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Dead-beat and reaching law
based sliding mode control laws

for perishable inventories with transportation losses

ANDRZEJ BARTOSZEWICZ and MICHAŁ MACIEJEWSKI

This paper describes discrete sliding mode (SM) supply management strategies for inven-
tory systems with perishable goods and transportation losses. In the considered systems, the
stock used to satisfy the unknown, bounded and time-varying demand is replenished with some
delay from a distant supply source. The on-hand stock deterioration during lead-time delay,
as well as commodity losses in supply process are explicitly taken into account. Two supply
management strategies are proposed. The first one ensures fast reaction to the imposed demand
variations, but may result in excessive control signal magnitude at the beginning of the inventory
management process. Therefore, in order to conform to supplier limitations we also develop an
alternative control strategy based on the concept of the reaching law. That strategy helps re-
duce the initial supply rate and satisfy the supplier limitations. A number of desirable properties
of both proposed strategies are formulated and formally proved. These properties include full
customer demand satisfaction and elimination of the risk of exceeding the warehouse capacity.
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1. Introduction

The control theoretic approach to the management of logistic processes, and in par-
ticular to the problem of supply chain management has recently become an important
research subject. A good overview of the techniques used in the field and the obtained
results can be found in [5, 12, 20, 23]. The first application of the control theory meth-
ods to the management of logistic processes was reported in the early 1950s when Simon
[24] applied servomechanism control algorithm to find an efficient strategy of goods re-
plenishment in continuous time, single product inventory control systems. A few years
later the discrete time servomechanism control algorithm for the purpose of efficient
goods replenishment has been proposed [26]. Since that time numerous solutions have
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been presented, and therefore, further in this chapter we are able to mention only a few,
arbitrarily selected examples of solutions proposed over the last decades. In [8] and [9]
autoregressive moving average (ARMA) system structure has been applied in order to
model uncertain demand. Then in [1] and [21] model predictive control of supply chain
has been proposed and in [6] a robust controller for the continuous-time system with un-
certain processing time and delay has been designed by minimizing H∞-norm. However,
practical implementation of the strategy described in [6] requires application of numer-
ical methods in order to obtain the control law parameters, which limits its analytical
tractability.

Furthermore, in [15] lead-time delay is explicitly taken into account and represented
by additional state variables in the state space description. This approach results in the
optimal controller designed by minimization of quadratic performance index. A similar
approach is applied in [17] where an LQ optimal sliding mode controller is designed.
In [16] LQ optimal sliding mode is compared with nonlinear controller based on the
concept of reaching law. However, papers [15, 16, 17] are concerned with conventional,
non-deteriorating inventories only. An extension of the results presented in [15] to the
case of perishable inventories is given in [14]. An LQ optimal sliding mode controller for
supply chains with deteriorating stock is proposed in [18] and the idea of reaching law
is applied to the design of sliding mode controller for systems with deteriorating stock
in [19]. However, none of the papers [14-19] takes into account transportation losses (or
in other words requested goods decay during the order procurement time). Therefore, in
this paper we consider perishable inventories and we explicitly account for the ordered
goods losses during the lead time.

Similarly as in [14], [18] and [19], in this paper we also consider a periodic-review
inventory system with perishable goods. However, on the contrary to the previously pub-
lished results we consider not only losses which take place when the commodity is stored
in the warehouse, but also those which happen during the supply process, i.e. the losses
on the way from the supplier to the warehouse. We propose a discrete time representa-
tion of the supply chain dynamics and we apply discrete time sliding mode methodology
[2, 3, 4, 7, 10, 11, 22, 25] to design the controller for the considered system. The con-
troller design objective is on one hand to fully satisfy the imposed demand, and on the
other, to minimize at the same time the on-hand inventory volume. This reflects the need
of simultaneous minimization of the lost sales costs and inventory holding costs. Since
the demand may vary quite rapidly, we determine the sliding hyperplane so that the pro-
posed discrete time sliding mode controller ensures the dead-beat system performance.
Hence the closed-loop system is stabilized and its error converges to zero in the shortest
possible time. This approach results in good dynamics of the closed loop system and
its fast reaction to the unpredictable variations of demand. Moreover, the sliding mode
controller proposed further in this paper leads to chattering free system operation. The
controller is determined analytically in a closed form, which allows us to state and for-
mally prove important properties of the proposed inventory policy. First, we prove that
the designed management policy always generates strictly positive and upper bounded
order quantities, which is an important issue from the practical point of view. Next, we
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define the warehouse capacity which provides enough space for all incoming shipments,
and finally we show that all the imposed demand is fully satisfied, which guarantees
100% service level. As the proposed strategy generates high initial order quantity, which
is an undesirable effect, further in the paper we employ the concept of reaching law in
the form described in [11]. By this means we obtain a modified control structure which
maintains good system dynamics offered by the dead-beat scheme, and simultaneously
guarantees that supplier capacity limitations are satisfied. We describe the proposed pro-
cedure of finding the reaching law parameters, and we state properties of the modified
controller in two theorems. The results reported in this paper may be seen as an extension
of our previous work reported in [19] to the case of more general inventory management
systems, i.e. the supply chains with transportation losses explicitly taken into account.

2. Problem statement

In this paper we consider a production-inventory system where distribution centre,
replenished from a single supply source, provides products for customers or another
production stage. The flow of goods and information in the considered system (with
transportation losses and the on-hand stock deterioration) is illustrated in Fig. 1.

Figure 1. Flow of goods and information in the considered system.

The analyzed inventory system is subject to an a priori unknown, bounded, time-
varying demand. The main objective of this work is to design a stable supply policy,
which will maximize demand satisfaction from the resources available at the distribution
centre. The design procedure proposed in the paper not only explicitly takes into account
the delay (lead-time) between placing of an order at the supplier and goods arrival at the
distribution centre, but it also directly accounts for the on-hand stock deterioration and
commodity losses in the supply process, i.e. the losses which take place during the lead-
time. The model of the analyzed inventory system is presented in Fig. 2.

The stock replenishment orders u(kT ) are placed at regular time instants kT , where
T is the review period of the considered process and k = 0,1,2, .... The particular value of
each order is calculated on the basis of the current stock level y(kT ), the stock reference
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level yre f and the order history. The orders arrive at the distribution centre after lead-
time delay Lp, which is a multiple of the review period. Thus, Lp = npT , where np is a
positive integer.

Figure 2. System model.

The imposed demand (the amount of goods requested from inventory in period k)
is modeled as an unknown, bounded function of time 0 ¬ d(kT ) ¬ dmax. It is worth
to notice, that this definition of the demand is quite general and makes the presented
approach fairly universal. According to this definition the following two situations may
occur:

• If there is a sufficient amount of goods in the warehouse, then the imposed demand
is fully satisfied.

• If the imposed demand is greater than the amount of goods available at the on-hand
stock and in arriving shipments, then only some part of the demand is satisfied.
Hence, additional demand is lost, as we assume that the sales are not backordered.

Let h(kT ) denote the amount of goods sold to customers or sent to retailers in the
distribution network at time instant kT . Then

0¬ h(kT )¬ d(kT )¬ dmax. (1)

Stock balance equation for the considered system with perishable inventory has the fol-
lowing form

y[(k+1)T ] = ρy(kT )+uR(kT )−h(kT ) (2)

where uR(kT ) is the order received at time kT . The fraction of perishable stock which re-
mains in the warehouse after each review period is represented by ρ = 1−σ. We assume
that incoming shipments also deteriorate during transportation process. Consequently,
the fraction of ordered goods which arrive at the warehouse is represented by α, where
0 < α¬ 1. Thus,

uR(kT ) = αu[(k−np)T ]. (3)

Furthermore, we assume that the warehouse is initially empty, i.e. y(kT ) = 0 for
k < 0, and the first order is placed at the time instant kT = 0. Due to the lead-time delay,
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the first order arrives at the warehouse at the time instant np, and y(kT ) = 0 for any
k ¬ np. Taking into account initial conditions and (3), the stock level for any k > 0 may
be expressed as

y(kT ) =
k−1

∑
j=0

ρk−1− juR( jT )−
k−1

∑
j=0

ρk−1− jh( jT ) =

=
k−1

∑
j=0

αρk−1− ju [( j−np)T ]−
k−1

∑
j=0

ρk−1− jh( jT ) = (4)

= α
k−np−1

∑
j=0

ρk−np−1− ju( jT )−
k−1

∑
j=0

ρk−1− jh( jT ).

In order to save on notation, further in the paper we will use k as the independent variable
in place of kT .

Let us consider the following discrete time model of the analyzed inventory system

x(k+1) = Ax(k)+bu(k)+vh(k)
(5)

y(k) = qT x(k),

where x(k) = [x1(k), x2(k), . . . , xn(k)]T is the state vector, x1(k) = y(k) is the on-hand
stock level at time instant k and x j(k) = u(k−n+ j−1) for any j = 2, . . . ,n represents
delayed input signal u. Furthermore, A is n×n state matrix, whereas b, v, and q are n×1
vectors

A =



ρ α 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0


, b =



0
0
...
0
1


, v =



−1
0
0
...
0


, q =



1
0
...
0
0


. (6)

The system order is equal to n = np +1 = Lp/T +1 and it depends on the review period
and lead-time Lp.

The desired system state vector is defined as

xd =



xd1

xd2
...

xdn−1

xdn


=



1
(1−ρ)/α

...
(1−ρ)/α
(1−ρ)/α


yre f (7)



260 A. BARTOSZEWICZ, M. MACIEJEWSKI

where yre f denotes the reference stock level. Our main objective is to stabilize the first
state variable at the reference level. Therefore, when choosing the desired state vector,
it is necessary to take into account that the commodities perish at the rate 1−ρ when
kept in the warehouse as well the fact that they decay during the transportation process.
Substituting the proposed desired state vector into the state equation, one can verify that
in the steady state, the on-hand stock is refilled by incoming shipments at the rate equal
to yre f (1−ρ)/α.

3. Controller design

In this section we present the controller design procedure for the considered inven-
tory system (5) - (6) with perishable goods and transportation losses. The procedure is
based on the discrete time sliding mode approach. First, we describe the choice of the
sliding hyperplane ensuring dead-beat performance. We formulate and prove the most
important properties of the proposed inventory management policy. Then, we show how
the system dynamical properties can be improved by applying nonlinear control based
on the reaching law concept.

3.1. Dead-beat sliding mode controller design

For the sliding mode controller design purpose we introduce a sliding hyperplane

s(k) = cT e(k) = 0 (8)

where c = [c1,c2, . . . ,cn]
T is such a vector that cT b ̸= 0. Parameters c1, c2, . . . , cn will

be determined further in this section. The closed-loop system error may be expressed as
e(k) = xd −x(k). Substituting (5) into equation cT e(k+1) = 0 we obtain the following
control law

u(k) =
(
cT b

)−1cT [xd −Ax(k)] . (9)

One can easily notice from (9), that the controller properties depend on the choice of the
sliding plane parameters c1, c2, . . . , cn. Using (6) we can rewrite (9) as

u(k) = c−1
n

{
c1 [yre f −ρx1(k)−αx2(k)]+

(1−ρ)
α

yre f

n

∑
j=2

c j −
n

∑
j=3

c j−1x j(k)

}
. (10)

In order to find such parameters of the hyperplane which will ensure that the system error
is eliminated in finite (and the smallest possible) number of control steps, we analyze
coefficients of the characteristic polynomial of the closed-loop system state matrix Ac =
[In −b(cT b)−1cT ]A. The polynomial can be expressed as follows

det(zIn −Ac) = zn +
cn−1 −ρcn

cn
zn−1 + . . .+

αc1 −ρc2

cn
z. (11)
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A discrete time system is asymptotically stable if and only if all its eigenvalues are
located inside the unit circle on the z plane. Additionally, for the dead-beat performance,
the characteristic polynomial of the closed-loop system should have the following form

det(zIn −Ac) = zn, (12)

which is satisfied when

cn−1 = ρcn, cn−2 = ρcn−1, ..., c2 = ρc3, c1 =
ρc2

α
. (13)

From (13) we immediately obtain the following vector c describing the parameters of
the sliding plane

cT =
[

ρn−1

α ρn−2 ρn−3 · · · ρ 1
]

cn, (14)

which ensures that the closed-loop system has all its eigenvalues located in the origin of
the z plane.

Substituting (14) into (10) we obtain the control law

u(k) =
yre f

α
− ρn

α
x1(k)−

n

∑
j=2

ρn− j+1x j(k). (15)

According to the state space representation of inventory system (6) the first state variable
denotes the on-hand stock level x1(k) = y(k), and the other state variables are equal to
the control signal generated at the previous n−1 review periods x j(k) = u(k−n+ j−1).
Therefore, taking into account that n = np +1, we obtain

u(k) =
yre f

α
− ρnp+1

α
y(k)−

k−1

∑
j=k−np

ρk− ju( j). (16)

One of the fundamental issues in practical implementation of each inventory manage-
ment policy is to ensure that the amount of goods shipped to the warehouse is always
nonnegative and upper bounded. Therefore, now we introduce a lemma and a theorem
which show that the proposed policy indeed ensures these two highly desirable proper-
ties.

First of all, one can easily notice from (16) that u(0) = yre f /α. Furthermore, for any
k ­ 1 the following lemma holds.

Lemma 1 If the proposed inventory policy is applied, then for any k ­ 1

u(k) = (1−ρ)
yre f

α
+

ρnp+1

α
h(k−1) . (17)
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PROOF Substituting (4) into (16), we get

u(k) =
yre f

α
− ρnp+1

α

[
α

k−np−1

∑
j=0

ρk−np−1− ju( j)−
k−1

∑
j=0

ρk−1− jh( j)

]
−

k−1

∑
j=k−np

ρk− ju( j) =

=
yre f

α
−

k−np−1

∑
j=0

ρk− ju( j) −
k−1

∑
j=k−np

ρk− ju( j)+
ρnp

α

k−1

∑
j=0

ρk− jh( j) = (18)

=
yre f

α
−

k−1

∑
j=0

ρk− ju( j)+
ρnp

α

k−1

∑
j=0

ρk− jh( j).

For k = 1, it follows immediately from (18) that

u(1) =
yre f

α
−ρu(0)+

ρρnp

α
h(0) = (1−ρ)

yre f

α
+

ρnp+1

α
h(0), (19)

which shows that the lemma indeed holds for k = 1. Now let us assume that (17) is true
for all integers up to some l > 1. Using this assumption and (18), the order quantity
generated at time instant l +1 can be expressed as

u(l +1) =
yre f

α
−

l

∑
j=0

ρl+1− ju( j)+
ρnp

α

l

∑
j=0

ρl+1− jh( j) = (20)

=
yre f

α
+ρ

yre f

α
−ρ

yre f

α
−ρ

l−1

∑
j=0

ρl− ju( j)−ρu(l)+
ρnp+1

α

l−1

∑
j=0

ρl− jh( j)+
ρnp+1

α
h(l) =

=
yre f

α
−ρ

yre f

α
+ρ

[
yre f

α
−

l−1

∑
j=0

ρl− ju( j)+
ρnp

α

l−1

∑
j=0

ρl− jh( j)

]
−ρu(l)+

ρnp+1

α
h(l) =

= (1−ρ)
yre f

α
+ρu(l)−ρu(l)+

ρnp+1

α
h(l) = (1−ρ)

yre f

α
+

ρnp+1

α
h(l).

Since l is an arbitrary positive integer, it follows from the principle of mathematical
induction that (17) is true for any integer k ­ 1. This ends the proof of the lemma.

Theorem 1 If the proposed warehouse management policy is applied, then for any k­ 0
the control signal satisfies the following inequalities

(1−ρ)
yre f

α
¬ u(k)¬max

[
yre f

α
,(1−ρ)

yre f

α
+

ρnp+1

α
dmax

]
. (21)

PROOF It follows directly from (16) that u(0) = yre f /α, and this implies that the theo-
rem is satisfied for k = 0. Moreover, since the demand is always bounded as stated by
inequalities (1), then for any k > 0, from Lemma 1, we obtain

(1−ρ)
yre f

α
¬ u(k)¬ (1−ρ)

yre f

α
+

ρnp+1

α
dmax, (22)
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which concludes the proof of Theorem 1.
The next theorem states another important property of the proposed policy, namely it

shows that the inventory level never exceeds its reference value. This proposition shows
that if the warehouse capacity is selected at least equal to yre f , then enough storage
space at the distribution centre for all incoming shipments will always be provided.

Theorem 2 If the proposed inventory management policy is applied, then for any k ­ 0
the stock level is always upper bounded by yre f , i.e.

y(k)¬ yre f . (23)

PROOF Due to initial conditions and lead-time delay, the considered warehouse is empty
for any k¬ np = n−1. Hence, we need to show that inequality (23) holds for any k­ n.

Let us assume that for some integer l ­ n, y(l) ¬ yre f . Then, we will demonstrate
that this inequality is also satisfied for l + 1. The stock level at the time instant l + 1,
based on the inventory balance equation, can be expressed as

y(l +1) = ρy(l)+αu(l −np)−h(l) . (24)

Substituting (4) and (18) into (24), we obtain

y(l +1) = ρy(l)+α
yre f

α
−αρ

l−np−1

∑
j=0

ρl−np−1− ju( j)+ρnp+1
l−np−1

∑
j=0

ρl−np−1− jh( j)−h(l) =

= ρy(l)+ yre f −ρy(l)−
l−1

∑
j=l−np

ρl−1− jh( j)−h(l) = (25)

= yre f −
l

∑
j=l−np

ρl− jh( j).

Since h(k) is always nonnegative, then y(l +1)¬ yre f . Using the principle of the math-
ematical induction we conclude that the theorem is satisfied for any k ­ 0.

Now we will formulate and prove the last theorem, which shows how to select the
reference stock level, so that full demand satisfaction is guaranteed. In other words, this
theorem demonstrates how big warehouse capacity is needed, to ensure that all sales are
realized from the readily available resources.

Theorem 3 If the proposed inventory policy is applied, and the target stock level satisfies
the following inequality

yre f > dmax

np

∑
j=0

ρ j, (26)

then for any k ­ n the stock level is strictly positive.
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PROOF Assumption (1) implies that the realized demand is always upper bounded.
Hence, taking into account (25) and (26), for any k ­ n, we obtain

y(k) = yre f −
k−1

∑
j=k−1−np

ρk−1− jh( j)­

(27)

­ yre f −dmax

k−1

∑
j=k−1−np

ρk−1− j = yre f −dmax

np

∑
j=0

ρ j > 0.

This concludes the proof.
Notice that the reference stock level required to ensure full demand satisfaction does

not depend on the transport decay factor α. Hence, the decrease of this factor does not
influence the size of the warehouse. However, as it can be seen from (16), the order
quantity generated by the proposed policy rises with the decrease of coefficient α.

3.2. Reaching law based SM controller design

Closer analysis of the proposed dead-beat controller performance reveals that it may
generate excessive orders in the initial phase of the regulation process. Therefore, in this
section we propose a modified controller which maintains favourable dynamic proper-
ties of the dead-beat scheme, but also ensures that the amount of ordered goods is always
limited, as required by suppliers. For that purpose, we apply the concept of the reach-
ing law in the form presented by Golo and Milosavljević [11]. This reaching law lets
us specify how the system representative point approaches the sliding hyperplane and
consequently makes it possible to extend the reaching phase over several time instants,
instead of requiring the system representative point to reach the hyperplane in one step.
Further in this paper, we will prove that proper selection of the reaching law ensures
satisfaction of the following input constraint

0¬ u(k)¬ umax, (28)

where umax > (1−ρ)yre f /α+(ρn/α)dmax, and at the same time enables preserving the
advantages offered by the dead-beat scheme.

The reaching law described in [11] can be expressed in the following manner

s(k+1)− s(k) =−Φ [s(k)] , (29)

where
Φ [s(k)] = min{|s(k)| , δ1 |s(k)|+δ2}sgn [s(k)] , (30)

0¬ δ1 < 1, and δ2 > 0. The sgn(x) function in (30) is defined as follows

sgn(x) =

{
−1 for x¬ 0

1 for x > 0.
(31)
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If this reaching law is applied, then the system representative point is guaranteed to
reach the hyperplane s(k) = cT e(k) = 0 monotonically in a finite number of steps in
a way determined by the choice of coefficients δ1 and δ2. In our further analysis, we
express the reaching law determined by (29) and (30) in the alternative way

s1(k) = cT e(k)+ f (k) = 0, (32)

where strictly monotonic function f (·) has the following form{
f (k+1) = (1−δ1) f (k)−δ2sgn [ f (k)] for k < k0, k0 ∈C+,

f (k+1) = 0 for k ­ k0
(33)

and f (0) = −cT e(0) = −cnyre f /α. Since f (·) is strictly monotonic this also implies
that for any 0 ¬ k < k0 function f (·) and coefficient cn have opposite signs. Notice that
function f (·) reflects the distance which needs to be covered by the system representative
point before it reaches the desired sliding plane cT e(k) = 0. Hence, we need to choose
parameters δ1 and δ2 so that input constraint (28) is satisfied. Substituting equations (5)
into cT e(k+1)+ f (k+1) = 0 we obtain

u(k) =
(
cT b

)−1{cT [xd −Ax(k)]+ f (k+1)
}
. (34)

Then applying (14) we get

u(k) =
yre f

α
− ρnp+1

α
y(k)−

k−1

∑
j=k−np

ρk− ju( j)+
f (k+1)

cn
. (35)

Firstly, we state the relation between the control signal established according to (35) and
the realized demand h(·). Next, we describe selection of the reaching law parameters.

At the first time instant we get

u(0) =
yre f

α
+

f (1)
cn

. (36)

Furthermore, for any k ­ 1, the control signal satisfies the following lemma.

Lemma 2 If policy (35) is applied to the considered supply chain, then for any k ­ 1

u(k) = (1−ρ)
yre f

α
+

ρnp+1

α
h(k−1)+

f (k+1)−ρ f (k)
cn

. (37)

PROOF Substituting (4) into (35), we get

u(k) =
yre f

α
− ρnp+1

α

[
α

k−np−1

∑
j=0

ρk−np−1− ju( j)−
k−1

∑
j=0

ρk−1− jh( j)

]
+
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−
k−1

∑
j=k−np

ρk− ju( j)+
f (k+1)

cn
= (38)

=
yre f

α
−

k−1

∑
j=0

ρk− ju( j)+
ρnp

α

k−1

∑
j=0

ρk− jh( j)+
f (k+1)

cn
.

For k = 1, we obtain

u(1) =
yre f

α
−ρu(0)+

ρρnp

α
h(0)+

f (2)
cn

=

(39)

= (1−ρ)
yre f

α
+

ρnp+1

α
h(0)+

f (2)−ρ f (1)
cn

which shows that the lemma is indeed satisfied for k = 1. Let us assume that (37) is true
for all integers up to some l > 1. Using this assumption, the order quantity generated in
period l +1 can be expressed in the following way

u(l +1) =
yre f

α
−

l

∑
j=0

ρl+1− ju( j)+
ρnp

α

l

∑
j=0

ρl+1− jh( j)+
f (l +2)

cn
=

=
yre f

α
+ρ

yre f

α
−ρ

yre f

α
−ρ

l−1

∑
j=0

ρl− ju( j)−ρu(l)+

+
ρnp+1

α

l−1

∑
j=0

ρl− jh( j)+
ρnp+1

α
h(l)+

f (l +2)
cn

= (40)

=
yre f

α
−ρ

yre f

α
+ρu(l)−ρu(l)+

ρnp+1

α
h(l)− ρ f (l +1)

cn
+

f (l +2)
cn

= (1−ρ)
yre f

α
+

ρnp+1

α
h(l)+

f (l +2)−ρ f (l +1)
cn

.

Since l is an arbitrary integer greater than zero, it follows immediately from the principle
of mathematical induction that (37) is true for any integer k­ 1. This concludes the proof
of the lemma.

The comparison of relations (33) and (37) leads to the conclusion that a suitable
choice for δ1 is the decay factor σ = 1− ρ. Now we need to select δ2 so that u(k) is
always smaller than or equal to umax. Substituting (33) into (37) and putting δ1 = 1−ρ
we get

u(k) =


(1−ρ)

yre f

α
+

ρnp+1

α
h(k−1)− δ2sgn [ f (k)]

cn
for k < k0,

(1−ρ)
yre f

α
+

ρnp+1

α
h(k−1) for k ­ k0.

(41)

It follows immediately from assumption (1) that the control signal is nonnegative and
upper bounded by (1−ρ)yre f /α+(ρn/α)dmax < umax for any k ­ k0. The consequence
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of lead-time delay is that no request placed at the distribution centre can be realized until
the first order arrives after np time instants. Furthermore, according to our assumptions
h(k < np) = 0.

In order to ensure that condition (28) is true for all k < k0 we conclude that parameter
δ2 should satisfy one of the following constraints, depending on time instant,

u(k) =


δ2 ¬ |cn|

[
umax − (1−ρ)

yre f

α

]
for 0¬ k ¬ np

δ2 ¬ |cn|
[

umax − (1−ρ)
yre f

α
+

ρnp+1

α
dmax

]
for k > np.

(42)

This concludes the design of the reaching law. The obtained controller generates the
quantity of orders on the basis of equation (35) with function f (·) defined by (33).
Notice that parameters of function f (·) are selected as δ1 = 1−ρ and δ2 as the biggest
value satisfying inequalities (42). Now the most important properties of the nonlinear
controller will be formulated as two theorems.

Theorem 4 If the proposed inventory management policy (35) is applied, then the
on-hand stock never exceeds yre f .

PROOF The warehouse at the distribution centre is initially empty and remains empty for
any k < np. Hence, we need to show that the proposition is also satisfied for all k > np.
Using Lemma 2, the amount of goods in the warehouse given by (4) can be expressed as

y(k) = αρk−np−1u(0)+α
k−np−1

∑
j=1

ρk−np−1− ju( j)−
k−1

∑
j=0

ρk−1− jh( j) =

= ρk−np−1yre f +αρk−np−1 f (1)
cn

+α
k−np−1

∑
j=1

ρk−np−1− j
[
(1−ρ)

yre f

α
+

ρnp+1

α
h( j−1)

]
+

+α
k−np−1

∑
j=1

ρk−np−1− j f ( j+1)−ρ f ( j)
cn

−
k−1

∑
j=0

ρk−1− jh( j). (43)

Furthermore,

y(k) = ρk−np−1yre f +(1−ρ)yre f

k−np−1

∑
j=1

ρk−np−1− j +

+
k−np−1

∑
j=1

ρk− jh( j−1)−
k−1

∑
j=0

ρk−1− jh( j)+
α f (k−np)

cn
=

(44)

= ρk−np−1yre f +
(

1−ρk−np−1
)

yre f −
k−1

∑
j=k−np−1

ρk−1− jh( j)+
α f (k−np)

cn
=



268 A. BARTOSZEWICZ, M. MACIEJEWSKI

= yre f −
k−1

∑
j=k−np−1

ρk−1− jh( j)+
α f (k−np)

cn
.

Since the satisfied demand h(·) is always nonnegative, and f (k) and cn have opposite
signs for all k > 0, y(k) is always upper-bounded by yre f . This completes the proof of
Theorem 4.

Theorem 5 If policy (35) is applied to the considered supply chain and the reference

stock level satisfies yre f > dmax

np

∑
j=0

ρ j, then for any k­ n+k0 the amount of goods in the

warehouse is strictly positive and demand is entirely satisfied from the readily available
resources.

PROOF It follows from relation (33) that for k > k0 function f (k) = 0. As a consequence
for k ­ k0, the nonlinear controller (35) becomes equivalent to linear control law (16),
whose action influences the stock level for k­ n+k0. Since both controllers incorporate
the order history exactly in the same way, then we conclude that the proposition is valid
as a direct consequence of the Theorem 3. This completes the proof of Theorem 5.

4. Numerical example

In order to verify effectiveness of the proposed supply policies we perform a series
of simulation tests. Parameters of the system are chosen as follows: review period T = 1
day, lead-time delay Lp = npT = 6 days, transport decay factor α = 0.92, inventory de-
terioration rate σ = 0.05 (which results in ρ = 1−0.05 = 0.95), and the maximum daily
demand at the distribution centre dmax = 70 items. The imposed demand at the distribu-
tion centre is illustrated in Fig. 3. This demand pattern is chosen to verify performance
of both controllers in the presence of abrupt changes of the demand. In order to guar-
antee maximum service level, i.e. full demand satisfaction, according to Theorem 3, the
reference stock level for supply policies (16) and (35) should be greater than 423 items.
Thus, we select yre f equal to 430 items. For the reaching law based supply strategy, it
is assumed that supplier cannot provide more goods in a single review period than umax
equal to 100 items. The parameters of the reaching law based controller are chosen in
the following way: δ1 = 1−ρ = 0.05, δ2 = 77.01 for 0¬ k¬ 6 and δ2 = 23.88 for k > 6
(both calculated according to inequalities (42)).

The orders generated by the proposed policies are shown in Fig. 4 and the on-hand
stock in Fig. 5. It can be easily seen from Fig. 4, that after the initial phase the control
signal generated by policy (16) is identical to the one generated by policy (35), i.e. after
k0 time instants both policies become equivalent. Moreover, it is worth to point out that
during the initial phase, the control signal generated by policy (35) remains constant
and equal to umax. This is a direct consequence of the proper choice of the reaching
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Figure 3. The imposed demand at the distribution
center.

Figure 4. Order quantities: a) policy (16), b) policy
(35).

Figure 5. On-hand stock level: a) policy (16), b) po-
licy (35).

Figure 6. Sliding variable s(k): a) policy (16), b)
policy (35).

law parameters, which results in the increase of the sum in (35) being compensated by
the same change of function f (·). Furthermore, it can be noticed from Fig. 5 that in both
cases the on-hand stock level does not exceed the warehouse capacity, and after the initial
phase it never drops to zero. Finally, Fig. 6 shows that the representative point of the
system controlled according to (16) reaches the sliding hyperplane in one step, precisely
as assumed in the design procedure, whereas controller (35) reduces the magnitude of
the sliding variable during the first 6 time instants.

5. Conclusions

In this paper a new discrete time, chattering-free sliding mode controller for supply
chains with deteriorating stock and commodity loses in the order procurement process is
designed. The controller employs a sliding hyperplane which is designed in such a way
that the closed loop system exhibits the dead-beat dynamic performance. In other words,
the controller reacts fast to the unpredictable variations of demand and ensures stable
system operation for arbitrary positive lead-time. Moreover, the proposed controller en-
sures 100% demand satisfaction and guarantees that the stock level never exceeds the
warehouse capacity (in this way it eliminates the need of hiring, usually very costly, ex-
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tra storage space out of the company premises). Since the proposed dead-beat sliding
mode controller may generate unacceptably big initial value of the control signal, and
therefore require excessive shipments at the beginning of the control process, we also
propose an alternative controller based on the reaching law concept. The controller, on
one hand preserves good system dynamics of the original strategy and on the other en-
sures that input signal constraint is satisfied. When the modified controller is applied,
the on-hand stock level is always upper bounded and never drops to zero after the initial
phase of the control process. This implies that the warehouse capacity is not exceeded
and that the entire imposed demand is satisfied (thus necessity of backorders is elimi-
nated). These favorable properties have been formulated as theorems, formally proved
and verified in a simulation example. Both control strategies proposed in this paper are
computationally efficient and simple in software implementation.
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