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Computation of positive realization of MIMO hybrid
linear systems in the form of second

Fornasini-Marchesini model

TADEUSZ KACZOREK and ŁUKASZ SAJEWSKI

The realization problem for positive multi-input and multi-output (MIMO) linear hybrid
systems with the form of second Fornasini-Marchesini model is formulated and a method based
on the state variable diagram for finding a positive realization of a given proper transfer matrix
is proposed. Sufficient conditions for the existence of the positive realization of a given proper
transfer matrix are established. A procedure for computation of a positive realization is proposed
and illustrated by a numerical example.
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1. Introduction

In positive systems inputs, state variables and outputs take only non-negative valu-
es. Examples of positive systems are industrial processes involving chemical reactors,
heat exchangers and distillation columns, storage systems, compartmental systems, wa-
ter and atmospheric pollution models. A variety of models having positive linear systems
behavior can be found in engineering, management science, economics, social sciences,
biology and medicine, etc.

Positive linear systems are defined on cones and not on linear spaces. Therefore,
the theory of positive systems is more complicated and less advanced. An overview of
state of art in positive systems theory is given in the monographs [2, 5]. The realization
problem for positive discrete-time and continuous-time systems without and with delays
was considered in [1, 2, 5-10]. The reachability, controllability and minimum energy
control of positive linear discrete-time systems with delays have been considered in [3,
13]. The relative controllability of stationary hybrid systems has been investigated in
[15] and the observability of linear differential-algebraic systems with delays has been
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considered in [16]. A new class of positive 2D hybrid linear system has been introduced
in [11], and the realization problem for this class of systems has been considered in [12].

The main purpose of this paper is to present a new method for computation of a
positive realization of a given proper transfer matrix (MIMO system) using the state
variable diagram method. Sufficient conditions for the existence of a positive realization
of a given proper transfer matrix will be established and a procedure for computation of
a positive realization will be proposed.

2. Preliminaries and problem formulation

Consider a hybrid system described by the equations [5]

ẋ(t, i+1) = A1ẋ(t, i)+A2x(t, i+1)+B1u̇(t, i)+B2u(t, i+1), (1a)

y(t, i) = Cx(t, i)+Du(t, i), t ∈ R+ = [0,+∞], i ∈ Z+, (1b)

where ẋ(t, i) =
∂x(t, i)

∂t
, x(t, i) ∈ Rn, u(t, i) ∈ Rm, y(t, i) ∈ Rp and A1, A2 ∈ Rn×n,

B1, B2 ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m are real matrices.
Boundary conditions for (1a) have the form

x(0, i) = x1(i), i ∈ Z+ and x(t,0) = x(t), ẋ(t,0) = ẋ(t), t ∈ R+. (2)

Let Rn×m
+ be the set of n×m real matrices with nonnegative entries and Rn

+ = Rn×1
+ ,

Mn be the set of n×m Metzler matrices (real matrices with nonnegative off-diagonal
entries).

Definition 1 [5] The hybrid system (1) is called internally positive if x(t, i) ∈ Rn
+

and y(t, i) ∈ Rp
+, t ∈ R+, i ∈ Z+ for arbitrary boundary conditions x(i) ∈ Rn

+, i ∈ Z+,
x(t) ∈ Rn

+, ẋ(t) ∈ Rn
+, t ∈ R+ and inputs u(t, i) ∈ Rm

+, u̇(t, i) ∈ Rm
+, t ∈ R+, i ∈ Z+.

Theorem 1 [5] The hybrid system (1) is internally positive if and only if

A1 ∈ Rn×n
+ , A2 ∈Mn, A1A2 ∈ Rn×n

+ ,
(3)

B1 ∈ Rn×m
+ , B2 ∈ Rn×m

+ , C ∈ Rp×n
+ , D ∈ Rp×m

+ .

The transfer matrix (4) of the system (1) is given by

T (s,z) = C[Insz−A1s−A2z]−1(B1s+B2z)+D ∈ Rp×m(s,z). (4)

Definition 2 The matrices (3) are called the positive realization of the transfer ma-
trix T (s,z) if they satisfy the equality (4). The realization problem can be stated as fol-
low. Given a proper rational matrix T (s,z) ∈ Rp×m(s,z), find its positive realization (3),
where Rp×m(s,z) is the set of p×m rational matrices in s and z.
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3. Problem solution for SISO systems

The essence of proposed method for solving of the realization problem for positive
2D hybrid systems will be presented on single-input single-output system (SISO). Con-
sider a hybrid system described by the transfer function

T (s,z) =
bn1,n2sn1zn2 +bn1,n2−1sn1zn2−1 + ...+b11sz+b10s+b01z+b00

sn1zn2 −an1,n2−1sn1zn2−1− ...−a11sz−a10s−a01z−a00
(5)

=

n1

∑
i=0

n2

∑
j=0

bi, jsiz j

sn2zn2 −




n1

∑
i=0

n2

∑
j=0

i+ j 6=n1+n2

ai, jsiz j




.

Multiplying the nominator and denominator of transfer function (5) by s−n1z−n2 we ob-
tain

T (s,z) =
bn1,n2 +bn1,n2−1z−1 +bn1−1,n2s−1 + ...+b00s−n1z−n2

1−an1,n2−1z−1−an1−1,n2s−1− ...−a00s−n1z−n2
=

Y
U

. (6)

By defining

E =
U

1−an1,n2−1z−1−an1−1,n2s−1− ...−a00s−n1z−n2
(7)

we can rewrite (6) in the form

E = U +(an1,n2−1z−1 +an1−1,n2s−1 + ...+a00s−n1z−n2)E,
(8)

Y = (bn1,n2 +bn1,n2−1z−1 +bn1−1,n2s−1 + ...+b00s−n1z−n2)E.

Using (8) we may draw the state variable diagram shown in Fig. 1.
As a state variable we choose the outputs of integrators (x1(t, i), x2(t, i), ..., xn1(t, i))

and of delay elements (xn1+1(t, i), xn1+2(t, i), ..., x2n2(t, i)). Using state variable diagram
(Fig.1) we can write the following differential and difference equations
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ẋ1(t, i) = x2(t, i)
ẋ2(t, i) = x3(t, i)
...
ẋn1−1(t, i) = xn1(t, i)
ẋn1(t, i) = e(t, i)
xn1+1(t, i+1) = a0,n2−1x1(t, i)+a1,n2−1x2(t, i)+ ...

+an1−1,n2−1xn1(t, i)+ xn1+2(t, i)+an1,n2−1e(t, i)
xn1+2(t, i+1) = a0,n2−2x1(t, i)+a1,n2−2x2(t, i)+ ...

+an1−1,n2−2xn1(t, i)+ xn1+3(t, i)+an1,n2−2e(t, i)
...
x2,n2−1(t, i+1) = a0,1x1(t, i)+a1,1x2(t, i)+ ...

+an1−1,1xn1(t, i)+ xn2(t, i)+an1,1e(t, i)
x2,n2(t, i+1) = a00x1(t, i)+a10x2(t, i)+ ...+an1−1,0xn1(t, i)+an1,0e(t, i)
x2,n2+1(t, i+1) = b0,n2−1x1(t, i)+b1,n2−1x2(t, i)+ ...

+bn1−1,n2−1x1,n(t, i)+ x2,n2+2(t, i)+bn1,n2−1e(t, i)
x2,n2+2(t, i+1) = b0,n2−2x1(t, i)+b1,n2−2x2(t, i)+ ...

+bn1−1,n2−2x1,n(t, i)+ x2,n2+3(t, i)+bn1,n2−2e(t, i)
...
x2n2−1(t, i+1) = b0,1x1(t, i)+b1,1x2(t, i)+ ...

+bn1−1,1xn1(t, i)+ x2n2(t, i)+bn1,1e(t, i)
x2n2(t, i+1) = b00x1(t, i)+b10x2(t, i)+ ...+bn1−1,0xn1(t, i)+bn1,0e(t, i)
y(t, i) = b0,n2x1(t, i)+b1,n2x2(t, i)+ ...

+bn1−1,n2xn1(t, i)+ xn2+1(t, i)+bn1,n2e(t, i)

(9)

where

e(t, i) = a0,n2x1(t, i)+a1,n2x2(t, i)+ ...+an1−1,n2xn1(t, i)+ xn1+1(t, i)+u(t, i). (10)

By increasing i by one in differential equations of (9) and by applying derivative to
differential equations of (9), than substituting (10) into (9) we obtain
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ẋ1(t, i+1) = x2(t, i+1)
ẋ2(t, i+1) = x3(t, i+1)
...
ẋn1−1(t, i+1) = xn1(t, i+1)
ẋn1(t, i+1) = a0,n2x1(t, i+1)+a1,n2x2(t, i+1)+ ...

+an1−1,n2xn1(t, i+1)+ xn1+1(t, i+1)+u(t, i+1)
ẋn1+1(t, i+1) = ā0,n2−1ẋ1(t, i)+ ā1,n2−1ẋ2(t, i)+ ...

+ān1−1,n2−1ẋn1(t, i)+an1,n2−1ẋn1+1(t, i)+ ẋn2+2(t, i)+an1,n2−1u̇(t, i)
ẋn1+2(t, i+1) = ā0,n2−2ẋ1(t, i)+ ā1,n2−2ẋ2(t, i)+ ...

+ān1−1,n2−2ẋn1(t, i)+an1,n2−2ẋn1+1(t, i)+ ẋn1+3(t, i)+an1,n2−2u̇(t, i)
...
ẋn2−1(t, i+1) = ā0,1ẋ2(t, i)+ ā2ẋ1,2(t, i)+ ...

+ān1−1,1ẋn1(t, i)+an1,1ẋn1+1(t, i)+ ẋn2(t, i)+an1,1u̇(t, i)
ẋn2(t, i+1) = ā00ẋ1(t, i)+ ā10ẋ2(t, i)+ ...

+ān1−1,0ẋn1(t, i)+an1,0ẋn1+1(t, i)+an1,0u̇(t, i)
ẋn2+1(t, i+1) = b̄0,n2−1ẋ1(t, i)+ b̄1,n2−1ẋ2(t, i)+ ...

+b̄n1−1,n2−1ẋn1(t, i)+bn1,n2−1ẋn1+1(t, i)+ ẋn2+2(t, i)+bn1,n2−1u̇(t, i)
ẋn2+2(t, i+1) = b̄0,n2−2ẋ1(t, i)+ b̄1,n2−2ẋ2(t, i)+ ...

+b̄n2−1,n2−2ẋn1(t, i)+bn1,n2−2ẋn1+1(t, i)+ ẋn2+3(t, i)+bn1,n2−2u̇(t, i)
...
ẋ2n2−1(t, i+1) = b̄0,1ẋ1(t, i)+ b̄1,1ẋ2(t, i)+ ...

+b̄n1−1,1ẋn1(t, i)+bn1,1ẋn1+1(t, i)+ ẋ2n2(t, i)+bn1,1u̇(t, i)
ẋ2n2(t, i+1) = b̄00ẋ1(t, i)+ b̄10ẋ2(t, i)+ ...

+b̄n1−1,0ẋn1(t, i)+bn1,0ẋn1+1(t, i)+bn1,0u̇(t, i)
y(t, i) = b̄0,n2x1(t, i)+ b̄1,n2x2(t, i)+ ...

+b̄n1−1,n2xn1(t, i)+bn1,n2xn1+1(t, i)+ xn2+1(t, i)+bn1,n2u(t, i)

(11)

where

āi, j = ai, j +ai,n2an1, j, b̄i, j = bi, j +ai,n2bn1, j
(12)

for i = 0,1, ...,n1−1, j = 0,1, ...,n2−1.
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Figure 1. State variable diagram for transfer function (6).

Defining

x(t, i) =




x1(t, i)
...

xn1(t, i)
xn1+1(t, i)

...
x2n2−1(t, i)
x2n2(t, i)




(13)

we can write the equations (11) in the matrix form (1a) and (1b) where
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A1 =




0 ... 0 0 0 0 ... 0 0 0 0 ... 0
... ...

...
...

...
... ...

...
...

...
... ...

...
0 ... 0 0 0 0 ... 0 0 0 0 ... 0

ā0,n2−1 ... ān1−1,n2−1 an1,n2−1 1 0 ... 0 0 0 0 ... 0
ā0,n2−2 ... ān1−1,n2−2 an1,n2−2 0 1 ... 0 0 0 0 ... 0

... ...
...

...
...

...
...

...
...

... ...
...

ā01 ... ān1−1,1 an1,1 0 0 ... 1 0 0 0 ... 0
ā00 ... ān1−1,0 an1,0 0 0 ... 0 0 0 0 ... 0

b̄0,n2−1 ... b̄n1−1,n2−1 bn1,n2−1 0 0 ... 0 0 1 0 ... 0
b̄0,n2−2 ... b̄n1−1,n2−2 bn1,n2−2 0 0 ... 0 0 0 1 ... 0

...
...

...
...

...
... ...

...
...

...
...

...
b̄01 ... b̄n1−1,1 bn1,1 0 0 ... 0 0 0 0 ... 1
b̄00 ... b̄n1−1,0 bn1,0 0 0 ... 0 0 0 0 ... 0




A1 ∈ R(n1+2n2)×(n1+2n2),

A2 =




0 1 0 ... 0 0 0 ... 0
0 0 1 ... 0 0 0 ... 0
...

...
...

. . .
...

...
... ...

...
0 0 0 ... 1 0 0 ... 0

a0,n2 a1,n2 a2,n2 ... an1−1,n2 1 0 ... 0
0 0 0 ... 0 0 0 ... 0
...

...
... ...

...
...

... ...
...

0 0 0 ... 0 0 0 ... 0




∈ R(n1+2n2)×(n1+2n2)

B1 =




0
...
0

an1,n2−1
...

an1,0

bn1,n2−1
...

bn1,0




∈ R(n1+2n2)×1, B2 =

[
B21

B22

]
∈ R(n1+2n2)×1,
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B21 =




0
...
0
1



∈ Rn1×1, B22 = [0] ∈ R2n2×1, (14)

C =
[

C1 C2

]
∈ R1×(n1+2n2), C1 =

[
b̄0,n2 b̄1,n2 ... b̄n1−1,n2

]
∈ R1×n1 ,

C2 =
[

C21 C22

]
∈ R1×2n2 ,

C21 =
[

bn1,n2 0 ... 0
]
∈ R1×n2 , C22 =

[
1 0 ... 0

]
∈ R1×n2

D = [bn1,n2 ] ∈ R1×1.

Therefore, the following theorem has been proved.

Theorem 2 There exists a positive realization if all coefficients of the nominator and
denominator of T (s,z) are nonnegative.

If the assumptions of Theorem 2 are satisfied then a positive realization (3) of (5)
can be found by the use of the following procedure.

Procedure 1

Step 1. Write the transfer function T (s,z) in the form (6) and the equations (8).

Step 2. Using (8) draw the state variable diagram shown in Fig. 1.

Step 3. Choose the state variables and write equations (9) and (10) in the form (11).

Step 4. Using (11) find the desired realization (14) of transfer function (5).

Example 1

Find a positive realization (3) of the proper transfer function

T (s,z) =
6s2z+5s2 +4sz+3s+2z+1

s2z−0.5s2 +0.4sz−0.3s−0.2z−0.1
. (15)

In this case n = 2 and m = 1. Using Procedure 1 we obtain the following.
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Step 1. Multiplying the nominator and denominator of transfer function (15) by s−2z−1

we obtain

T (s,z) =
6+5z−1 +4s−1 +3s−1z−1 +2s−2 + s−2z−1

1−0.5z−1 +0.4s−1−0.3s−1z−1−0.2s−2−0.1s−2z−1 =
Y
U

(16)

and

E = U +(0.5z−1−0.4s−1 +0.3s−1z−1 +0.2s−2 +0.1s−2z−1)E
(17)

Y = (6+5z−1 +4s−1 +3s−1z−1 +2s−2 + s−2z−1)E

Step 2. State variable diagram has the form shown in Fig. 2

Figure 2. State variable diagram for transfer function (16).

Step 3. Using state variable diagram we can write the following equations

ẋ1(t, i) = x2(t, i)
ẋ2(t, i) = 0.2x1(t, i)−0.4x2(t, i)+ x3(t, i)+u(t, i)
x3(t, i+1) = 0.2x1(t, i)+0,1x2(t, i)+0,5x3(t, i)+0.5u(t, i)
x4(t, i+1) = 2x1(t, i)+ x2(t, i)+5x3(t, i)+5u(t, i)
y(t, i) = 3,2x1(t, i)+1.6x2(t, i)+6x3(t, i)+ x4(t, i)+6u(t, i)

(18)

Step 4. The desired realization of (15) has the form
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A1 =




0 0 0 0
0 0 0 0

0.2 0.1 0.5 0
2 1 5 0




, A2 =




0 1 0 0
0.2 −0.4 1 0
0 0 0 0
0 0 0 0




,

B1 =




0
0

0.5
5




, B2 =




0
1
0
0




C =
[

3.2 1.6 6 1
]
, D = [6]

(19)

Obtained realization is positive because the conditions of Theorem 1 are satisfied.
The following example shows that the conditions of Theorem 2 are not necessary for the
existence of a positive realization.

4. Generalization for MIMO systems

Consider the m-inputs and p-outputs 2D hybrid linear system (1) with the proper
transfer matrix

T (s,z) =




T11(s,z) ... T1m(s,z)
...

...
...

Tp1(s,z) ... Tpm(s,z)


 ∈ Rp×m(s,z) (20)

where

Tkl(s,z) =

n1kl

∑
i=0

n2kl

∑
j=0

bkl
i, js

iz j

sn1kl zn2kl −




n1kl

∑
i=0

n2kl

∑
j=0

i+ j 6=n1kl+n2kl

akl
i, jsiz j




for k = 1,2, ..., p, l = 1,2, ...,m. (21)
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It is well-known [5] that the 2D transfer matrix (20) can be always written in the

T (s,z) =




n11(s,z)
d1(s,z)

...
n1m(s,z)
dm(s,z)

...
...

...
np1(s,z)
d1(s,z)

...
npm(s,z)
dm(s,z)




=
[

N1(s,z)
d1(s,z)

...
Nm(s,z)
dm(s,z)

]
(22)

where
Nl(s,z) = [ n1l(s,z) ... npl(s,z) ]T

nkl(s,z) = bkl
n1kl ,n2kl

sn1kl zn2kl +bkl
n1kl ,n2kl−1sn1kl zn2kl−1 + ...

+bkl
11sz+bkl

10s+bkl
01z+bkl

00

dl(s,z) = sn1l zn2 l −al
n1 l ,n2 l−1sn1 l zn2 l−1− ...

−al
11sz−al

10s−al
01z−al

00

n1l = n1kl, n2l = n2kl ,

k = 1,2, ..., p; l = 1,2, ...,m

(23)

and T denotes the transpose.
In a similar way as for SISO systems, multiplying the nominator and denominator

of each element of transfer matrix (22) by s−n1l z−n2 l we obtain

El = Ul + d̄l(s,z)El




Y1
...

Yp


 =




n̄11(s,z) ... n̄1m(s,z)
...

...
...

n̄p1(s,z) ... n̄pm(s,z)







E1
...

Em




(24)

where

d̄l(s,z) = al
n1 l ,n2 l−1z−1 +al

n1 l−1,n2l
s−1 + ...+al

00s−n1 l z−n2 l

n̄kl(s,z) = bkl
n1kl ,n2kl

+bkl
n1kl ,n2kl−1z−1 +bkl

n1kl−1,n2kl
s−1 + ...+bkl

00s−n1kl z−n2kl

k = 1,2, ..., p; l = 1,2, ...,m

(25)

Similarly as for SISO systems using (24) we may draw a suitable state variable diagram
for the MIMO system with the proper transfer matrix (22). Using the state variable dia-
gram we may write the set of differential and difference equations in the form (11) (case
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for SISO systems). Defining vectors

x(t, i) =




x1(t, i)
...

xm(t, i)


 where xk(t, i) =




xk,1(t, i)
...

xk,n1 l (t, i)
xk,n1l +1(t, i)

...
xk,(p+1)n2l−1(t, i)

xk,(p+1)n2l
(t, i)




for l = 1,2, ...,m

(26)

u(t, i) =




u1(t, i)
...

um(t, i)


 and y(t, i) =




y1(t, i)
...

yp(t, i)




we may write the set of equations in the form

ẋ(t, i+1) = A1ẋ(t, i)+A2x(t, i+1)+B1u̇(t, i)+B2u(t, i+1)
y(t, i) = Cx(t, i)+Du(t, i)

(27)

where

A1 = blockdiag [ A1
1 ... Am

1 ], A2 = blockdiag [ A1
2 ... Am

2 ],

B1 = blockdiag [ B1
1 ... Bm

1 ], B2 = blockdiag [ B1
2 ... Bm

2 ],

C =




C1
1
...

Cp
1

C1
2
...

Cp
2


 , D =




b11
n111,n211

... b1m
n11m,n21m

...
...

...
bp1

n1 p1,n2 p1 ... bpm
n1 pm,n2 pm




(28)
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and

Al
1 =




0 ... 0 0 0 0 ... 0 0 0 0 ... 0
... ...

...
...

...
... ...

...
...

...
... ...

...
0 ... 0 0 0 0 ... 0 0 0 0 ... 0

āl
0,n2l−1 ... āl

n1l−1,n2 l−1 al
n1 l ,n2l−1 1 0 ... 0 0 0 0 ... 0

āl
0,n2l−2 ... āl

n1l−1,n2 l−2 al
n1l ,n2 l−2 0 1 ... 0 0 0 0 ... 0

... ...
...

...
...

...
. . .

...
...

...
... ...

...
āl

01 ... āl
n1l−1,1 al

n1l ,1 0 0 ... 1 0 0 0 ... 0

āl
00 ... āl

n1l−1,0 al
n1l ,0 0 0 ... 0 0 0 0 ... 0

b̄kl
0,n2l−1 ... b̄kl

n1l−1,n2 l−1 bkl
n1l ,n2 l−1 0 0 ... 0 0 1 0 ... 0

b̄kl
0,n2l−2 ... b̄kl

n1l−1,n2 l−2 bkl
n1 l ,n2 l−2 0 0 ... 0 0 0 1 ... 0

...
...

...
...

...
... ...

...
...

...
...

. . .
...

b̄kl
01 ... b̄kl

n1l−1,1 bkl
n1l ,1

0 0 ... 0 0 0 0 ... 1

b̄kl
00 ... b̄kl

n1l−1,0 bkl
n1l ,0 0 0 ... 0 0 0 0 ... 0




Al
1 ∈ R(n1 l+(p+1)n2l )×(n1l +(p+1)n2l ),

Al
2 =




0 1 0 ... 0 0 0 ... 0
0 0 1 ... 0 0 0 ... 0
...

...
...

. . .
...

...
... ...

...
0 0 0 ... 1 0 0 ... 0

al
0,n2l

al
1,n2l

al
2,n2l

... al
n1l−1,n2l

1 0 ... 0

0 0 0 ... 0 0 0 ... 0
...

...
... ...

...
...

... ...
...

0 0 0 ... 0 0 0 ... 0




Al
2 ∈ R(n1 l+(p+1)n2l )×(n1l +(p+1)n2l )
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Bl
1 =




0
...
0

al
n1l ,n2l−1

...
al

n1l ,0

bkl
n1 l ,n2l−1

...
bkl

n1l ,0




∈ R(n1 l+(p+1)n2l )×1,

Bl
2 =

[
Bl

21

Bl
22

]
∈ R(n1 l+(p+1)n2l )×1

Bl
21 =




0
...
0
1



∈ Rn1 l×1,

Bl
22 = [0] ∈ R(p+1)n2 l×1

Ck
1 =

[
Ck1

1 ... Ckm
1

]
, Ckl

1 =
[

b̄kl
0,n2 l

b̄kl
1,n2 l

... b̄kl
n1l−1,n2 l

]
∈ R1×n1 l ,

Ck
2 =

[
Ck1

2 ... Ckm
2

]
, Ckl

2 =
[

Ckl
21 ... Ckl

2,p+1

]
∈ R1×(p+1)n2 l ,

Ckl
21 =

[
bkl

n1l ,n2l
0 ... 0

]
∈ R1×n2 l , Ckl

2,k+1 =
[

1 0 ... 0
]
∈ R1×n2l

D =
[
bkl

n1l ,nl 2

]
∈ Rp×m

(29)

and

āl
il jl = al

il jl +al
iln2l

al
n1 l jl , b̄kl

il jl = bkl
il jl +al

iln2l
bkl

n1 l jl ,
(30)

for il = 0,1, ...,n1l −1, jl = 0,1, ...,n2l −1.

Summing up the considerations we obtain for the MIMO hybrid linear system the
following theorem.

Theorem 3 There exists a positive realization if all coefficients of the numerators and
denominators of the transfer matrix (20) are nonnegative.

The procedure given for SISO systems with slight modifications can be also used for
finding a positive realization of the transfer matrix (20).
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Example 2

Find a positive realization (3) of the proper transfer matrix

T (s,z)=




b11
11sz+b11

10s+b11
01z+b11

00

sz−a1
10s−a1

01z−a1
00

b12
21s2z+b12

20s2 +b12
11sz+b12

10s+b12
01z+b12

00

s2z−a2
20s2−a2

11sz−a2
10s−a2

01z−a2
00

b21
11sz+b21

10s+b21
01z+b21

00

sz−a1
10s−a1

01z−a1
00

b22
21s2z+b22

20s2 +b22
11sz+b22

10s+b22
01z+b22

00

s2z−a2
20s2−a2

11sz−a2
10s−a2

01z−a2
00




(31)

In this case there are p = 2 outputs and m = 2 inputs. Using Procedure we obtain the
following.

Step 1. Multiplying numerators and denominator of the first column by s−1z−1 and mul-
tiplying numerators and denominator of the second column by s−2z−1 we obtain

T (s,z) =




b11
11 +b11

10z−1 +b11
01s−1 +b11

00s−1z−1

1−a1
10z−1−a1

01s−1−a1
00s−1z−1

b21
11 +b21

10z−1 +b21
01s−1 +b21

00s−1z−1

1−a1
10z−1−a1

01s−1−a1
00s−1z−1

(32)
b12

21 +b12
20z−1 +b12

11s−1 +b12
10s−1z−1 +b12

01s−2 +b12
00s−2z−1

1−a2
20z−1−a2

11s−1−a2
10s−1z−1−a2

01s−2−a2
00s−2z−1

b22
21 +b22

20z−1 +b22
11s−1 +b22

10s−1z−1 +b22
01s−2 +b22

00s−2z−1

1−a2
20z−1−a2

11s−1−a2
10s−1z−1−a2

01s−2−a2
00s−2z−1




and

E1 = U1 +(a1
10z−1 +a1

01s−1 +a1
00s−1z−1)E1

E2 = U2 +(a2
20z−1 +a2

11s−1 +a2
10s−1z−1 +a2

01s−2 +a2
00s−2z−1)E2

(33)[
Y1

Y2

]
=

[
b11

11 +b11
10z−1 +b11

01s−1 +b11
00s−1z−1

b21
11 +b21

10z−1 +b21
01s−1 +b21

00s−1z−1

b12
21 +b12

20z−1 +b12
11s−1 +b12

10s−1z−1 +b12
01s−2 +b12

00s−2z−1

b22
21 +b22

20z−1 +b22
11s−1 +b22

10s−1z−1 +b22
01s−2 +b22

00s−2z−1

]


E1

E2

.




Step 2 State variable diagram for (33) has the form shown in Fig. 3.
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Figure 3. State variable diagram for transfer function (32).

Step 3. Using state variable diagram we can write the following equations

ẋ1,1(t, i) = e1(t, i)
x1,2(t, i+1) = a1

00x1,1(t, i)+a1
10e1(t, i)

x1,3(t, i+1) = b11
00x1,1(t, i)+b11

10e1(t, i)
x1,4(t, i+1) = b21

00x1,1(t, i)+b21
10e1(t, i)

ẋ2,1(t, i) = x2,2(t, i)
ẋ2,2(t, i) = e2(t, i)
x2,3(t, i+1) = a2

00x2,1(t, i)+a2
10x2,2(t, i)+a2

20e2(t, i)
x2,4(t, i+1) = b12

00x2,1(t, i)+b12
10x2,2(t, i)+b12

20e2(t, i)
x2,5(t, i+1) = b22

00x2,1(t, i)+b22
10x2,2(t, i)+b22

20e2(t, i)
y1(t, i) = x1,3(t, i)+b11

01x1,1(t, i)+b11
11e1(t, i)+ x2,4(t, i)+b12

01x2,1(t, i)
+b12

11x2,2(t, i)+b12
21e2(t, i)

y2(t, i) = x1,4(t, i)+b21
01x1,1(t, i)+b21

11e1(t, i)+ x2,5(t, i)+b22
01x2,1(t, i)

+b22
11x2,2(t, i)+b22

21e2(t, i)

(34)

where

e1(t, i) = a1
01x1,1(t, i)+ x1,2(t, i)+u1(t, i)

e2(t, i) = a2
01x2,1(t, i)+a2

11x2,2(t, i)+ x2,3(t, i)+u2(t, i).
(35)
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Step 4. Substituting (35) into (34) and taking into account (26)–(28), the desired realiza-
tion of (31) has the form

A1 =

[
A1

1 0
0 A2

1

]
, A2 =

[
A1

2 0
0 A2

2

]
, B1 =

[
B1

1 0
0 B2

1

]
,

B2 =

[
B1

2 0
0 B2

2

]
, C = [ C1 C2 ] =

[
C1

1 C1
2

C2
1 C2

2

]
,

D =

[
b11

11 b12
21

b21
11 b22

21

]

(36)

where

A1 =




0 0 0 0 0 0 0 0 0
ā1

00 a1
10 0 0 0 0 0 0 0

b̄11
00 b11

10 0 0 0 0 0 0 0
b̄21

00 b21
10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 ā2

00 ā2
10 a2

10 0 0
0 0 0 0 b̄12

00 b̄12
10 b12

10 0 0
0 0 0 0 b̄22

00 b̄22
10 b22

10 0 0




,

A2 =




a1
01 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 a2

01 a2
11 1 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0




,
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B1 =




0 0
a1

10 0
b11

10 0
b21

10 0
0 0
0 0
0 a2

20

0 b12
20

0 b22
20




, B2 =




1 0
0 0
0 0
0 0
0 0
0 1
0 0
0 0
0 0




,

C1 =

[
b̄11

01 b̄12
01 b̄12

11

b̄21
01 b̄22

01 b̄22
11

]
,

C2 =

[
b11

11 1 0 b12
21 1 0

b21
11 0 1 b22

21 0 1

]
,

D =

[
b11

11 b12
21

b21
11 b22

21

]

with (30).

5. Concluding remarks

A method for computation of a positive realization of a given proper transfer matrix
of 2D hybrid linear systems has been proposed. Sufficient conditions for the existence
of a positive realization of a given proper transfer matrix have been established. A pro-
cedure for computation of a positive realization has been proposed. The effectiveness of
the procedure has been illustrated by a numerical example. In general case the proposed
procedure does not provide a minimal realization of a given transfer matrix. An open
problem is formulation of the necessary and sufficient conditions for the existence of
solution of the positive realization problem for 2D hybrid systems in the general case.
Extension of those considerations for 2D hybrid systems described by models with struc-
tures similar to the 2D general model [14] or the 2D first Fornasini-Marchesini model
[18] are also open problems.

References

[1] L. BENVENUTI and L. FARINA: A tutorial on the positive realization problem.
IEEE Trans. Autom. Control, 49(5), (2004), 651-664.

[2] L. FARINA and S. RINALDI: Positive linear systems. Theory and applications. J.
Wiley, New York, 2000.

[3] T. KACZOREK and M. BUSŁOWICZ: Reachability and minimum energy control of
positive linear discrete-time systems with one delay. 12th Mediterranean Conf. on
Control and Automation, Kusadasi, Izmir, Turkey, (2004).

[4] T. KACZOREK: Some recent developments in positive systems. Proc. 7th Conf. of
Dynamical Systems Theory and Applications, , Łódź, Poland, (2003), 25-35.
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