β3(t)y3)
(4)

e2 = z2 +(α2(t)x2 +β2(t)y2).

Using the error systems defined in (4) with systems defined in (1), (2) and (3) yields the
following error dynamics

ė1 = z2−α1(t)x2−β1(t)y2−
α3(t)

βL
(x2− x3)−

β3(t)
βL

(y2− y3)

−α̇1(t)x1− β̇1(t)y1− α̇3(t)x3− β̇3(t)y3 +u1

= e2−α2(t)x2−β2(t)y2−α1(t)x2−β1(t)y2−
α3(t)

βL
(x2− x3)−

β3(t)
βL

(y2− y3)+u1
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−α̇1(t)x1− β̇1(t)y1− α̇3(t)x3− β̇3(t)y3

ė2 =−αz2− sinz1 +a+bsinωt +u2 +
α2(t)

βC
(i−g(x2)x2− sinx1− x3)

+
β2(t)
βC

(i−g(y2)y2− siny1− y3)+ α̇2(t)x2 + β̇2(t)

=−α(e2−α2(t)x2−β2(t)y2)+ α̇2(t)x2 + β̇2(t)− sinz1 +a+bsinωt +u2

+
α2(t)

βC
(i−g(x2)x2− sinx1− x3)+

β2(t)
βC

(i−g(y2)y2− siny1− y3).

Thus,the error dynamics of the system can be written as:

ė1 = e2 +u1 +A1 (5)

ė2 =−αe2 +u2 +A2 (6)

where

A1 =−α2(t)x2−β2(t)y2−α1(t)x2−β1(t)y2−
α3(t)

βL
(x2− x3)−

β3(t)
βL

(y2− y3)

−α̇1(t)x1− β̇1(t)y1− α̇3(t)x3− β̇3(t)y3

A2 = α(α2(t)x2 +β2(t)y2)− sinz1 +a+bsinωt + α̇2(t)x2 + β̇2(t)

+
α2(t)

βC
(i−g(x2)x2− sinx1− x3)+

β2(t)
βC

(i−g(y2)y2− siny1− y3).

Our goal is to find the control functions which will enable the systems (1), (2) and
(3) realize reduced order hybrid function projective combination synchronization by
active backstepping technique. The design procedure includes three steps as shown
below:

Step 1
Let q1 = e1, its time derivative is

q̇1 = ė1 = e2 +u1 +A1 (7)

where e2 = α1(q1) can be regarded as virtual controller. In order to stabilize q1-
subsystem, we choose the Lyapunov function v1 =

1
2 q2

1. The time derivative of v1 is

v̇1 = q1q̇1 = q1(α1(q1)+u1 +A1). (8)

Suppose α1(q1) = 0 and the control function u1 is chosen as

u1 =−(A1 + kq1) (9)
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then v̇1 = −kq2
1 < 0 where k is positive constant which represent the feedback gain.

Then, v̇1 is negative definite and the subsystem q1 is asymptotically stable. Since, the
virtual controller α1(q1) is estimative, the error between e2 and α1(q1) can be denoted
by q2 = e2−α1(q1). Thus, we have the (q1,q2)-subsystems

q̇1 = q2− kq1
(10)

q̇2 =−αq2 +u2 +A2.

Step 2
In order to stabilize subsystem (10), a Lyapunov function is chosen as v2 = v1 +

1
2 q2

2. Its
time derivative of v2 is

v̇2 =−q2
1 +q2(q1−αq2 +u2 +A2). (11)

If the control function u2 is chosen as

u2 = αq2−q1−A2− kq2 (12)

then v̇2 = −kq2
1− kq2

2 < 0 where k is a positive constant which represents the feedback
gain. Hence, v̇2 is negative definite and the subsystem (q1,q2) in (10) is asymptotically
stable. This implies that reduced order hybrid function projective combination synchro-
nization of the drive systems (1) and (2) and the response system (3) is achieved. Finally,
we have the subsystems

q̇1 = q2− kq1
(13)

q̇2 =−q1− kq2.

Let α1 = α2 = α3 = 0 then, we have Corollary 1.

Corollary 1 If the controllers are chosen as

u1 = (β1(t)+β2(t))y2 +
β3(t)

βL
(y2− y3)+ β̇1(t)y1 + β̇3(t)y3− kq1

u2 = (α− k)q2−q1−αβ2(t)y2 + sinz1−a−bsinωt (14)

−β2(t)
βC

(i−g(y2)y2− siny1− y3)− β̇2(t)y2

where q1 = z1−β1(t)y1−β3(t)y3, q2 = z2 +β2(t)y2 then the drive system (2) achieve
reduced order modified hybrid function projective synchronization with the response
system (3).

Let β1(t) = β2(t) = β3(t) = 0, then we obtain Corollary 2.
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Corollary 2 If the controllers are chosen as

u1 = (α1(t)+α2)x2 +
α3(t)

βL
(x2− x3)− kq1 + α̇1(t)x1 + α̇3(t)x3

u2 = (α− k)q2−q1−αα2(t)x2 + sinz1−a−bsinωt (15)

−α2(t)
βC

(i−g(x2)x2− sinx1− x3)− α̇2(t)x2

where q1 = z1−α1(t)x1−α3(t)x3, q2 = z2 +α2(t)x2 then the drive system (1) achieves
reduced order modified hybrid function projective synchronization with the response
system (3).

Suppose α1(t) = α2(t) = α3(t) = β1(t) = β2(t) = β3(t) = 0, then we obtain
Corollary 3.

Corollary 3 If the controllers are chosen as

u1 = −kq1
(16)

u2 = (α− k)q2−q1 + sinz1−a−bsinωt

where q1 = z1, q2 = z2 then the equilibrium point (0,0,0) of the response system (3) is
asymptotically stable.

Suppose β1(t) = β2(t) = β3(t) = α1(t) = α2(t) = α3(t) = γ. We obtain Corollary 4.

Corollary 4 If the controllers are chosen as

u1 =
γ(t)
βL

(x2− x3 + y2− y3)+2α1(t)(x2 + y2)+ γ̇(t)(x1 + y1 + x3 + y3)− kq1

u2 = (α− k)q2−q1−αγ(t)(x2 + y2)+ sinz1−a−bsinωt− γ̇(t)(x2 + y2) (17)

−γ(t)
βC

(2i−g(x2)x2−g(y2)y2− sinx1− siny1− x3− y3)

where q1 = z1−γ(t)(x1+y1+x3+y3), q2 = z2+γ(t)(x2+y2) then the drive systems (1)
and (2) achieve reduced order hybrid function projective combination synchronization
with the response system (3).

Let all the scaling functions be α1(t), α2(t), α3(t), β1(t), β2(t) and β3(t), then we
obtain Corollary 5.
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Corollary 5 If the controllers are chosen as

u1 = α2(t)x2 +β2(t)y2 +α1(t)x2 +β1(t)y2 +
α3(t)

βL
(x2− x3)+

β3(t)
βL

(y2− y3)

+α̇1(t)x1 + β̇1(t)y1 + α̇3(t)x3 + β̇3(t)y3− kq1

u2 = −α(α2(t)x2 +β2(t)y2)+ sinz1−a−bsinωt− α̇2(t)x2− β̇2(t)+(α− k)q2−q1

−α2(t)
βC

(i−g(x2)x2− sinx1− x3)−
β2(t)
βC

(i−g(y2)y2− siny1− y3) (18)

q1 = z1− (α1(t)x1 + β1(t)y1 +α3(t)x3 + β3(t)y3), q2 = z2 + (α2(t)x2 + β2(t)y2) then
the drive system (1) and (2) achieve reduced order modified hybrid function projective
combination synchronization with the response system (3).

Figure 1. Error with control function deactivated.

2.2. Numerical simulation results

The designed controllers are verified in our numerical simulation using the ode45
fourth order Runge-Kutta algorithm in Matlab. In the numerical simulation procedure
we used the systems parameters within the chaotic region and controllers are chosen in
accordance with Corollary 4. The initial conditions of the drive systems and response
system are given as (x1,x2,x3) = (0,0,0), (y1,y2,y3) = (111), (z1,z2) = (0,1), γ(t) =
2.0+ 0.01sin(0.05t) and k = 1. Corresponding numerical results are as follows: Fig. 1
depicts the error dynamics of the systems when controllers were deactivated. The errors
did not converge to zero. Fig. 2 shows that reduced order hybrid function projective
combination synchronization among systems (1), (2) and (3) is achieved as indicated
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Figure 2. Error with control function activated at t ­ 100.

Figure 3. Dynamics of the state variables.

by the convergence of the error state variables to zero as soon as the controllers are
switched on for t ­ 100. Fig. 3 shows the projection of the drive state variables on the
projection of the response state variables when the controllers are activated for t ­ 100
which also confirms reduced order combination synchronization among systems (1),
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Figure 4. Evidence of hybrid projective synchronization.

(2) and (9). Fig 4 shows the evidence of realization of reduced order hybrid function
projective combination synchronization.

3. Reduced order hybrid function projective combination synchronization of one
third order and two second order Josephson junctions

3.1. Design of controller via active backstepping technique

In this section, one third order Josephson junction in (1) is taken as the drive system
while two second order non-autonomous Josephson junction in (19) and (20) are taken
as the response systems in order to achieve reduced order hybrid function projective
combination synchronization among the three chaotic Josephson junctions .

ẏ1 = y2 +u1
(19)

ẏ2 = −αy2− siny1 +a+bsinωt +u2

ż1 = z2 +u3
(20)

ż2 = −αz2− sinz1 +a+bsinωt +u4

where u1,u2,u3 and u4 are the controllers to be designed. We define the error systems as
follows

e1 = z1 + y1− (α1(t)x1 +α3(t)x3)
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(21)
e2 = z2 + y2 +α2x2.

Using the error systems defined in (21) with systems defined in (1), (19) and (20) yields
the following error dynamics

ė1 = z2 + y2 +u3−α1(t)x2 +u1−
α3(t)

βL
(x2− x3)− α̇1(t)x1− α̇3(t)x3

= e2− (α2(t)+α1(t))x2−
α3(t)

βL
(x2− x3)− α̇1(t)x1− α̇3(t)x3u1 +u3

ė2 =−αz2− sinz1 +a+bsinωt +u4−αy2− siny1 +a+bsinωt +u2

+
α2(t)

βC
(i−g(x2)x2− sinx1− x3)+ α̇2(t)x2

=−α(e2 +α2(t)x2)− sinz1 +2a+2bsinωt− siny1 + α̇2(t)x2

+
α2(t)

βC
(i−g(x2)x2− sinx1− x3)+u2 +u4.

Thus,the error dynamics of the system can be written as:

ė1 = e2 +U1 +B1 (22)

ė2 =−αe2 +U2 +B2 (23)

where

B1 =−(α2(t)+α1(t))x2−
α3(t)

βL
(x2− x3)− α̇1(t)x1− α̇3(t)x3

B2 = αα2(t)x2)− sinz1 +2a+2bsinωt− siny1 + α̇2(t)x2

+
α2(t)

βC
(i−g(x2)x2− sinx1− x3)

U1 = u1 +u3

U2 = u2 +u4.

Our goal is to find the control functions which will enable the systems (1), (19) and (20)
realize generalized reduced order combination synchronization by active backstepping
technique. The design procedures includes three steps as shown below:
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Step 1
Let q1 = e1, its time derivative is

q̇1 = ė1 = e2 +U1 +B1 (24)

where e2 = α1(q1) can be regarded as virtual controller. In order to stabilize q1-
subsystem, we chose a Lyapunov function v1 =

1
2 q2

1. Time derivative of v1 is

v̇1 = q1q̇1 = q1(α1(q1)+U1 +B1). (25)

Suppose α1(q1) = 0 and the control function U1 is chosen as

U1 =−(B1 + kq1) (26)

then v̇1 = −kq2
1 < 0 where k is a positive constant which represent the feedback gain.

Then, v̇1 is negative definite and the subsystem q1 is asymptotically stable. Since, the
virtual controller α1(q1) is estimative, the error between e2 and α1(q1) can be denoted
by q2 = e2−α1(q1). Thus, we have the (q1,q2)-subsystems

q̇1 = q2− kq1
(27)

q̇2 =−αq2 +U2 +B2.

Step 2
In order to stabilize system (8), the following Lyapunov function can be chosen as v2 =
v1 +

1
2 q2

2. Its time derivative of v2 is

v̇2 =−q2
1 +q2(q1−αq2 +U2 +B2). (28)

If the control function u2 is chosen as

U2 =−B2− kq2 +αq2−q1 (29)

then v̇2 = −kq2
1− kq2

2 < 0 where k is a positive constant which represent the feedback
gain. Then, v̇2 is negative definite and the subsystem (q1,q2) in (27) is asymptotically
stable. this implies that the drive system (1) and the response systems (19) and (20)
achieve reduced order function projective combination synchronization. Finally, we have
the following subsystems

q̇1 = q2− kq1
(30)

q̇2 =−q1− kq2.

Here we limit our results to only two major Corollaries which result into hybrid function
projective combination synchronization.

Let α1 = α2 = α3, u1 = u3 and u2 = u4. Then, we have Corollary 6.
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Corollary 6 If the controllers are chosen as

u1 = u3 =
1
2
(
α1(t)

βL
(x2− x3)+ α̇1(t)(x1 + x3)− kq1 +2α1(t))

u2 = u4 =
1
2
((α− k)q2−q1− (αα1(t)+ α̇1(t))x2 + sinz1 + siny1−2a−2bsinωt

−α1(t)
βC

(i−g(x2)x2− sinx1− x3)) (31)

where e1 = z1−α1(x1 + x3), e2 = z2 +α1x2 then the drive system (1) achieve reduced
order hybrid function projective combination synchronization with the response systems
(19) and (20).

Let all the scaling functions be α1(t), α2(t), α3(t) with u1 = u3 and u2 = u4. Then,
we have Corollary 7.

Corollary 7 If the controllers are chosen as

u1 = u3 =
1
2
((α1(t)+α2(t))x2 +(

α3(t)
βL

(x2− x3)+ α̇1(t)x1 + α̇3(t)x3− kq1) (32)

u2 = u4 =
1
2
((α− k)q2−q1− (αα2(t)+ α̇2(t))x2 + sinz1 + siny1−2a−2bsinωt

−α2(t)
βC

(i−g(x2)x2− sinx1− x3))

where e1 = z1 + y1− (α1(t)x1 +α3(t)), e2 = z2 + y2 +α2(t)x2 then reduced order mod-
ified hybrid function projective combination synchronization is achieved between the
drive systems (1) and the response systems (19) and (20).

3.2. Numerical simulation results

The designed controllers are verified in our numerical simulation using the
ode45 fourth order Runge-Kutta algorithm in Matlab. In the numerical simulation we
used the systems parameters within the chaotic region and controllers are chosen in
accordance with Corollary 6. The initial conditions of the drive systems and respon-
se system are given as (x1,x2,x3) = (0,0,0), (y1,y2,y3) = (111), (z1,z2) = (0,1),
γ(t) = 2.0+0.01sin(0.05t) and k = 1. Corresponding numerical results are as follows:
Fig. 5 shows the error dynamics of the drive and slave systems when the controllers were
deactivated. Fig. 6 shows that reduced order hybrid function projective combination
synchronization among systems (1), (19) and (20) is achieved as pointed by the conver-
gence of the error state to zero as soon as the controllers are switch on for t ­ 100. Fig.7
shows projection of the drive state variables on the response state variables when the
controllers are activated for t ­ 100 which also confirms reduced order hybrid function
projective combination synchronization among systems (1), (19) and (20).



REDUCED ORDER HYBRID FUNCTION PROJECTIVE COMBINATION SYNCHRONIZATION
OF THREE JOSEPHSON JUNCTIONS 111

Figure 5. Error with control function deactivated.

Figure 6. Error with control function activated.

4. Conclusion

Reduced order hybrid function projective combination synchronization of three
chaotic systems consisting of: (i) two third order chaotic Josephson junctions as drives
and one second order chaotic Josephson junction as response system; (ii) one third order
chaotic Josephson junction as the drive and two second order chaotic Josephson junc-
tions as the slaves using active backstepping technique has been realized. We showed
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Figure 7. Evidence of hybrid projective synchronization

from the theoretical analysis that various controllers which are suitable for different type
of synchronization scheme can be obtained from the general results. Moreover, reduced
order hybrid function projective combination synchronization has more potential appli-
cations to secure information transmission in communication systems and information
processing in biological systems.
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