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On optimal boundary and distributed control of partial
integro–differential equations

ASATUR ZH. KHURSHUDYAN

To memoriam of my father Zhora M. Khurshudyan is dedicated.

A method of optimal control problems investigation for linear partial integro–differential
equations of convolution type is proposed, when control process is carried out by boundary
functions and right hand side of equation. Using Fourier real generalized integral transform
control problem solution is reduced to minimization procedure of chosen optimality criterion
under constraints of equality type on desired control function. Optimality of control impacts
is obtained for two criteria, evaluating their linear momentum and total energy. Necessary and
sufficient conditions of control problem solvability are obtained for both criteria. Numerical
calculations are done and control functions are plotted for both cases of control process realiza-
tion.
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1. Introduction

It is well known fact that the most part of rigorous techniques of optimal control sys-
tems investigation are non–applicable for solution of control problems for some special
types of system uncertainties, and application of existing efficient numerical methods
in those situations is quite onerous. For example, when the system of optimal control
is nonlinear with respect to control vector (and even linear with respect to phase vec-
tor), the problem can be solved explicitly only in some exceptional cases, and problems
of control by coefficients or by moving loads are rigorously irresolvable [1, 2]. There
are many other examples of control problems, when system‘s investigation is associated
with additional difficulties and costs. Quite a common example of control system with
uncertainty is a system containing convolution of unknown function, which occurs in
various areas of mathematical physics and includes integral (Fredholm equations of the
first and second kinds), as well as integro–differential equations (in ordinary and partial
derivatives).
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Many real processes are very often roughly modeled by ordinary or partial differ-
ential equations. However, local character of differential equations does not allow us to
take into account such real–world phenomena, as, for instance, processes with memory
(prehistory). Introduction of integral terms containing unknown function into differen-
tial equation, thereby transforming it into integro–differential, is of help in this case. As
a common example of such equations in finite interval, the following one may serve (in
one dimensional case):

H [w]+
b∫

a

K (x,s, t)N [w]ds = F (x, t), (1)

where w = w(x, t) is the unknown function, K : [a,b]× [a,b]×T→ R is a given func-
tion, called kernel of equation, T is finite or infinite interval, H [·] and N [·] are differ-
ential operators, acting on unknown function, and F : [a,b]×T→ R is the given right
hand side, satisfying certain conditions. If operators H [·] and N [·] are linear, contains
ordinary or partial derivatives, then equation (1) is called linear, ordinary or partial, re-
spectively. Furthermore, equation (1) is called symmetric, if its kernel is symmetric:
K (x,s, ·) = K (s,x, ·), and difference or convolution type, if K (x,s, ·) = K (x− s, ·).

The monograph [3] is devoted to thorough investigation and classification of integro–
differential operators. Main areas of integro–differential equations application are de-
scribed, and numerous problems mathematically formulated by those equations, partic-
ularly in theories of elasticity and viscoelasticity, continuum mechanics, contact interac-
tions mechanics, growing body mechanics and fracture mechanics are considered ibid.
In [4] the description of some financial processes by partial integro–differential equa-
tions are investigated. In [5] the explicit solution of linear difference partial integro–
differential equations in quite general form is obtained via Laplace transform. Some
examples of integro–differential equations occurring in applications are solved and in-
vestigated. Numerical method of nonlinear singular partial integro–differential equations
solution is constructed in [6].

Accounting of such irreversible processes of wave energy transfer to medium par-
ticle as dispersion and dissipation, is accompanied with introduction in ordinary wave
equation of some additional linear terms containing the unknown function, the form of
which depends only on physical mechanism of interaction between wave and medium.
In general, the description of wave propagation in a homogeneous isotropic medium
with dissipation or dispersion properties occupied domain Ω ⊂ R3 in 3–dimensional
formulation is mathematically equivalent to solution of the following wave equation:

∆w =
1
c2

∂2w
∂t2 +L [w], (x,y,z) ∈Ω, t > 0, (2)

where w = w(x,y,z, t) is the unknown function, ∆ is 3–dimensional Laplace operator,
and L [w] is some linear operator, acting on function w(x,y,z, t). Particularly, in sound
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wave propagation problem in a dissipative medium [7]

L [w]≡− b
c2

0ρ0

∂2∆w
∂t2 ,

where b is the medium dissipation factor. In propagation problem of electromagnetic
wave in a dispersive medium [7]

L [w]≡ 4π
c2

1

∂2

∂t2

∞∫
0

κ(τ)w(x,y,z, t− τ)dτ, (3)

where κ(t), t > 0, is a dimensionless bounded function, characterizing dielectric suscep-
tibility of medium. Typical examples of electromagnetic waves include radio waves, TV
signals, radar beams, and light rays.

It turns out, that taking into account such simple (in the sense of linearity), but nat-
ural phenomena considerably complicates the investigation, and numerical calculations
makes more time consuming. Investigation of control problems for such systems is also
extremely complicated.

The main purpose of this investigation is development of optimal control problem
solution technique namely for such systems, when control process is carried out by a
boundary function and right hand side of equation. Simplicity of numerical application
of technique is also one of our aims. Taking into consideration the uncertainty type
of those equations, one may easily see, that control algorithm to be developed should
be based on some integral transform. Optimal control problems for integro–differential
equations are considered also in [8, 9, 10, 11].

2. Mathematical statement of the problem

So, we begin our investigation with non–homogeneous, one–dimensional analogue
of equation (2) in finite interval (for simplicity, symmetric: it can always be done by
linear transformation of variable t) when (3) is taken into account:

∂2w
∂x2 =

∂2w
∂t2 +α

∂2

∂t2

θ∫
−θ

κ(τ)w(x, t− τ)dτ+U(x, t), (4)

(x, t) ∈ (0,1)× (−θ,θ),

where α ∈ R+ is a dimensionless constant, subjected to boundary conditions

w(0, t) = φ(t), w(l, t) = ψ(t), t ∈ (−θ,θ), (5)

(all quantities and variables are dimensionless).
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From mathematics point of view, control process of system (4)–(5) may be carried
out either by one of boundary functions φ(t) and ψ(t), or by function U(x, t) from right
hand side of equation (4). The case when control process is realized by function κ(t) is
considerably difficult. Let us suppose for definiteness, that [12, 13] U(x, t) = p(x)u(t),
where p(x) is a given nonzero function, and control process may be realized by function
u(t).

The following initial data at t =−θ and terminal data at t = θ are considered:

w(x,−θ) = w−θ(x),
∂w(x, t)

∂t

∣∣∣∣
t=−θ

= ẇ−θ(x), x ∈ (0,1), (6)

w(x,θ) = wθ(x),
∂w(x, t)

∂t

∣∣∣∣
t=θ

= ẇθ(x), x ∈ (0,1). (7)

In the framework of accepted physical interpretation system (4)–(5), in particular,
describes the transfer of one–dimensional electromagnetic signal (impulse) on a finite
distance in dispersive medium, at that φ(t) and ψ(t) are input and output signals, re-
spectively. Then, unlike traditional statement of optimal control problems for distributed
parameter systems [1], demanding ensuring of given terminal data for given initial ones,
we may demand to ensure one boundary condition by appropriate choice of the other
one when functions (6), (7) are given.

The main purpose of this investigation is to construct an efficient for numerical rea-
sons algorithm of the following two problems solution.

The first problem or the problem of boundary control requires determination of a
function φo(t) optimal in the sense of given optimality criterion among all admissible
controls φ ∈ D ensuring given output signal ψ(t) when data (6) and (7) are given, and
find necessary and sufficient conditions of its existence.

The second problem or the problem of distributed control requires determination of
a function uo(t) optimal in the sense of given optimality criterion among all admissible
controls u∈D ensuring given output signal ψ(t) when input signal φ(t) and data (6) and
(7) as well, are given, as well as find necessary and sufficient conditions of its existence.

Hereafter, we shall call a real–valued function admissible control, if it satisfies the
system (4)–(6) solution existence and uniqueness conditions in considered function
space. Further, we shall call a controlled system fully controllable in a certain space,
if there exists an admissible control function, resolving the first or second problems for
that system in that space [12]– [14].

Further, in order to write equation (4) for all real t, let us introduce operator Aθ[·]
defined on whole real axis and acting as

Aθ[ f (·, t)] =

{
f (·, t), t ∈ [−θ,θ];
0, t /∈ [−θ,θ].
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The explicit form of operator Aθ[·] can be constructed in several manners. For example,
it can be done using characteristic function (indicator) of segment [−θ,θ]:

χ[−θ,θ](t) =

{
1, t ∈ [−θ,θ];
0, t /∈ [−θ,θ].

Indeed, it is obvious, that Aθ[ f ] = χ[−θ,θ](t) f (·, t). Expressing characteristic function
χ[−θ,θ](t) in terms of Heaviside unit–step function, defined as

H(t) =

{
1, t > 0;
0, t < 0,

we can write operator Aθ[·] as follows:

Aθ[ f (·, t)] = [H(t +θ)−H(t−θ)] f (·, t)≡ f1(·, t), t ∈ R.

Then using this expression, one can write equation (2.1) in space of generalized functions
for all real t, and include initial and terminal data (2.3), (2.4) in it:

∂2w1

∂x2 =
∂2w1

∂t2 +α
∂2

∂t2 [κ1 ∗w1]+U1(x, t)+W (x, t), (x, t) ∈ [0,1]×R, (8)

W (x, t) =W−(x, t)−W+(x, t),

W±(x, t) = [δ(t±θ)+ακ1(t±θ)]ẇ±θ(x)+
d
dt
[δ(t±θ)−ακ1(t±θ)]w±θ(x),

where δ(t) is the Dirac delta function, defined as

δ(t) = H ′(t) =

{
0, t ̸= 0;
∞, t = 0,

at that
∞∫
−∞

δ(t)dt = 1, δ(−t) = δ(t),

with derivative
dδ(t)

dt
= δ′(t),

which is taken in generalized sense [15]. It should be noted, that function W (x, t) con-
taining delay and advance of argument t is identically zero when t±θ /∈ [−θ,θ], at that

W (x, t) =


−W+(x, t), t ∈ [−θ,0);
W0(x), t = 0;
W−(x, t), t ∈ (0,θ],

x ∈ [0,1],



10 A.Z. KHURSHUDYAN

where

W0(x) = α
[
κ1(−θ)ẇ−θ(x)−κ′1(−θ)w−θ(x)−κ1(θ)ẇθ(x)+κ′1(θ)wθ(x)

]
.

When obtaining right hand side of equation (8) the following relation was used [15]:

f (t)δ′(t−θ) = f (θ)δ′(t−θ)− f ′(θ)δ(t−θ).

Symbol ∗ in right hand side of equation (8) denotes operator of convolution acting as
follows:

κ1 ∗w1 =

∞∫
−∞

κ1(τ)w1(x, t− τ)dτ =
∞∫
−∞

κ1(t− τ)w1(x,τ)dτ.

In transformed form equation (8) often occurs also in optics, mechanics and theory
of probability [17, 16, 7].

In the same way from boundary conditions (5) we will obtain

w1(0, t) = φ1(t), w1(1, t) = ψ1(t), t ∈ R. (9)

3. Boundary control

It is obvious that functions w1(x, t), φ1(t), ψ1(t) and U1(x, t) are defined for all t ∈R
and identically zero outside interval [−θ,θ], i.e. are compactly supported in that interval,
where they coincide with functions w(x, t), φ(t), ψ(t) and U(x, t).

Applying now Fourier real generalized integral transform with respect to variable t
in the sense of [15] to equation (8) and conditions (9), using the formulae of convolution
transform, after some algebraic transformations we will obtain:

d2w1(x,σ)
dx2 +σ2[1+ακ1(σ)]w1(x,σ) =U1(x,σ)+W (x,σ), (10)

(x,σ) ∈ (0,1)×R,
w1(0,σ) = φ1(σ), w1(1,σ) = ψ1(σ),

where

Ft [ f (·, t)]≡ f (·,σ) =
∞∫
−∞

f (·, t)eiσtdt, σ ∈ R,

is the Fourier real generalized transform, at that

Ft [g1(·, t)] = Ft{Aθ[g(·, t)]}=
θ∫
−θ

g(·, t)eiσtdt, σ ∈ R,

Ft [·] is the Fourier operator, and σ is the spectral parameter of Fourier transform.
Solution of the first problem gives the following
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Theorem 1 Function φ1(t) ∈D is the Fourier inverse transform of function φ1(z), z =
σ+ iς, determining from countable system

φ1(zk) = [ψ1(zk)−Φ(zk)]eχ(zk), k = 1,2,3, ..., (11)

where complex numbers zk are determined from characteristic equation

e2χ(z) = 1. (12)

Here
χ(z) = i

√
z2 +αz2κ1(z),

Φ(z) =
1

χ(z)

1∫
0

[
U1(ξ,z)+W (ξ,z)

]
sinh[(1−ξ)χ(z)]dξ.

From Theorem 1 immediately follows

Corollary 1 If kernel κ1(t) of equation (8) satisfies conditions
a) Ft [κ1(t)] is a real–valued function,
b) 1+ακ1(σ)> 0, σ ∈ R,

then function φ1(t) ∈ D is the Fourier inverse transform of function φ1(z), z = σ+ iς,
determining from countable system

φ1(zk) = (−1)k [ψ1(zk)−Φ(zk)] , k = 1,2,3, ..., (13)

sin(χ(z)) = 0. (14)

Here

Φ(z) =
1

χ(z)

1∫
0

[
U1(ξ,z)+W (ξ,z)

]
sin[(1−ξ)χ(z)]dξ,

χ(z) =
√

z2 +αz2κ1(z).

Remark 1 Separating real and imaginary parts of expression χ(z)= χ1(σ,ς)+ iχ2(σ,ς),
for desired roots σk, ςk determination from (14) we will obtain system χ1(σk,ςk) =
πk, χ2(σk,ςk) = 0, k = 1,2,3, ..., where σk + iςk = zk.

It is well known [15], that condition a) of Corollary 1 holds, particularly, when
κ1(t), t ∈ R, is an even function: κ1(−t) = κ1(t). Let us add that a condition similar
to condition b) of Corollary 1 is obtained also in [17] when introducing the solvability
of Riemann problem in theory of analytical functions. Well posedness of system (8), (9),
when κ1 ∈ L1[−θ,θ] function is even and U1, W ∈ L1[−θ,θ] is proved in [18].
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Note, that equalities (11) can be considered as interpolation conditions in nodes
zk, k = 1,2,3, ..., for φ1(z), z ∈C, function determination. Solution of that interpolation
problem can be attacked by different efficient methods of interpolation, application of
Fourier generalized inverse transform when minimum of chosen optimality criterion will
be achieved, will derive us to solution of optimal control problem under study. However,
here we will proceed in a different way [1, 12, 13]. Taking into account that function
φ1(t) is compactly supported, one may separate real and imaginary parts of equalities
(11) and as a result get the following countable system of equalities:

θ∫
−θ

φ(t)e−ςkt cos(σkt)dt = M1k,

θ∫
−θ

φ(t)e−ςkt sin(σkt)dt = M2k, (15)

k = 1,2,3, ...,

where
M1k + iM2k ≡Mk = [ψ1(σk + iςk)−Φ(σk + iςk)]eχ(σk+iςk).

Remark 2 As the characteristic equation (12) is symmetric with respect to roots zk, k =
1,2,3, ...: together with zk for all k, −zk also satisfies that equation, then taking into
account properties of Fourier integrals [15] one can prove, that φ1(−zk) = φ1(zk) and
M(−zk) = M(zk), where the line over expression means its complex adjoint, therefore
consideration of system (15) may be limited only for roots zk = σk + iςk, k = 1,2,3, ...

Thus, solution of the first problem can be reduced to minimization procedure of
chosen optimality criterion under integral constraints (15) on unknown function φ(t).

4. Distributed control

Let us proceed now to solution of the second problem. Instead of resolving system
(11) in this case we will obtain

u1(zk) =

[
ψ1(zk)−φ1(zk)eχ(zk)

]
χ(zk)−Γ(zk)

Π(zk)
, k = 1,2,3, ... (16)

for the same roots zk, k = 1,2,3, ..., where

Γ(zk) =

1∫
0

W (ξ,zk)sinh [(1−ξ)χ(zk)]dξ,

Π(zk) =

1∫
0

p(ξ)sinh [(1−ξ)χ(zk)]dξ.
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A system of equalities of (15) type with respect to unknown control function can
also be obtained in this case with same kernels, but with other right hand sides.

From applications point of view, electromagnetic signals controlled by a source con-
centrated at isolated point of medium are especially important. This case corresponds
to substitution p(x) = δ(x− x0), where x0 ∈ (0,1), in resolving conditions (16). Then
relation

Π(zk) = sinh [(1− x0)χ(zk)] , k = 1,2,3, ...,

should be taken into account. Note also, that when x0→ 0 or x0→ 1 i.e. when the source
"reaches" anyone of the medium boundaries, Π(zk)→ 0, while numerator of fraction
(16) remains bounded, therefore u1(zk)→ ∞ which should be expected [13].

Let us add that under conditions of Corollary 1 in this case we will obtain:

u1(zk) =

[
ψ1(zk)+(−1)k+1φ1(zk)

]
πk−Γ(zk)

Π(zk)
, k = 1,2,3, ...,

for the same roots zk, k = 1,2,3, ..., where

Γ(zk) =

1∫
0

W (ξ,zk)sin [(1−ξ)πk]dξ, Π(zk) =

1∫
0

p(ξ)sin [(1−ξ)πk]dξ.

5. L1 and L2 optimal controls

In fact, solutions of both problems under investigation are reduced to minimization
procedure of chosen optimality criterion under constraints of equality type on desired
function. This problem can be attacked by different as rigorous techniques, as well as
efficient numerical methods of nonlinear programming [19]. However, taking into ac-
count the important point that kernels of system (15) are bounded, reduced problem is
convenient to solve via moments problem [14], treating those constraints as moments
equalities with respect to unknown function.

First, let us determine solution of obtained moments problem for two given criteria.
For that purpose, we will deal with truncated part of countable system (15) for some
finite n:

θ∫
−θ

u(t)e−ςkt cos(σkt)dt = M1k,

θ∫
−θ

u(t)e−ςkt sin(σkt)dt = M2k, (17)

k = 1;n.

Convergence of solution of finite system of moments problem to solution of infinite one
is investigated as it is done in [1].
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First, let us consider the case of minimization of a functional, evaluating summary
"linear momentum" of control function [12]– [14]:

ϒ[u] =
θ∫
−θ

|u(t)|dt, u ∈D.

As the space of measurable functions L1[−θ,θ] is a Banach space with respect to
norm ||u(t)||L1[−θ,θ] = ϒ[u], then solution of finite system (17) when chosen criterion
should be minimized is advisable to determine in that space. Our aim is to determine a
function uo(t) optimal in the sense of chosen optimality criterion ϒ[u] in set of measur-
able, compactly supported in [−θ,θ] functions

D = {u ∈ L1[−θ,θ] : u≡ 0, t /∈ [−θ,θ]}.

Such controls we shall call L1–optimal. Note, that the set D is everywhere dense in
L1[−θ,θ] [15].

According to moments problem solution technique under integral criterion, outlined
in [14], in this case we will obtain [12, 13]:

uo
n(t) =

m

∑
j=1

uo
n jδ(t− to

j ), t ∈ [−θ,θ], (18)

where intensities of control impacts uo
n j, j = 1;m, are constrained by conditions

sgnuo
n j = sgnho

n(t
o
j ), j = 1;m,

sgnx is the well known sign function, and are determined from system of equations
m

∑
j=1

uo
n je
−ςkto

j cos(σkto
j ) = M1k,

m

∑
j=1

uo
n je
−ςkto

j sin(σkto
j ) = M2k, k = 1;n, (19)

at that

ho
n(t) =

n

∑
k=1

e−ςkt [lo
1k cos(σkt)+ lo

2k sin(σkt)] , t ∈ [−θ,θ],

and moments to
j , j = 1;m, of those impacts application are determined from the follow-

ing maximum condition:

sup
t∈[−θ,θ]

∣∣∣∣∣ n

∑
k=1

e−ςkt [lo
1k cos(σkt)+ lo

2k sin(σkt)]

∣∣∣∣∣=
[

m

∑
j=1
|uo

n j|

]−1

. (20)

Optimal coefficients lo
1k and lo

2k, k = 1;n, are determined from the following problem of
conditional minimum:

n

∑
k=1

e−ςkto
j
[
lo
1k cos(σkto

j )+ lo
2k sin(σkto

j )
]
−−−−−→
{Λ1k,Λ2k}

min,
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when
n

∑
k=1

[l1kM1k + l2kM2k] = 1.

Number m of control impacts is determined from inclusion conditions {to
j }m

j=1 ⊂ [−θ,θ]
uniquely.

Necessary and sufficient conditions of moments problem (17) solvability when cho-
sen optimality criterion should be minimized gives the following

Theorem 2 Finite system (17) is resolvable if and only if the condition

ρo
n =

m

∑
j=1
|uo

n j| (21)

holds.

Using results of monograph [1] we can conclude.

Theorem 3 System (8)–(9) is fully controllable in L1[−θ,θ] if and only if the quantity
(20) differs from zero for all n ∈ N.

Remark 3 Condition of Theorem 2 is equivalent to requirement that at least one of
controls intensities uo

n j, j = 1;m, differs from zero. It gives us corresponding constraints
on the main determinant of system (19).

Let us proceed now to solution of problem under study when the quadratic criterion

ϒ[u] =
θ∫
−θ

u2(t)dt, u ∈D,

evaluating "full energy" expending on control process [13, 14], should be minimized.
It is well known, that square root of that functional defines norm in Hilbert space

L2[−θ,θ] : ||u(t)||L2[−θ,θ] = ϒ1/2[u], therefore solution of moments problem (17) when
chosen criterion should be minimized is advisable to determine in that space. Our aim is
to obtain a function uo(t) optimal in the sense of chosen criterion ϒ[u] in set of square
measurable, compactly supported in [−θ,θ] functions

D = {u ∈ L2[−θ,θ] : u≡ 0, t /∈ [−θ,θ]}.

Such controls we shall call L2–optimal.
According to moments problem solution technique under quadratic criterion, out-

lined in [14], in this case we will obtain [13]:

uo
n(t) =

n

∑
k=1

e−ςkt [Λo
1k cos(σkt)+Λo

2k sin(σkt)] , t ∈ [−θ,θ], (22)
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where coefficients Λo
pk, p = 1;2, are determined from system of linear algebraic equa-

tions
JΛΛΛo = M, (23)

where ΛΛΛo = (Λo
11 . . .Λ

o
1n Λo

21 . . .Λ
o
2n)

T , M = (M11 . . .M1n M21 . . .M2n)
T , upper index T

denotes transposition,

J =



J+11 J+12 . . . J11 J12 . . .

J+21 J+22 . . . J21 J22 . . .
...

...
...

...
...

...
J11 J21 . . . J−11 J−12 . . .

J12 J22 . . . J−21 J−22 . . .
...

...
...

...
...

...



J±jk =
θ∫
−θ

e−(ς j+ςk)t

(
cos(σ jt)cos(σkt)
sin(σ jt)sin(σkt)

)
dt,

J jk =

θ∫
−θ

e−(ς j+ςk)t cos(σ jt)sin(σkt)dt.

As analogue of Theorem 3 in this case will serve the following one.

Theorem 4 System (8)–(9) is fully controllable in L2[−θ,θ] if and only if the quantity

ρo
n ≡

n

∑
k=1

(Λo
1k)

2J+kk +2
n−1

∑
j=1

n

∑
k= j+1

Λo
1 j(Λ

o
1kJ+jk +Λo

2kJ jk)+

(24)

+
n

∑
k=1

(Λo
2k)

2J−kk +2
n−1

∑
j=1

n

∑
k= j+1

Λo
2 j(Λ

o
2kJ jk +Λo

2kJ−jk)

is positive for all n ∈ N.

From positivity condition of quantity ρo
n (24) one will be able to obtain corresponding

restrictions on parameters of system (8)–(9) for its fully controllability.

Remark 4 If all roots zk, k = 1,2,3, ..., of characteristic equation (12) are real, i.e.
ςk = 0, k = 1,2,3, ..., then instead of formulas (22)–(24) the following should be used:
optimal controls (22) reads as

uo
n(t) =

n

∑
k=1

[Λo
1k cos(σkt)+Λo

2k sin(σkt)] , t ∈ [−θ,θ], (25)
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system (23) is separated into two independent systems of linear algebraic equations with
respect to coefficients Λo

pk, p = 1;2, correspondingly

J±ΛΛΛo
p = Mp, p = 1;2,

ΛΛΛo
p = (Λo

p1 . . .Λ
o
pn)

T , Mp = (Mp1 . . .Mpn)
T , J± = {J±jk}

n
j,k=1,

J±jk =
θ∫
−θ

(
cos(σ jt)cos(σkt)
sin(σ jt)sin(σkt)

)
dt,

and

ρo
n ≡

n

∑
k=1

(Λo
1k)

2J+kk +2
n−1

∑
j=1

Λo
1 j

n

∑
k= j+1

Λo
1kJ+jk +

(26)

+
n

∑
k=1

(Λo
2k)

2J−kk +2
n−1

∑
j=1

Λo
2 j

n

∑
k= j+1

Λo
2kJ−jk.

6. Numerics

To illustrate constructed algorithm, let us consider two examples of optimal controls
determination. First, determine L2–optimal solution of system (17) for the first prob-
lem, when the control process is considered in time–interval t ∈ [−π,π], U(x, t)≡ 0, the
second boundary condition, initial and terminal data read as follows

ψ(t) = cos(2t), w−π(x) =−cos(πx), ẇ−π = sin(πx),

wπ(x) = cos(2πx), ẇπ = sin(2πx), (x, t) ∈ [0,1]× [−π,π],

respectively, and the kernel of equation (8)– κ(t) = e−a|t|, t ∈ [−π,π], a = const ∈ R+

(Debye dispersion model). Note, that transmission conditions, concerning chosen data
are satisfied.

It is interesting to add, that such kernels occur in waves diffraction problems in-
vestigating by Fourier transform [20]. It, obviously, satisfies condition a) of Corollary
1. Furthermore, as κ(σ) = a(a2 +σ2)−1, therefore 1+ακ1(σ) > 0 for all σ ∈ R and
α, a ∈ R+. Then, from (14) we will obtain

σk =

[√
α2

k +a2(πk)2 +αk

] 1
2

, ςk =

[√
α2

k +a2(πk)2−αk

] 1
2

,

2αk = (πk)2−a(a+2α), k = 1,2,3, ...
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It is easy to see, that for large k roots σk do not depend on parameter a, whereas
limk→∞ ςk = a. But as ςk are controls damping factor (see (22)), then one may conclude,
that as faster the kernel κ(t) decreases, as faster controls damp.

Let us add, that σk = O(k) when k→∞, i.e. for k large enough they became equidis-
tant. Moreover, as a result of calculations was observed, that Mpk = O(k−3), p = 1;2,
when k→∞, which justifies truncation of infinite system (15), at that they do not depend
on factor α in range [0.01,10] for large k. Boundary optimal control function (22) is plot-
ted in Fig. 1–2, when n = 80 and a = 0.25; 0.5; 1; 2. From this graphs it is obvious, that
when parameter a increases, absolute value of controls also increases.

Figure 1. Optimal control function for n = 80: uo
80(t).

As second illustrative example, let us consider L2–optimal solution of system (17)
for the second problem, when

φ(t) = cos(t), ψ(t) = sin(2t), w−π(x) = (x−1)cos(πx), ẇ−π =−2xcos(πx),

wπ(x) = (x−1)cos(2πx), ẇπ = 2xcos(2πx), (x, t) ∈ [0,1]× [−π,π],

and p(x) = δ(x− x0), κ(t) = −b|t|−1, t ∈ [−π,π], b = const ∈ R+. Note, that trans-
mission conditions, concerning chosen data are satisfied. Kernel κ(t) in this case also
satisfies condition a) of Corollary 1. Moreover, κ1(σ) = 2b(γ+ ln |σ|), where γ is Eu-
ler‘s constant, and, therefore choosing parameter b in a certain manner one may satisfy
condition b) of Corollary 1 as well. Substituting results in (14), we will obtain

zk =
βk√

Λ
(

β2
k · e

1
αb+2γ

) , β2
k =

(πk)2

αb
, k = 1,2,3, ...,
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Figure 2. Optimal control function for n = 80: uo
80(t).

where Λ(x) is Lambert‘s function [21]. Taking into account properties of that function
one may prove, that all roots zk, k = 1,2,3, ..., in this case are real, i.e. ςk = 0, and
zk = O(k) and Mpk = O(k−3), p = 1;2, when k→ ∞ as well, at that they do not depend
on factor α in range [0.01,10] for large k. Optimal control function (25) is plotted in Fig.
3–6 when n = 80 and x0 = 0.685.

Figure 3. Optimal control function for b = 0.001.
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Figure 4. Optimal control function for b = 0.01.

Figure 5. Optimal control function for b = 0.1.

It was discovered that when parameter b increases, absolute value and frequency of
control impacts decrease, and for large values of that parameter coefficients Λo

1k of sines‘
in expression (25) dominate coefficients Λo

2k of cosines‘, which is connected with choice
of boundary functions. It was also observed, that absolute value of control function does
not signally depend on point x0 of control concentration except cases x0→ 0 and x0→ 1
mentioned above.
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Figure 6. Optimal control function for b = 20.

Note that for chosen parameters of system (8)–(9) the quantities (24) and (26) are
always positive.

7. Conclusions

In the paper solution of control problem of partial integro-differential equation of
convolution type when control process is realized by boundary functions (the first prob-
lem) or right hand side (the second problem) is reduced to minimization procedure of
chosen optimality criterion under constraints of equality type on unknown function and
is obtained in explicit form (see (18) and (22) or (25)). According to the main result
(Theorem 1) for determination of resolving optimal control is required:

Step 1. To find roots of a characteristic transcendent equation, containing only Fourier
transform of equation kernel (see (12)),

Step 2. Using those roots to separate real and imaginary parts of a system of equalities
with respect to unknown function Fourier transform (see (11)) and to obtain
the corresponding system of moments problem (see (15)),

Step 3. Applying control formulae for corresponding optimality criterion (see (18) and
(22) or (25)), to determine desired function of optimal control,

Step 4. To check if the necessary and sufficient condition of control problem solvability
is satisfied (see (20) and (24) or (26)).
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One of the main aims of this paper concerning efficiency of suggested control al-
gorithms from numerical calculations viewpoint, we think, is achieved. As a matter of
fact, L1–optimal solution determination was reduced to conditional minimum problem,
which can be attacked by well–known techniques of variational calculus [19], and L2–
optimal solution determination was reduced to solution of a system of linear algebraic
equations.

What concerns to criteria considered above, let us note that in fact, the first crite-
rion is convenient to set, for instance, when one needs to have an electromagnetic output
pulse, and the second criterion -on the contrary, when one needs to have a continu-
ous output signal from discrete input signal. We hope that this method will be applied
with the same efficiency to control problems investigation for other equations, contain-
ing convolution of unknown function, as ordinary as well as partial integro-differential
equations with variable limit of integration.
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Appendix

Proof [Proof of Theorem 1]
According to method of Cauchy, the fundamental solution of system (10) can be

written as follows:
w1(x,σ) = a+eχ(σ)x +a−e−χ(σ)x+

+
1

χ(σ)

x∫
0

[
U1(ξ,σ)+W (ξ,σ)

]
sinh[(x−ξ)χ(σ)]dξ, (A1)

(x,σ) ∈ (0,1)×R,

where

a±(σ) =
[ψ1(σ)−Φ(σ)]e±χ(σ)−φ1(σ)

e±2χ(σ)−1
, χ(σ) = i|σ|

√
1+ακ1(σ), (A2)

Φ(σ) =
1

χ(σ)

1∫
0

[
U1(ξ,σ)+W (ξ,σ)

]
sinh[(1−ξ)χ(σ)]dξ,

As w1(x, t) is compactly supported function in [−θ,θ] then it is well known [15], that its
Fourier generalized transform w1(x,z) is an analytical entire function in whole complex
plane z = σ+ iς, satisfying inequality

|zρ ·w1(x,z)|¬ Aρeθ|ς|

for all x ∈ [0,1]; ρ = 0,1,2, ..., and some corresponding constant Aρ ­ 0.
In view of W (·, t) is compactly supported in [−θ,θ], one may show that if U1(·, t)

is compactly supported in [−θ,θ] as well, integral term on the right hand side of (A1)
extended for all z = σ+ iς is analytic entire function. Therefore, using that extension one
may prove that the function w1(x,z) satisfies recalled theorem conditions if and only if
a± = a±(z) are analytic entire functions. From expressions (A2) extended for all z∈C it
is easy to see, that they are entire or not simultaneously. Thus, for example, a+ = a+(z)
is an entire analytical function if and only if conditions (11) and (12) are satisfied.

The same reasoning was made in the case of distributed control.
When proving Corollary 1, instead of formula (A1) and (A2) the following must be

used:
w1(x,σ) = φ1(σ)cos(χ(σ)x)+

+
[ψ1(σ)−Φ(σ)]−φ1(σ)cos(χ(σ))

sin(χ(σ))
sin(χ(σ)x)+

+
1

χ(σ)

x∫
0

[
U1(ξ,σ)+W (ξ,σ)

]
sin[(x−ξ)χ(σ)]dξ, (x,σ) ∈ (0,1)×R,
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where

Φ(σ) =
1

χ(σ)

1∫
0

[
U1(ξ,σ)+W (ξ,σ)

]
sin[(1−ξ)χ(σ)]dξ,

χ(σ) = |σ|
√

1+ακ1(σ)> 0.

The rest part of the proof is similar to proof of Theorem 1.
It should be noted, that conditions a) and b) of Corollary 1 have simple physical

treatment. It turns out, that the quantity ε(σ) = 1+ακ1(σ) is complex dielectric per-
mittivity of isotropic medium with dispersion property [7, 16], and those conditions are
equivalent to assumption, that quantity ε(σ), σ ∈ R, is real–valued, because if so it is
positive for all known materials. On the other hand, with increase of propagating sig-
nal frequency to values similar to eigenfrequency of medium, the difference between
dielectric and conducting abilities of medium decreases, and it turns out, that existence
of imaginary part in dielectric permittivity expression from macroscopic point of view is
indistinguishable from conducting ability; they both lead to heat evaluation. Thus, both
conditions of Corollary 1 are practically realizable.

If one needs to obtain controlled electromagnetic wave, he has to apply Fourier
inverse generalized transform to (A1).

Proof [Proof of Theorem 3]
Necessary and sufficient condition (20) is obtained from general existence theorem

for moments problem solution [14]. According to it, for solvability of system (17) it is
necessary and sufficient, that the norm of functions ho

n(t) in space, adjoint to the space of
control function to be finite and non–zero. Since the space L1[−θ,θ] is taken as control
function space, and the space adjoint to it is the space of infinite measurable functions
L∞[−θ,θ] with norm ||ho

n||L∞[−θ,θ] = supt∈[−θ,θ] |ho
n(t)| ≡ [ρo

n]
−1, therefore in view of (18)

and (19) we will get (20). Note, that topology in L∞ instead of sup–norm might be
introduced through esssup–norm denoting essential sup of a function [14].

Further, the countable system (15) is resolvable if and only if finite system (17) is
resolvable for all n ∈ N [1]. Thus, theorem is proved.

Proof [Proof of Theorem 4]
is similar to proof of Theorem 3, but in this case in view of selfadjointness of space

L2[−θ,θ] we have ρo
n =

[
||uo

n(t)||L2[−θ,θ]
]−2.
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