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Improving energy compaction of a wavelet transform
using genetic algorithm and fast neural network

JAN STOLAREK

In this paper a new method for adaptive synthesis of a smatitiogonal wavelet, using
fast neural network and genetic algorithm, is introducedh@yonal lattice structure is pre-
sented. A new method of supervised training of fast neuraer is introduced to synthesize
a wavelet with desired energy distribution between outfgtas from low—pass and high—pass
filters on subsequent levels of a Discrete Wavelet Transf@emetic algorithm is proposed as
a global optimization method for defined objective functiauile neural network is used as a
local optimization method to further improve the resulpfrsed approach is tested by synthe-
sizing wavelets with expected energy distribution betwieenr- and high—pass filters. Energy
compaction of proposed method and Daubechies waveletsmpared. Tests are performed
using image signals.

Key words: wavelet transform, neural networks, genetic algorithnignad processing,
lattice structure

1. Introduction

During the last two decades Discrete Wavelet Transformrbecane of the most
popular tool in the area of signal processing. Many diffengavelets have been pro-
posed, such as Daubechies, Coiflet, Morlet, Shannon, MBwile-Lamarié or Mexi-
can hat wavelets [3, 9]. Each family of the wavelet functibas its unique properties,
which makes some wavelets more suitable for particulariegns than others. This
raises a problem of selecting the best wavelet for a givdq tasich leads to a question:
does there exist a wavelet that would be the best for the gasdq but has not been pro-
posed yet? To provide a general answer to this question soch&thautomatic adaptive
synthesis of wavelets for particular task should be dewop

First step towards adapting wavelets was parametrizationawelet filter coeffi-
cients. Many such parametrizations have been proposed §o, 8 11, 14, 24, 26]. A
crucial element in these methods is optimal selection ofupaters’ values, which is
done either using numerical or analytic approach. In [15] @8] lattice structure for
designing two—channel perfect reconstruction filters wasgnted. This approach was
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based on representing a filter bank in a form of parametefaéde structure. Parame-
ters were optimized using well-known numerical methods. @uasi—Newton method)
and the resulting values, together with the lattice stmactdefined the filter. Dietl, Meer-
wald and Uhl introduced wavelet parametrization to imprpggormance in digital im-
age watermarking security [4, 10]. They proposed randoecteh of filter parameters
to increase watermark robustness against attacks. ShdrKuaproposed parametriza-
tion of wavelets using angles as trigonometric functiomguanents and applying genetic
algorithm to synthesize shift-invariant wavelets [16].

So far, all the authors have concentrated their efforts othggizing wavelets that
are optimal with respect to some arbitrarily selected kdtee.g. smoothness or shift
invariance. However, there is no guarantee that such waweptamality will result in a
better performance of a wavelet-based signal processgagiddm. Therefore, methods
for wavelet synthesis based on rating the final result ofadigrocessing using wavelets
should be explored in more detail.

This paper presents example of such a method. Proposedtlagaof wavelet
synthesis is based on a Fast Orthogonal Neural Network (FQINy and Genetic
Algorithm (GA). Wavelet parametrization is based on an agtinal lattice structure
[18, 21, 25]. Main contribution of this paper is introductiof a method for adaptive
synthesis of a wavelet with desired energy distributiomvieen low—pass and high—pass
wavelet coefficients on subsequent levels of multilevel DVWHis approach concen-
trates not on the wavelet properties itself, but on the ogiitgnof a signal resulting from
processing using wavelets. In such approach optimal wavédenerge” as a result of
fulfilling conditions imposed on the processed signal. Gieradgorithm will be applied
as a global optimization method, while Fast Orthogonal eNetwork (FONN) will
be used as a gradient method to further optimize defined tlgefunction, starting
from minimum found using GA. These methods allow to syntteesi new wavelet that
will provide desired energy distribution between low—pasd high—pass wavelet coef-
ficients for a particular class of signals (e.g. image or dpuBynthesizing the wavelet
with better energy compaction than already existing waseld| allow to improve the
quality of compressed signals.

2. Orthogonal lattice structure

The lattice structure is — likewise the lifting scheme [22)r-alternative approach
to implementation of a wavelet filter bank [2, 15, 23]. In thizper wavelet synthesis
is based on an orthogonal lattice structure proposed in R&jperties of that struc-
ture, especially its connection with the existing wavehetary and ability to synthesize
valid orthogonal wavelet functions are discussed in [118]cbmputational complexity
is discussed in [25]. Below a definition of an orthogonalidatstructure is presented.

Orthogonal lattice structure is based on two—point baseatipes
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Figure 1. Lattice structure implementing 6—tap transform.

S = [ coga) sin(a) ] )

sin(oyx) —coga)

wherek stands for index of the operation (see Fig. 1). Such two-tgmdse operation
can be written in form of a matrix equation

1]+ [2]

For S given by equation 1, the following equality holds true:

St=6)" =5 . (3)

where$l is the inverse o5 and (Sk)T is the transpose d&. It is therefore easy to
perform inverse of the transformation given by equation 2.

Lattice structure is composed Kf/2 stages, each containii®y operations repeated
N/2 times, wheré&K andN are the lengths of the filter’s impulse response and of a pro-
cessed signal respectively. On each stage of the lattigetste, elements of the signal
are processed in pairs I8/ base operations. After each stage, base operations aegishif
down by one and a lower input of the last base operation indhewt stage is connected
to the upper output of the first base operation in the pregestimge ¢, ands, in Fig. 1).
Upper outputs of base operations in the last laygti(t, andtz in Fig. 1) form the
trend signal? which corresponds to the low—pass filter output, while theeloout-

puts (f1, f, f3 and f4 in Fig. 1) form the fluctuation signa? which corresponds to the
high-pass filter output.
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3. Wavelet synthesis using fast orthogonal neural network

In this section a wavelet synthesis criterion based on gnéigribution between
output signals from low—pass and high—pass filters is ptedeAlthough this algorithm
can be used to synthesize wavelets with any energy disbilits most important appli-
cation is to synthesize wavelets that pack as much of theksgmergy as possible into
low—pass wavelet coefficients. In a perfect situation — whasergy of a signal packed
into low—pass coefficients — this would allow to remove higiss coefficients without
losing any information about the signal. Although such aadibn is not possible, ap-
plying a wavelet that packs most of signal’s energy into the-pass coefficients to
subsequent levels of a discrete wavelet transform, reisyttacking most of the signal’'s
energy into small number of low—pass coefficients. If thellsgsized wavelet compacts
more energy into low—pass coefficients than other existingelets (e.g. Daubechies),
then applying it to many levels of DWT would lead to packingrmenergy in the same
number of wavelet coefficients, thus giving a better qualftg compressed signal. Once
the wavelet is synthesized, it is applied to processing af@asin the same manner as
any other wavelets.

To synthesize a new wavelet with desired energy distribubetween low—pass
and high—pass wavelet coefficients Fast Orthogonal Newsabdrk [17] with topology
based on orthogonal lattice structure is usdhase operations are represented using Ba-
sic Operation Orthogonal Neurons (BOON) — a special kindeafran with two inputs
and two outputs, designed to perform two—point orthogopatations. Training signals
are propagated through the network and, for each signal, st be back-propagated.
However, expected output values for training signals renugiknown, since the only
thing that is defined is the output energy proportion betwleer-pass and high—pass
wavelet coefficients. Hence existing supervised trainirejhods have to be modified
and a new objective function must be defined. In [18] the faithg objective function
was proposed:

N/2

> [@- +@-D7] . @

whereN is the number of outputs of the network (the same as lengthprbeessed
signal), j is the index of BOON in the output Iayen% is the energy of the low-pass
output of aj-th BOON,dj2 is the expected energy on that outptf(,is the energy of the
high-pass output of gth BOON,eJ-2 is the expected energy on that output. This function
measures how much does the actual energy proportion differ the expected energy
proportion. Expected energie$ andeJ2 are calculated independently for each neuron,
based on its actual inputs, using formulas

G(W) = 5
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df:Jh.{(xng_%(xng},
&=hy. [(ng))%r (ng))z} 7

wherex(()j) andx(lj) are j-th neuron’s inputs antl;, hy, are expected energy proportions
between outputs, such that

(®)

hh+hy=1. (6)

This method allowed to effectively synthesize a wavelehwlisired energy distribu-
tion for signals of particular class. However, only firstdewef signal analysis was taken
into account. Therefore it was possible that the synthdsizerelet had different energy
proportions on subsequent levels of wavelet transformrdieroto synthesize wavelets
that ensure desired energy distribution on more than oret ¢d\signal analysis, multi-
level DWT of a signal has to be taken into account.
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Figure 2. Multilevel discrete wavelet transform.

Fig. 2 shows a diagram of multilevel DWT y is the input signalHg andH; are
low—pass and high—pass filters respectively. Togetherftrayan orthogonal filter bank.
@ represents signal decimation (removing every other sgmgié), @ ... F M)
are the fluctuation (detail) signéland? is the trend (approximation) signal. In this
paper the above method of adaptive wavelet synthesis usimginnetwork is extended
to further levels of DWT. The following synthesis criteri@proposed:

Iwith only one level of signal analysis we udeinstead of f (U to simplify the notation.
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= ()

wherez (-) denotes energy of a sign&, denotes number of DWT levels ahg andh;

are expected energy proportion between low—pass and hagh-qutputs, as defined in
equations (5) and (6). This equation means that for each ¢d¢\RBWT the synthesized
wavelet is expected to give the same proportion betweerggr@rlow—pass wavelet
coefficients and energy of the input signalh{f = 1 is assumed then proposed method
will synthesize wavelets that pack as much energy of a sigaalossible into the low-
pass wavelet coefficients.

It is important to notice, that it is not possible to find sudiitar, that it will produce
exactly the expected energy proportions for each inputasighis however possible to
determine such filter that, for a given class of signals, ggnproportions will be true in
a statistical sense. Therefore it is important, that theahevs synthesized for signals of
particular class, e.g. image or sound.
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Using the lattice structure approach, multilevel DWT of gnsil is performed by
appending another lattice structure to low—pass outputtheflattice structure from
the previous stage. Fig. 3 shows example of a lattice streidtuplementing 6-tap
transform and performing 2 levels of DWT. Base operatiornsefeery level of DWT
are the same, as denoted by identi§aloperations in corresponding layers of the
network. This example network transforms sigii&l, X, X2, X3, X4, X5, Xg, X7) t0 signal
(12 1Y 6, £ 152 £V 1y 1Y), where(£V £V £V £{9) is a first level detail sig-
nal (f @ in Fig. 2), (2, £{?) is a second level detail signaf (2 in Fig. 2) and(ty, t;)
is a trend signal € in Fig. 2). Signal periodicity is assumed.

Condition given in equation (7) means, that objective fiamcgiven in equation (4)
has to be applied after completing every level of DWT. Thisinsethat expected energy
values are calculated after each level of DWT only for higisspoutputs of the current
level. Low—pass outputs serve as inputs for the next levahafysis. After completing
last level of DWT expected energy values are calculated éth bbow—pass and high—
pass outputs according to equation (4) and all the calallahies are back-propagated
through the network. For a straightforward determinatibolgective function’s gradi-
ent in respect to the weights, Signal Flow Graphs (SFG) aed {52, 13]. Due to a
non—standard form of objective function, adjustment ofke@pagation algorithm is
required. To calculate the value of the objective functigaich output of the network is
propagated through a branch that raises that value to therpmwwo, before comparing
it to the expected value (see equation (4)). For each outpsitlerefore necessary to
multiply back-propagated error value by2t; (for low-pass outputs) or-2f; (for high-
pass outputs). This is equal to the derivative of the quiadfatiction branch calculated
for the value propagated forward through that branch [12].

Weights modification is performed according to the steegestent algorithm:

Wni1=Wn—n0OGW) (8)

whereWw , is weights vector im-th iteration,n is the learning step arid G(W) is error
function’s gradient calculated in respect to the netwowkesghts. Observations of sig-
nals in the network have shown, that values propagateddhrthe network get bigger
on subsequent levels of DWT, which is expected since thepass-wavelet coefficients
get bigger with each DWT level. This leads to a conclusiorn timeeach level different
learning step must be used to counter that effect. Usinglemahrning steps for later
levels prevents both skipping the minimum due to too big gearof weights and domi-
nation of the learning process by bigger derivatives ondbkelévels of analysis. Proper
selection of learning steps may be difficult and requires yr&periments combined
with precise observation of values in the network. Adjusttmaf weights according to
equation (8) leads to finding the minimum of objective fuoitiG(W) (equation (4))
and therefore achieving desired distribution of energyvbeh low—pass and high—pass
wavelet coefficients, for a given set of training signals.
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4. Global optimization using genetic algorithm

Steepest descent algorithm used in the training proce$gofdtwork is a gradient
method and, although it is effective for synthesizing watslfor two or three levels
of DWT, it is likely to get stuck in a local minimum when the nber of DWT levels
increases. To prevent such situation, global optimizatising genetic algorithms with
evolution strategies is introduced. Best solution foundgithe genetic algorithm is used
as a starting point for network training to further improfe tesult.

Algorithm 1 Genetic algorithm outline
1. Create random populatidd of pindividuals
2: while (stop condition not satisfieajo
3:  Calculate fitness of individuals in populatiéh
4:  Create temporary populatioh containingA individuals by selection from popu-
lation P
Perform crossover and mutation on individuals in popufafio
Calculate fitness of individuals in populatidn
Selecty individuals to form new populatioR
8: end while
9: Display best individual in populatioR

N o a

Algorithm 1 shows outline of proposed genetic algorithnogStondition is either
reaching the maximum number of iterations (generationsptel agyen,ax or not get-
ting better results in subsequent generations (minimatebeol improvement of fithess
will be denoted asmpnin). Other steps shown in the Algorithm 1 are discussed inldetai
in the following subsections.

4.1. Representation of individuals

EachS base operation is precisely defined by only one variable {eang There-
fore lattice structure consisting ®f layers can be represented using oNlynumbers
(ag,0z,...,0N), where eachny € [0,2m). Individuals in a genetic algorithm consist of
N chromosomes. Each chromosome represepter one layer of the lattice structure.
Let us denote chromosome representing valuexascy. Each chromosome is rep-
resented in a binary form using bits. Therefore each chromosome is an integer from
range|[0,2M). Values of chromosomes are mapped to the values of angleadians)
using formula

Ck-TU
szm . 9)

4.2. Fitness evaluation

To evaluate fitness of an individual its chromosonfesc;,...,cy) are converted
to angles(ay,0z,...,0yN) Using equation (9). Angle values are used to calculate base
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operationsS;, S, ..., Sv), which are then used to perform multilevel DWT on the data in
a training set using the lattice structure approach.

Individuals’ fitness is calculated based on the energyidigion on the subsequent
levels of DWT. For each individual the training signals aansformed and proportion
between energy of low—pass wavelet coefficients and inguiasienergy is calculated.
Low—pass coefficient are then transformed again and the paopertion is calculated
for the second level of wavelet analysis (see equation THjk step is repeated required
number of times. The actual energy distribution for eaclkellef DWT is compared to
expected energy distribution. The closer the actual valube expected proportion, the
higher the individual’s fitness on that level. Fitness onvegileveli of DWT is therefore
determined using formula:

Fj(i) = IME — |y — AER;[| , (10)

where j is number of an individualj is the level of DWT,ME is maximal possible
error in energy distributiort); is expected energy proportion aA& B is actual energy
proportion oni—th level of DWT for j—th individual, calculated using the formula

.
({3 ((%)
— M —)k
(1) + S £ (1)
AEPR; = ; (11)
—
Z(tj) .
fori=M
L 2(FM) +2(T)

where £ (-) denotes energy of a sign&l| denotes number of DWT Ievels;_,-) denotes

the trend (approximation) signal of thjeth individual andﬁ(k) denotes the fluctuation
signal ork-th level of DWT for j-th individual (see Fig. 2). In equation (10h; — AER; |
is an error made by an individual in the distribution of eeithe closer this error to 0,
the higher the fitness. It is important to ensure that bothaanergy proportion error
h, — AEP; and the fitness are positive numbers. Hence the absolutesvate used.
Since energy proportion between low—pass wavelet coeffciand input signal’s
energy can change from 0 (whole signal energy packed inte-pigss coefficients) to 1
(whole signal energy packed into low—pass coefficientskimal possible erroME is
determined using the formula:

ME = ma>(h1, 1- h]_) s (12)

whereh; is expected energy proportion between low—pass coefficamd input signal’s
energy. Equations 10, 11 and 12 ensure that fithess valués fahge|0, 1].

Training set contains many signals, therefore individuithess for a given level of
DWT is calculated as an average of fitness valegs) for all signals in a training set.
Total fitnessF of an individual is calculated by averaging partial fitnEg8) calculated
for every level of DWT:
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SHLFi(0)
F==—-"- 13

] M ’ ( )
wherej is number of an individual anill is a number of DWT levels.

4.3. Selection, crossover and mutation

Temporary populatio is created by selecting individuals from populatiorP.
Tournament selection is used. Each individual from pojputal can be selected for
crossing over with other individual from that populationtlvprobability p;.. One point
crossover is performed. Crossing point is chosen randdadgh locus (bit in a chro-
mosome) in populatiofl can be selected for mutation with probability,. Mutation is
performed by reversing value of selected bits.

4.4. Evolution strategies

During experiments with adaptive synthesis of waveletsgi§A it was discovered,
that although proposed method was able to find good solytindsviduals with very
low fitness (close to 0) were not eliminated from the popafatin many cases this lead
to destabilization of optimization process. As a solutiothie problem evolution strate-
gies [1] were introduced. Usage of modifigd A) and (u+ A) strategies is proposed,
as outlined in Algorithm 1. Irffy, A) strategy a new populatioR is created by selecting
u fittest individuals from a temporary populatidn(assuming\ > ). In (u+A) strat-
egy the new populatioR is created by selectingfittest individuals from botlP and T
populations. There are two important differences betweetugon strategies proposed
in literature and in presented approach: individuals hamarp representation instead
of real-number representation and there is no self—ad@aptas will be shown in sec-
tion 5 evolution strategies allow to eliminate unfit indivals from the population, and
therefore improve optimization process.

5. Experimental validation

5.1. Testing methodology

Proposed genetic algorithm and fast neural network witbltayy based on orthog-
onal lattice structure for multilevel DWT were implementeging Java and Matlab pro-
gramming languages. Two different data sets were prep@melset was used to synthe-
size the wavelet (training set), the other one was usedgtinte Both sets contained 512
signals, each signal with length of 512. Tests were carrigdusing image data taken
from rows of a grayscale images. Initial population in a dgienglgorithm was selected
randomly. Initial weights of a neural network were set tauesl of the best lattice struc-
ture synthesized by the genetic algorithm. Therefore neetavork was used to further
improve result obtained using GA.
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Table 4. Wavelet synthesis with genetic algorithm usinggendata.
Expected Actual results [%]
energy of low—pass 4-tap transform| 6—tap transform| 8-tap transform
coefficients [%] | training | testing | training | testing | training | testing

50 50.05 | 49.96 | 5013 | 4999 | 4981 | 4988
70 7018 | 70.07 | 6995 | 6958 | 6976 | 70.90
100 9945 | 9965 | 9950 | 9965 | 9881 | 9950

Daubechies 9945 | 9965 | 9948 | 9965 | 9951 | 99.66

Table 5. Improvement of results obtained using the gentgirithm and fast neural network.
Expected Actual results [%]

energy of low—pass 4-tap transform| 6—tap transform| 8-tap transform
coefficients [%] | training | testing | training | testing | training | testing

50 50.03 | 4994 | 5005 | 4991 | 4977 | 4984
70 7006 | 6995 | 6995 | 6958 | 6984 | 7090
100 9946 | 9964 | 9950 | 9965 | 9928 | 9959

Daubechies 9945 | 9965 | 9948 | 9965 | 9951 | 99.66

Wavelet synthesis was tested using 4—tap, 6-tap and 8-ategfdrms with 4 levels
of signal analysis. Neural network was trained using afe-ieaching with 10 training
epochs. Optimal values of parameters in the neural netvegk kearning steps for each
level of analysis) may differ depending on number of layarthe network and desired
energy distribution. Genetic algorithm performs equalliiMor different energy distri-
butions using the same parameters. Following values wet fos the experiments:

e crossover probability, = 0.98,

e mutation probabilitypy, = 0.03,

e populationP sizep = 20,

e temporary populatioff sizeA = 40,
e maximum generationgenymax= 10,

e minimum expected improvement between generations,, = 10~

Both proposed evolution strategies have shown to give aimd@sults. The experiments
were carried out usingu,A) strategy.
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Figure 4. 4—tap wavelet synthesized using GA.
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Figure 5. Change of individuals’ fithess during GA optimiaat

5.2. Results and discussion

Tab. 4 shows the results of wavelet synthesis using geneticitam. Tab. 5 shows
results of improving wavelets synthesized using GA with fasural network. In both
tables the first column shows expected percentage of inprggrocated in the low—
pass coefficientshf in equation (7)) on each level of signal analysis. Remaiaimgunt
of energy is located in the high—pass coefficients, summmpgive a total of 100%.
Remaining columns show testing result obtained on bothitrgiand testing sets, ex-
pressed as an average of actual percentage of energy londtead-pass coefficients
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on each level of signal analysis. Three different energgribigions were tested. Both
tables present energy distribution for Daubechies waselet

Results in Tab. 4 show that proposed method of wavelet sgisthesing the ge-
netic algorithm is able to synthesize a wavelet with desaeergy distribution between
low—pass and high—pass wavelet coefficients with errortless 1%. For the highest
requested energy compaction of 100% it synthesizes wavtiat perform similarly
to Daubechies wavelets. Fig. 4 shows an example of smoatp 8+avelet synthesized
using GA.

Figure 6. 8—tap wavelet synthesized using GA (left) and thgaroved using FONN (right).

Fig. 5 shows how fitness (vertical axis) of the individualgha population changes
between iterations (horizontal axis) of genetic algoritftigure shows the fitness of the
best and the worst individual in the population as well as\anage fitness value in the
population.impmyin was set to 0 for this experiment agdn,ax was set to 8. Population
denoted as 0 on horizontal axis is the initial randomizedufaijpn. We can see that
with evolution strategies individuals with low fitness atiengnated from the population
(fitness of worst individual increases in subsequent i@matof the algorithm). In 5-th
iteration optimization process stabilizes — only indivatkiwith the highest fitness re-
main in the population. Following generations bring imgament of the best solution
by approx. 002%. Although elimination of unfit individuals is desiredptfast elimina-
tion of diversity in a population leads to premature conearg. This may lead to finding
suboptimal solutions. Problem may be countered by inangasiutation rate, although
this may destabilize optimization process by “damagingidyeolutions.

As shown in Tab. 5 neural network can be used to further ingemhieved results.
It is expected that FONN can improve results on the trainiety since it attempts to
fit to the training data as much as possible. Hence there cao pearantee as for the
improvement of results on the testing set. Tables 4 and 5 dstrate that with FONN
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results for the training set have improved in 6 out of 9 tesR tases there was no change
in the result. For the testing set 2 results have improved3amethained unchanged.

Fig. 6 shows example of improving the result obtained usiAg IGft image shows
8—-tap wavelet with desired energy distribution of 100% kgsized using GA. Right
image shows further improvement of this wavelet with FONidain be seen that neural
network produced a wavelet that is smoother than the ondagized by the genetic
algorithm. It can also be noticed from the tables that théglleo improvement of the
result by 047% for the training set and@% for the testing set.

Algorithm performance was measured on a computer with gk 2 Duo T8300
processor (each of two cores operating at 2.4GHz frequeh®gral network was im-
plemented in Java as a single threaded application. Avesaghesis time was 39.2 sec-
onds for 4—tap transforms, 44.5 seconds for 6-tap transfard 50.5 seconds for 8—tap
transforms (total time of 10 epochs). Genetic algorithm ingdemented using Matlab
programming language and it is capable of operating on batkscparalel. Using the
Matlab Profiler, the precise time of execution was measurkd.most time consuming
task is the estimation of individuals’ fithess. When only pnecessing core is used, av-
erage time needed to evaluate fitness of an individual iss1B%abling parallel compu-
tations on both processor cores reduces the average tirdedecalculate individual's
fitness to 0.93s. Length of the filter being synthesized dbedgluence the performance
significantly. Nevertheless, in each iteration the fithdssbout 40-60 individuals has to
be estimated (temporary population can be smaller (ith A) strategy). Convergence
analysis (Fig. 5) has shown, that algorithm stabilizes raddbth—6th iteration, so using
greater number of iterations is unnecessary. This impiieg,the whole synthesis pro-
cess using genetic algorithm can take approximately froft@390 seconds (assuming
parallel computations on two cores). Such a long time mightitacceptable for daily
usage and has to be improved.

It must be noted, that neural network implementation in Javdesigned as a re-
search application and therefore it is not fully optimizidelies heavily on design pat-
terns utilizing polymorphism (e.g. Template Method), whis known to significantly
degrade the program’s performance. Genetic algorithmeémphtation was optimized
with the aid of Matlab Profiler and, in its current form, cabhe significantly optimized.
However, it must be noted that elements of the input sigrebancessed by the lattice
structure independently in pairs. This implies, that ¢attstructure can be implemented
using technologies with SIMD (Single Instruction, MulépData) capabilities. More-
over, the lattice structure itself doesn't include any dgbadal instructions. Therefore it
seems that, for production purposes, the NVidia CUDA tetdgyowould be the most
appropriate to implement the proposed algorithms. CUDAgarallel computing archi-
tecture that makes use of the GPU and is designed to procgsstreams of data with a
set of identical instructions. Such an implementation &hbung a significant improve-
ment in the performance, thus making proposed algorithritatde for daily usage on
personal computers.
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6. Conclusions

In this paper a new method for adaptive synthesis of a watr@esform using ge-
netic algorithm and Fast Orthogonal Neural Network withdlogy based on the or-
thogonal lattice structure was presented. New optiminatigterion based on energy
distribution on subsequent levels of DWT was introduceds Thiterion puts emphasis
on the final result of signal processing rather than on thesleitself. This is the most
important contribution of this paper, since so far authagehconcentrated directly on
wavelet properties, while in this approach optimal wavaeterges” indirectly as a re-
sult of fulfilling optimality criteria by the wavelet—prossed signal. Experiments have
shown that proposed criterion can be used for adaptive sgistlof a new wavelet with
desired energy distribution for a signal of particular sld®resented approach was com-
pared with Daubechies wavelets in terms of energy compadiesults have shown that
the wavelets synthesized with genetic algorithm and nenetabork can perform better
than the Daubechies wavelets.

Within further development of proposed method Hierardhitar Competition [5]
should be considered to solve the problem of premature cgemee in the genetic al-
gorithm. It is also possible to treat fitness valligé) as a separate optimization cri-
teria and view the whole problem solved by the genetic aflgorias a multi-objective
optimization. This would allow to introduce evolutionaryuti-objective optimization
methods, e.g. Global Optimality Level [6]. Implementaticen be improved by using
NVidia CUDA technology.

Future research will concentrate on adjusting presentetiats to allow wavelet
synthesis for improving digital image watermarking fideliirst experiments have al-
ready been carried out and the results are promising [20].
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