
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. 62, No. 4, 2014

DOI: 10.2478/bpasts-2014-0083

ELECTRONICS

Probabilistic elements in analysis of performance

of multiprocessor systems

K. TABOREK∗ and E. HRYNKIEWICZ

Silesian University of Technology, Department of Electronics, 16 Akademicka St., 44-100 Gliwice, Poland

Abstract. The paper presents important probabilistic elements that should be taken into consideration in the analysis of performance

of classical multiprocessor systems. These elements represent the following quantities: modified arrival rate for processor requests and

a few probabilities, which determine the frequency of certain events when a multiprocessor system is working. There are four peculiar

events: service of another job, existence of the queue, a processor request while the given task is waiting into the queue and the return

of another task into the queue while the given task is waiting in the queue. The first three events happen more often when a system consists

of less number of processors, whereas the fourth event happens more often when more processors work in a system. Including (or not)

the probabilities of these events to the analysis of performance of multiprocessor systems exerts its much influence on the precision of

computations. All the mentioned quantities were described in detail. Formulas for these quantities were derived. Examples of applications

of the formulas to the prediction of performance of various multiprocessor systems were presented.

Key words: arbitration circuit, multiprocessor system, performance analysis, queueing model.

1. Introduction

With the passing of time multiprocessor systems have been

developed in many directions. Today, we have various kinds of

multiprocessor system architectures. There are multiprocessor

systems with common memory and with distributed memory.

Both the mentioned types of multiprocessor systems we may

further divide into other types of systems. For instance, we

can divide the multiprocessor systems with common memo-

ry into systems with a single bus and with multiple buses.

Additionally, the common memory may be divided into mod-

ules etc.

There are many publications in which different methods of

analysis of multiprocessor systems are presented. The subject

of such analysis is often cache memory. The size of this mem-

ory exerts its influence on performance of the whole system

[1–4].

In many papers there are methods of performance analy-

sis for multiprocessor systems with multiple buses or crossbar

switches [5, 6].

Various architectures of multiprocessor systems are as-

sessed whether they suit peculiar software applications [7–9].

There are even publications in which performance prediction

methods of very program-loaded multiprocessor systems are

presented. Here, the systems are examined paying special at-

tention to executing as largest number of applications as pos-

sible [10].

It would be very useful to have an accurate method

of analysis of multiprocessor system performance and thanks

to this method we could examine also an influence of oth-

er valid components of multiprocessor system on its perfor-

mance. In particular we could predict performance of a mul-

tiprocessor system depending on the type of an arbitration

circuit. Such a method for classical multiprocessor systems is

presented in this paper. This method includes special prob-

abilistic elements – probabilities of particular cases. These

elements increase its accuracy.

2. A classical multiprocessor system

and its performance

Let us consider a classical microprocessor system as it is

shown in Fig. 1.

Fig. 1. A classical multiprocessor system

There are N processors and only one memory. The mem-

ory is common for all the processors in the system. The

processors are connected to the memory through a single

time-sharing bus. In one moment even a few processors can

send their requests to access the memory. Of course, at one

∗e-mail: ktaborek@polsl.pl

765



K. Taborek and E. Hrynkiewicz

time only one processor can transfer data through the bus.

Thus, the bus is a bottleneck of the whole system. A special

circuit assigns the bus to one of the requested processors. This

circuit is called arbitration circuit or simply arbiter. It selects

one processor from among the requested ones using an ar-

bitration algorithm (protocol or discipline). Usually, priority

protocols are used in multiprocessor systems.

The most important feature of each multiprocessor sys-

tem is its performance. A special index is used to determine

the performance of multiprocessor systems [11]. This index

is called speed-up and is defined as a ratio of times

SupN =
T1

TN

, (1)

where T1 – execution time of a program in the system with

single processor, TN – execution time of the same program

in the system with N processors.

It is assumed that the program can be divided into parallel

components and each of which can be executed independently

of the others.

If a multiprocessor system is the real system i.e. it is al-

ready built, we can simply measure the execution times of a

program and to put them in Eq. (1).

As it turns out we can also calculate (predict) these exe-

cution times using the queueing theory.

3. The assumed queueing model

and mean waiting times

The first step in our analysis of a multiprocessor system was

acceptance of a suitable queueing model for the system. The

assumed model is shown in Fig. 2.

Fig. 2. The assumed queueing model

The presented network consists of multiple servers, one

queue and one additional server. The multiple servers corre-

spond to processors working parallel in the system. Further,

these multiple servers will be called sources. The queue mod-

els the arbitration circuit. This circuit controls an access to the

bus when processors want to communicate with the memory.

The additional server corresponds to the common memory.

Here a processor reads or writes data. The processor exe-

cutes its machine cycles. If we make the assumption that all

the processors in the system are the same type and they op-

erate with the same clock frequency (homogeneous system),

then these cycles are always equal and we have constant cus-

tomer service time in the server.

In the presented queueing model the number of customers

is constant. It is equal to the number of all the possible proces-

sor requests. Because each processor can send only one its

request at the same time, the number of customers in the

network is equal to the number of processors in the system.

Here we must say that requests of processors may have various

priorities, therefore we must divide all the customers into dif-

ferent types (classes). Let us denote the number of priorities

by K . If each processor has got its priority that is differ-

ent from the others, then the number of priorities is equal to

the number of processors in the system, that is K = N .

For easier analysis we may also assume that all the times

of staying of customers in their sources have got exponential

distributions.

According to the Kendall notation [12] we can describe

this queueing network as M/D/1//1.

We also assume that the queueing protocol includes non-

pre-emptive disciplines only, i.e. a higher priority task cannot

interrupt a lower priority one when its service has already

begun.

Considering the total waiting time of a type k customer

in the queue (the request of a priority k processor) we may

notice that this time may be composed of three parts: W
(k)
1

– time of service completion of the customer which is just

served, W
(k)
2 – time of services of the customers which have

already been in the queue and they have got higher priorities

then the type k customer, W
(k)
3 – time of services of the cus-

tomers which have arrived into the queue during the type k
customer is waiting and they have got higher priorities then

the type k customer.

Hence, we can write

W (k) = W
(k)
1 + W

(k)
2 + W

(k)
3 . (2)

Using mean quantities and taking into consideration that there

are K customers in the system

E[W (k)]K = E[W
(k)
1 ]K + E[W

(k)
2 ]K + E[W

(k)
3 ]K . (3)

Applying proper procedures [13, 14] it is possible to de-

rive the recursive formula given by Eq. (4). Thanks to it we

can compute mean waiting times of a type k customer in the

queue.

E[W (0)]K = p1K

B

2
,

E[W (k)]K = E[W (k−1)]K

·

1 − p3KB
k−2
∑

j=0

p
(jk)
zK λ∗(j) + p2KBλ∗(k−1)

1 − p3KB
k−1
∑

j=0

p
(jk)
zK λ∗(j)

,

(4)

where K – the number of all customers (we have assumed

that the number of priorities is equal to the number of proces-

766 Bull. Pol. Ac.: Tech. 62(4) 2014



Probabilistic elements in analysis of performance of multiprocessor systems

sors, that is K = N ), B – constant customer service time in

the server (it is equal to the processor machine cycle), λ∗(k) –

modified arrival rate of a type k customer (modified intensity

of requests of a priority k processor), p1K , p2K , p3K , p
(jk)
zK

– probabilities of certain cases.

Equation (4) has the essential meaning for further com-

putations. However, in this formula there are a few quantities

which are either inconvenient to using or require an additional

description.

4. Modified intensity of processor requests

The arrival rate λ∗(k) given in Eq. (4) is not convenient for

use. It is related to the input of the queue. It would be signifi-

cantly better if we used the arrival rate related to the source of

a type k customer. These kinds of arrival rates are just closely

depended on program jobs of processors and it is possible to

determine them numerically. Further, for a type k customer

this arrival rate will be called the arrival rate for a type k
customer or for a priority k processor or in other words the

request intensity of processor k. It will be denoted by λ(k)

(without any asterisk).

Let us consider the interarrival time for a type k customer.

This time is equal to the sum of three partial times:

• staying time of the type k customer in its source (the in-

verse of the arrival rate for the priority k processor),

• constant service time of this customer in the server,

• mean waiting time of this customer in the queue.

Arrival rate at the input of the queue is the inverse of this

interarrival time. Thus, we may define our modified intensity

as follows:

λ∗(k) =
1

1

λ(k)
+ B + E[W (k)]K

=
λ(k)

1 + Bλ(k) + λ(k)E[W (k)]K
.

(5)

If k = 0, then mean waiting time of the highest priority

customer is known and then we can compute λ∗(0). If we put

this quantity in Eq. (4), then we will obtain E[W (1)]K . Next

we can compute λ∗(1), etc.

How we see, quantities λ∗(k) are dependent on K . There-

fore these quantities must be computed separately for systems

with various numbers of processors.

5. Probability of another job service

Equation (4) includes a probability which is denoted by p1K .

It is the probability of another job service. In other words, it

is the probability of the case when a customer arrives to the

queue during another customer is still serving. It corresponds

to that situation in which there is at least one another customer

in the service center. Our service center consists of a queue

and a single server. In [13] we can find a formula for the

probability that the M /M /1//K service center is empty, i.e.

there are no customers in it. The formula is as follows:

pK(0) =
1

K
∑

i=0

(

λ

µ

)i
K!

(K − i)!

. (6)

In Eq. (6) there is service rate µ. In our case we may replace

this service rate with the constant quantity of service time

according to relation B = 1/µ.

In Eq. (6) there is also arrival rate λ of a single source.

In our queueing model we have multiple sources (multiple

servers). Here we may say that Poisson processes have got a

very important property. If statistically independent Poisson

processes are merged, the merged arrival process is also a

Poisson process whose arrival rate is the sum of the arrival

rates of the individual processes [15]. Therefore we may treat

the arrival rate in Eq. (6) like the mean arrival rates of all

sources in the system.

Of course, our sought after probability is the complement

to one of the probability given by Eq. (6), so we may write

p1K = 1 − pK(0). (7)

Taking Eqs. (6) and (7) and above-mentioned supplements

into consideration we can finally write the following formula

p1K = 1 −

1
K−1
∑

i=0

[(K − 1)Bλ)]i
(K − 1)!

(K − 1 − i)!

, (8)

where

λ =
1

K

K−1
∑

k=0

λ(k). (9)

Obtained from Eq. (8) numerical results are shown in Table 1.

Table 1

Values of probability p1K versus the number of processors

K
P1K for Bλ =

0.01 0.1 0.2 0.4 0.8

1 0.00 0.00 0.00 0.00 0.00

2 0.01 0.09 0.17 0.29 0.44

3 0.04 0.32 0.53 0.74 0.89

4 0.09 0.62 0.84 0.96 0.99

5 0.15 0.85 0.97 1.00 1.00

6 0.24 0.96 1.00 1.00 1.00

7 0.33 0.99 1.00 1.00 1.00

8 0.44 1.00 1.00 1.00 1.00

The values of probability p1K were computed for the sys-

tems with various numbers of processors and additionally for

different values of relative intensity of processor requestsBλ.

If K = 1, i.e. when only one processor works in the sys-

tem, then we obtain p11 = 0. Indeed, this processor never

waits to access memory.

If K > 1, then probability p1K fast increases with K . The

greater values Bλ, the sooner p1K increases.

Bull. Pol. Ac.: Tech. 62(4) 2014 767



K. Taborek and E. Hrynkiewicz

6. Probability of existence of the queue

In Eq. (4) there is a probability which is denoted by p2K .

This probability is referred to that situation in which there

are at least two another customers in the service center. One

customer is just serving and potential others are waiting in the

queue. This case is identical to real existence of the queue.

In [13] we can find a formula for the probability that in the

M/M/1//K service center there are n customers. The for-

mula is as follows:

pK(n) = pK(0)

(

λ

µ

)n
K!

(K − n)!
. (10)

Similarly, like in the case of Eq. (6) also in the case of Eq. (10)

we may replace service rate µ with the constant quantity of

service time according to relation B = 1/µ. Also similarly,

we may treat arrival rate λ in Eq. (10) like the mean of arrival

rates of all sources in the system. This mean arrival rate is

given by Eq. (9).

This time, our sought after probability is equal to the total

probability reduced by probabilities of those situations when

the service center is empty and there is only one customer in

it. So we may write

p2K = 1 − pK(0) − pK(1)

= 1 −

1 + (K − 1)2Bλ
K−1
∑

i=0

[(K − 1)Bλ]i
(K − 1)!

(K − 1 − i)!

(11)

Equation (11) also includes the obviousness that if a cus-

tomer only just arrives to the service center, then the same

customer cannot already be present in this service center.

Obtained from Eq. (11) numerical results are shown in

Table 2.

Similarly as for the previous probability also the values of

probability p2K were computed for the systems with various

numbers of processors and additionally for different values of

relative intensity of processor requests Bλ.

If K = 1 or K = 2, then we obtain p21 = p22 = 0. In-

deed, for so small number of processors any requested proces-

sor will never come across another requests that could wait

in the queue.

If K > 2, then probability p2K increases fast with K
although slower then for probability p1K .

Also, the greater values Bλ, the sooner p1K increases.

Table 2

Values of probability p2K versus the number of processors

K
p2K for Bλ =

0.01 0.1 0.2 0.4 0.8

1 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00

3 0.00 0.05 0.15 0.33 0.55

4 0.01 0.27 0.55 0.81 0.93

5 0.02 0.61 0.88 0.97 1.00

6 0.04 0.87 0.98 1.00 1.00

7 0.09 0.97 1.00 1.00 1.00

8 0.17 1.00 1.00 1.00 1.00

7. Probability of a processor request while

another one is just waiting in the queue

Equation (4) includes a probability denoted by p3K . It is the

probability of the situation in which while a type k customer

is just waiting, another customer arrives. First we will look at

the situation from the point of view of the type k customer.

This situation can be happened if this customer is waiting

in the queue. This condition was already defined by proba-

bility p1K . But the point of view of the second customer is

different. For this customer the necessary condition of this

situation is existence of the queue. This condition is defined

by probability p2K . Of course, probability p2K includes prob-

ability p1K so, we may finally write

p3K = p2K . (12)

8. Probability of a return of the served job while

another request is still waiting in the queue

In Eq. (4) there is one more probability which is denoted by

p
(jk)
zK . It is the probability that during waiting a type k cus-

tomer in the queue another customer of type j, which was ear-

lier in the queue, would return to the queue again still before

the type k customer service. As it turns out this probability

is the sum of two partial probabilities.

p
(jk)
zK = p

(j)
zK + p

(jk)′

zK . (13)

The first element in Eq. (13) is the probability that a type

j customer do not arrive to the service center (a priority j
processor do not send its request). In other words the type

j customer there is in its source. This customer stays in the

source for the period of time whose value is determined by

its arrival rate. Thus, the first element of our sought after

probability is the relation of this time to the interarrival time

of this customer.

p
(j)
zK =

1

λ(j)

1

λ(j)
+ B + E[W (j)]K

=
1

1 + Bλ(j) + λ(j)E[W (j)]K
.

(14)

The second element in Eq. (13) is the probability that the

type j customer, which was earlier in the queue, return to its

source still before the service of a type k customer. This event

can be happened in the inverse of situation than that deter-

mined by the first element. So, in Eq. (16) there is additionally

a complement to 1.

Here we have the following situation. The priority j
processor had sent its request to access the memory and then

the priority k processor sent its request. We assume that pri-

ority j is greater than priority k. Thus, in the moment when

the type k customer arrived the type j customer had already

been waiting in the queue. We may assume that this period

of time was equal to half the mean service time of the type

j customer. On account of different priorities the type j cus-

tomer was served first and it returned to its source. From this

768 Bull. Pol. Ac.: Tech. 62(4) 2014



Probabilistic elements in analysis of performance of multiprocessor systems

moment on a probability exists that the type j customer will

arrive to the queue again. Furthermore, if this arrival hap-

pens before the service of the type k customer, the type j
customer will serve first again, etc. Of course, this situation

will be the more feasible, if the more customers there are

simultaneously in the queue.

We may write the following expression

E[W (k)]K −

1

2
(E[W (j)]K + B)

E[W (k)]K
. (15)

It is relation of the mean period of time in which existing of

the probability of a next arrival of the type j customer while

the type k customer is still waiting to the mean time waiting

of the type k customer in the queue.

Taking the above consideration and Eq. (15) we can write

equation for the second element in Eq. (13) as follows

p
(jk)′

zK = (1 − p
(j)
zK)







E[W (k)]K −

1

2
(E[W (j)]K + B)

E[W (k)]K






.

(16)

In Eq. (16) there is a mean waiting time of the type k
customer. That time is still unknown to us. However, we may

say that for a given system the mean waiting times for lower

priority customers are more and more longer. So, let us write

E[W (k)]K = E[W (k−1)]K + ∆. (17)

In Eq. (17) there is an error that is denoted by ∆. To reduce

this error to a minimum we may assume with an approxima-

tion that it is the difference between the mean waiting times

of a type k−1 customer and a type k−2 customer. Taking

this assumption and Eqs. (16) and (17) into consideration we

may write as follows

p
(jk)′

zK
∼= (1−p

(j)
zK)

(

1−
E[W (j)]K + B

2(2E[W (k−1)]K−E[W (k−2)]K)

)

.

(18)

Equation (18) is valid if K > 2, 1 < k < K and j < k.

Because of the above approximation we must make yet

another condition as follows

E[W (j)]K + B < 2(2E[W (k−1)]K − E[W (k−2)]K). (19)

The condition from Eq. (19) must be met because obtained

from Eq. (18) numerical values of probabilities must not be

negative. If the condition from Eq. (19) is not met, we must

make that p
(jk)′

zK = 0.

For k = 0, then the mean waiting time in the queue

of the highest priority customer E[W (0)]K is known. Thanks

to this we can compute p
(0)
zK . When we place this value to

Eq. (4), we will compute E[W (1)]K , thanks to this we can

compute p
(1)
zK , etc.

Probabilities p
(k)
zK are dependent on K . Therefore these

probabilities must be computed separately for systems with

various numbers of processors.

9. Results of experiments

Two examples of applications of Eq. (4) are presented bellow.

Example 1. Let us consider a classical multiprocessor sys-

tem that is equipped with the arbitration circuit with fixed

priorities. It means the algorithm which grants all processors

fixed priorities was implemented in this arbitration circuit. All

the processors have got different priorities.

In [16] was presented a procedure for computation of per-

formance of a multiprocessor system with the fixed priority

arbitration circuit. Of course, Eq. (4) is the essential com-

ponent of this procedure. The obtained numerical results are

shown in Table 1 and in a graphical form in Fig. 3.

Table 3

Computed and measured speed-ups versus number of processors (variable

load and fixed priority arbiter)

K SupK#−
SupK#−(m)

1 1.00 1.00

2 1.87 1.87

3 2.63 2.69

4 3.35 3.46

5 4.06 4.19

6 4.78 4.90

7 5.47 5.43

8 5.35 5.23

Fig. 3. Computed and measured speed-ups versus number of proces-

sors (variable load and fixed priority arbiter)

The obtained analytic results were verified in the real mul-

tiprocessor system [17]. Measurements are additionally denot-

ed by (m).

The computations and measurements were made for vari-

able load of processors in the system. The kind of this load

is denoted by # and described in [18].

Bull. Pol. Ac.: Tech. 62(4) 2014 769



K. Taborek and E. Hrynkiewicz

Example 2. Let us consider a classical multiprocessor system

that is equipped with a special arbitration circuit. This ar-

biter we may called arbitration circuit with cyclically shifted

priorities (further denoted by CP). It means the algorithm in

which all priorities are changed during every service (when

any processor is accessing the memory) was implemented

in this arbitration circuit. At the beginning different priori-

ties must be determined to all processors. When the selected

processor is serving all the other processors in the system de-

crease their priorities, except the one which had got the lowest

priority. The least important processor becomes the most im-

portant one in the system. The exchange of priorities of the

processors during a service is shown graphically in Fig. 4.

Fig. 4. Exchange of priorities for the CP discipline

Fig. 5. Computed and measured speed-ups versus number of proces-

sors (variable load and CP arbiter)

All the processors have got different priorities.

In [19] was presented a procedure for computation of per-

formance of a multiprocessor system with the CP arbitration

circuit. Also here, Eq. (4) is the essential component of this

procedure. The obtained numerical results are shown in Table

2 and in a graphical form in Fig. 5.

Table 4

Computed and measured speed-ups versus number of processors (variable

load and CP arbiter)

K SupK#CP SupK#CP (m)

1 1.00 1.00

2 1.87 1.87

3 2.63 2.68

4 3.29 3.43

5 3.85 4.10

6 4.35 4.67

7 4.80 5.09

8 5.17 5.36

Similarly, the obtained analytic results were verified in the

real multiprocessor system [17] and measurements are denot-

ed by (m).

Also, the computations and measurements were made for

variable load of processors working in the system. The kind

of this load is denoted by #.

10. Conclusions

Equation (4) has the essential meaning for performance com-

putations of classical multiprocessor systems. In order to

increase the accuracy of the analytical results Eq. (4) was

equipped with several additional quantities. These quantities

are exactly described in this paper. Thanks to Eq. (4) we can

analyse multiprocessor systems in various hardware config-

urations. For instance, we may analyse multiprocessor sys-

tems that are equipped with various arbitration circuits. As in

the included examples the arbitration circuits may differ from

their algorithms of request service of processors.

It is very important that it is not necessary to build real

multiprocessor systems with their equipment in all configu-

rations. On the base of presented computations we can say

which of the considered systems achieve higher performance.

In the case of multi-core processors in which two or more

central processing units (cores) work together on the same

chip, we often deal with the phenomenon of fast increasing

the temperature on some of the cores. We ought to take into

consideration this phenomenon in physical structures of such

multiprocessor systems. We should supply proper solutions

to limit this disadvantageous phenomenon. For example, in

one of the solutions we can use proper sensors to monitor

temperature of the cores of a multi-core processor [20].

Here, we must say that this mentioned above aspect of

increasing of temperature is not included in the presented

analysis in this paper.

All the analytically obtained results of performance of

multiprocessor systems were verified in the real multiproces-

sor system. This real system was equipped with a special

770 Bull. Pol. Ac.: Tech. 62(4) 2014



Probabilistic elements in analysis of performance of multiprocessor systems

measuring circuit. Thanks to this circuit we could measure

execution times of programs in this system. Of course, in the

purpose of verification of the analytical results proper test pro-

grams were written so that, we ensured the same conditions

as for the analytical computations.

On the base of the two included examples of application

of Eq. (4) and the other ones [14, 21] we may say that Eq. (4)

gives high precision of analytical results. For the presented re-

sults the maximum error is not greater than 3.5%. Programs

destined to analysis or simulation of queueing networks usu-

ally achieve accuracy of between ten or twenty per cent. For

instance, in [22] was presented a model of a similar multi-

processor system validated by system measurements. For this

model the maximum error of analytical results is equal to 9%.

REFERENCES

[1] E. Berg, H. Zeffer, and E. Hagersten, “A statistical multiproces-

sor cache model”, IEEE Int. Symp. on Performance Analysis

of Systems & Software 1, 89–99 (2006).

[2] Chi Xu, Xi Chen, R.P. Dick, and Z.M. Mao, “Cache con-

tention and application performance prediction for multi-core

systems”, IEEE Int. Symp. on Performance Analysis of Systems

& Software 1, 76–86 (2010).

[3] J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahi-

an, M. Horowitz, and C. Kozyrakis, “Comparative evaluation

of memory models for chip multiprocessors”, ACM Trans. on

Architecture and Code Optimization 5 (3), CD-ROM (2008).

[4] P. Prieto, V. Puente, and J.-A. Gregorio, “Multilevel cache

modeling for chip-multiprocessor systems”, Computer Archi-

tecture Letters 10 (2), 49–52 (2011).

[5] Kim Jongioon and A. El-Amawy, “Performance and architec-

tural features of segmented multiple bus system”, Int. Conf. on

Parallel Processing 1, 154–161 (1999).

[6] C.-H. Tung and C.W. McCarron, “Analysis of a multiple bus

multiprocessor”, 26th Asilomar Conf. on Signals, Systems and

Computers 2, 925–929 (1992).

[7] I. Assayad and S. Yovine, “Performance analysis of embed-

ded multiprocessor industrial applications: methodology and

tools”, 14th IEEE Int. Conf. Electronics, Circuits and Systems

1, 907–910 (2007).

[8] S. Manolache, P. Eles, and Zebo Peng, “Schedulability analy-

sis of multiprocessor real-time applications with stochastic task

execution times”, ACM Int. Conf. on Computer Aided Design

1, 699–706 (2002).

[9] J. Rosen, A. Andrei, P. Eles, and Zebo Peng, “Bus access

optimization for predictable implementation of real-time ap-

plications on multiprocessor systems-on-chip”, 28th IEEE Int.

Real-Time Systems Symp. 1, 49–60 (2007).

[10] A. Kumar, B. Mesman, H. Corporaal, and Yajun Ha, “Iterative

probabilistic performance prediction for multi-application mul-

tiprocessor systems”, IEEE Trans. on Computer Aided Design

of Integrated Circuits and Systems 29 (4), 538–551 (2010).

[11] E. Gelenbe, Multiprocessor Performance, John Wiley & Sons

Ltd., Chichester, 1989.

[12] D.G. Kendall, “Some Problems in the Theory of Queues”,

J. Royal Statistical Society B 13, 151–185 (1951).

[13] T. Czachórski, Queueing Models in Performance Evaluation

of Computer Networks and Systems, Jacek Skalmierski’s Com-

puter Workshop, Gliwice, 1999, (in Polish).

[14] K. Taborek, Arbitration Circuits for Multi-processor Systems,

Doctor’s Thesis, Silesian Technical University, Gliwice, 2003,

(in Polish).

[15] S. Lavenberg, Computer Performance Modeling Handbook,

Academic Press, New York, 1983.

[16] K. Taborek, “An Analytical method of performance predic-

tion of multiprocessor systems”, Electrical Review 10, 72–75

(2011), (in Polish).

[17] K. Taborek and E. Hrynkiewicz “A multiprocessor system for

arbitration circuit examination – hardware implementation”,

Electronics 9 (LI), 48–51 (2010), (in Polish).

[18] K. Taborek and Z. Pogoda, “Irregular load of processors in

multiprocessor system”, Electronics 10 (L), 60–63 (2009), (in

Polish).

[19] K. Taborek and E. Hrynkiewicz, “Arbitration circuit with cycli-

cally shifted priorities for multi-processor system”, 3rd Int.

IFAC Workshop on Discrete-Event System Design 1, CD-ROM

(2006).

[20] M. Frankiewicz and A. Kos, “Overheat protection circuit for

high frequency processors”, Bull. Pol. Ac.: Tech. 60 (1), 55–59

(2012).

[21] K. Taborek, “An analytical method for activity description of

arbitration circuits with rotation of priorities”, Electronics 10

(LIII), 76–78 (2012), (in Polish).

[22] Thing-Fong Tsuei and M.K. Vernon, “A Multiprocessor Bus

Design Model Validated by System Measurement”, IEEE

Trans. on Parallel and Distributed Systems 6 (3), 712–727

(1992).

Bull. Pol. Ac.: Tech. 62(4) 2014 771


