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VIBRATIONS AND STABILITY OF BERNOULLI-EULER AND TIMOSHENKO 
BEAMS ON TWO-PARAMETER ELASTIC FOUNDATION

P. OBARA1

The vibration and stability analysis of uniform beams supported on two-parameter elastic founda-
tion are performed. The second foundation parameter is a function of the total rotation of the beam. 
The effects of axial force, foundation stiffness parameters, transverse shear deformation and rota-
tory inertia are incorporated into the accurate vibration analysis. The work shows very important 
question of relationships between the parameters describing the beam vibration, the compressive 
force and the foundation parameters. For the free supported beam, the exact formulas for the natural 
vibration frequencies, the critical forces and the formula defi ning the relationship between the vi-
bration frequency and the compressive forces are derived. For other conditions of the beam support 
conditional equations were received. These equations determine the dependence of the frequency 
of vibration of the compressive force for the assumed parameters of elastic foundation and the 
slenderness of the beam.
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1. INTRODUCTION

The stability and dynamic analyses of beams or beam-columns belong to the classical 
problems of the structural mechanics [the base items 1-3]. These analyses are carried 
out by using Bernoulli-Euler beam theory for the case of slender beams or Timoshenko 
theory for stocky beams (the beams with small length-to-depth ratio). In the fi rst one, 
straight lines or planes normal to the neutral beam axis remain straight and normal after 
deformation, in the second one, the infl uence of transverse shear deformation and rota-
tory inertia is considered [4,5]. These models fairly realistically describe the behavior 
of the beams, but the description of subsoil and its interaction with a beam resting on it 
is not easy. 

The soil-structure interaction problems occupy an important place in many fi elds 
of structural and foundation engineering, e.g. in the analysis of building, geotechni-
cal, highway, and railroad structures, submerged pipes, etc. For over a century, various 
physical and mathematical foundation models, approximating the real behavior, were 
formulated. These foundations are characterized by one, two or more parameters [6,7]. 
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The oldest, most frequently used model, was formulated in 1867 by Winkler [8]. In 
that model, the beam-supporting soil is modeled as a series of closely spaced, mutually 
independent, linear elastic vertical springs which, evidently, provide resistance in direct 
proportion to the defl ection of the beam. In the Winkler model, the properties of the 
soil are described by only one parameter, which represents the stiffness of the vertical 
spring. Although the model represents the simplest form of elastic foundation, in most 
practical applications, it is used to model soil behavior. Timoshenko and Gere [2] pro-
posed a solution for simply supported uniform beams resting on the Winkler type foun-
dation. Free vibration and stability analysis of beams resting on the Winkler foundation 
was studied in Refs [9–12]. The post-critical loads for Euler and Beck columns resting 
on the elastic foundation were presented in Ref. [13]. In Ref. [14], the thermal buckling 
and post-buckling of a pinned-fi xed beam was investigated. The vibration and stability 
analyses of an infi nite Bernoulli–Euler beam and an infi nite shear beam-column resting 
on the Winkler-type elastic foundation, by using a Fourier transform, were performed 
by Kim [15,16]. In those papers, the analyses were carried out for the system subjected 
to a static axial force and a moving load with either constant or harmonic amplitude var-
iations. In Ref. [17], a beam on equidistant elastic supports was considered as a beam 
on the elastic foundation in static and free vibration problems. 

Many researchers have aimed to generalize and improve the Winkler model fre-
quently adopted to solve soil-structure interaction problems. More realistic hypothesis 
is considered in the elastic foundation model with two parameters. The most commonly 
used foundation models include the following: the Pasternak model [18], the Filonien-
ko-Borodich model [19], and the Vlasov-Leontiev model [20]. In those models, the fi rst 
parameter represents the stiffness of the vertical spring, as in the Winkler model, where-
as the second parameter is introduced to account for the coupling effect of the linear 
springs. In the fi rst case, the second parameter can be considered as the shear stiffness 
of a shear layer and in the second – as the tension in an elastic membrane connecting the 
top ends of the Winkler springs. The last model consists of an elastic layer resting on the 
non-deformable base. The analysis using Vlasov model was examined in Refs [21–23]. 

The analysis of a beam resting on two-parametrical elastic foundation has been 
conducted by many authors [24–33]. A majority of them employed a fi nite element 
formulation to perform analyses. For example, Naidu and Rao were concerned with 
the stability analysis [24] and the vibration behavior [25] of the Bernoulli-Euler beam 
resting on the modifi ed Pasternak model. The effect of the elastic foundation on buck-
ling loads for various end boundaries was examined in those papers. The fi nite ele-
ment technique for determining the vibration characteristics of a Bernoulli-Euler and 
Timoshenko beam was also used by Yokoyama [26]. In that work, the effect of axial 
force, foundation stiffness parameters, transverse shear deformation and rotatory inertia 
were incorporated into the fi nite element model. In Ref. [27] approximate explicit for-
mulas for the fundamental natural vibration frequency of Timoshenko beams mounted 
on the Pasternak foundation were derived. The dynamic stiffness matrix and the load 
vector of the Timoshenko beam-column resting on the two-parameter elastic foundation 
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with generalized end condition were presented in Ref. [28]. The static, dynamic and sta-
bility behavior of framed structures made of beam-columns were analyzed in that paper. 
Free vibration frequencies of Timoshenko beams on two-parameter elastic foundation 
were examined by Rosa [29] for two different models. In the fi rst model, the second 
foundation parameter is assumed to be a function of the fl exural rotation, whereas in the 
second model, it is assumed to be a function of the global cross-section rotation. Studies 
of analytical considerations of stability and vibration are generally not readily available 
in the literature.

The purpose of this article is to present a general formulation for the vibration and 
stability problems of beams with various boundary conditions, supported on two-pa-
rameter elastic foundation. The second foundation parameter is a function of the total 
rotation of the beam, like in Ref. [29]. The effects of the shear deformation, rotatory 
inertia and the foundation parameters on the frequency and critical loads of the beam 
are discussed in detail. Wherein, it should be stressed that the relationship between the 
parameters describing the beam vibration, the compressive force and the foundation 
parameters will be considered.

2. THEORY AND FORMULATION

E,J,G,A,l,

S S

q(x,t)

x

dx

ku
kw

Fig. 1. Model of a beam with an axial force resting on a two-parameter elastic foundation.

Consider a beam of initial length l, axially compressed with force S, resting on the 
elastic foundation, as shown in Figure 1. In the presented formulation, it is assumed 
that: (1) the beam is made of an isotropic homogenous linear elastic material with 
the Young’s modulus E, the shear modulus G, the Poisson’s ratio υthe transverse 
cross-section of the beam is doubly symmetric with respect to the height of beam h, 
the area A, the moment of inertia J; (3) the beam has uniform mass density ρ per unit 
length; (4) the shear coeffi cient depending on the shape of cross-section κis taken into 
account; (5) the central axis is a straight line; (6) the vibration amplitudes of the beam 
are suffi ciently small; (7) the damping of the foundation are negligible; (8) the bonding 
between the beam and foundation is perfect.
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The analysis is made for Timoshenko beam model. As a result, the effects of trans-
verse shear deformation and rotatory inertia are taken into account. The cross-section 
initially normal to the neutral axis of the beam remains plane, but no longer normal to 
that axis in bending. The slope of the defl ection curve txwI ,~   depends on the rotation 
of the beam cross-section, tx,~ , and additionally, on the average shear deformation 
angle, tx,~ : 

(2.1) txtx
x

txw ,~,~,~
  

The effect of the rotatory inertia is expressed by:

(2.2) dx
t

txJtxM 2
B ,~

,~ 2

 

The section forces can be expressed by the defl ection and rotation function as fol-
lows:

(2.3) tx
x

txwGAtxGAtxT ,~,~
,~,~

 

(2.4) 
x

txEJtxM ,~
,~   

The elastic foundation is idealized as a constant two-parameter model characterized 
by two moduli, i.e. the vertical foundation modulus kw (the Winkler parameter) and the 
horizontal foundation modulus ku. In the case ku = 0, this model is reduced to the usual 
Winkler model. The foundation response is taken into account as the vertical ground 
reaction, proportional to the vertical displacement txw ,~ :

(2.5) txwktxq wS ,~,~   

and the horizontal reaction proportional to the horizontal displacement of the extreme 
fi bres of the beam txu ,~ . This effect is taken into account in the form of the bending 
moment:

(2.6) txktxmS ,~,~   

where kφ = ku h2 / 4
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2.1. THE DIFFERENTIAL EQUATION DERIVATION

The dynamic equilibrium on the differential element of the beam is shown in 
Figure 2. Assuming a small curvature in the current confi guration xw ,1~cos  

xwxw ~~sin , the transverse and rotational equilibrium equations are:

(2.7) 
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Fig. 2. Forces, moments and deformations of the differential element

Substituting Eqs. (2.3) and (2.4) into (2.7) results in

(2.8) 
.0~~~~~

0~~~~~~
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2

2
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22
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From now on, the free harmonic vibrations of the beam will be considered 0~q . 
Following the introduction of the non-dimensional coordinate along the axis of the 
beam ξ = x/l;  ξ  á0,1ñ and parameters describing the beam:

(2.9) ,
2

2

EJ
Sl  2

2

1
1 , 
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EJ  ,A  
EJ
l 4

4   

and the foundation:
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(2.10)
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equations (2.8) can be written in the form:

(2.11) 
0~~1~

~1~~

....
2282442424

42442422

wnwnwn

www

w
II

w
II

w
IV

  

(2.12) I
w

IIII www
l

n ~1~~11~1~ 24242244   

Applying the separation of variables to the functions tw ,~   and t,~ : 

(2.13) ,,~ tiewtw   tiet,~   

where ω is the circular vibration frequency, and substituting into (2.11), the differential 
equation of the motion of the harmonic amplitudes is obtained:

(2.14) 02 Yw Xww IIIV   

where:

(2.15) 
,2 24442 nX w

2  nY w
244442 1 , 

EJ
l 42

4  
 

After substituting Eqs. (2.13) into (2.12), the total rotation of the beam cross-section has 
following form:

(2.16) IIII dwwe
l
1   

where:

(2.17) ,
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A number of specifi c cases of equations (2.14) and (2.16) can be distinguished. 
If ω = 0, the equations describe the stability of Timoshenko beam. If kw = ku = 0  

0,0 44
w  the equations describe free vibrations or the stability of Timoshen-

ko beam with no elastic foundations to rest on. If ζ = 0 (ε = 0), (2.14) and (2.16) 
become the equations for Bernoulli-Euler beam and then ,2 42X

 
,44

wY and 
Iwl1 .  

The solution of homogeneous differential equation (2.14) is the function:

(2.18) 4321
4321

kkkk eCeCeCeCw   

where the coeffi cients ki, (i=1,2,3,4) are the roots of the characteristic equation:

(2.19) 2
24,3

2
12,1 , kkkk  

where:

(2.20) ., 22
2

22
1 YXXkYXXk  

The roots (2.19) depend on the relationships between the coeffi cients 2X and Y.

2.2. THE ANALYSIS OF THE RESULTING SOLUTION

In the orthogonal coordinate system 2X,Y (Figure 3), the parabola Y = X2 and the 
2X-axis split up the 2X,Y-plane into four regions, in which the following relationships 
between coeffi cients 2X and Y hold:

(2.21) I: 2002 XYX ,  II: 2XY ,  II: 2002 XYX ,  IV: 0Y .  

On the basis of the relationships (2.21) taking into account that the foundation pa-
rameters ku and kw and the shear deformation parameter ζ are non-negative values, we 
can conclude that:
 if the stability analysis of Timoshenko and Bernoulli-Euler beam on one or two-

parameter elastic foundation is carried out, the coeffi cients 2X and Y satisfy the 
conditions for the region I,

 if the static analysis of beams on elastic foundations is performed, the conditions 
characterizing the region II occur, 

 if the tensile forces affect the beams, the coeffi cients 2X and Y satisfy the inequali-
ties characterizing the region III,

 the phenomenon of free vibration or vibration of the tensile or compressive loads 
of the beam resting on elastic foundations is described by the coeffi cients 2X and Y 
satisfying the inequalities characterizing the region IV,
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 the case, for which 2X=0 and Y=0 (the origin 2XY), describes a static analysis of 
beams with no elastic foundations to rest on.
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+
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+
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Fig. 3. The division of 2X,Y plane into four areas

Figure 3 shows geometrical picture of all the possible cases of magnitudes and the 
relationships between the coeffi cients 2X and Y appearing in the differential equation 
(2.14). At the same time, the relationships (2.21) enable us to fi nd out whether the pa-
rameters ki (2.19) are real, imaginary or complex numbers. Thus, a form of general in-
tegral (2.18) of the differential equation (2.14) depends upon which of the relationships 
(2.21) is satisfi ed by the coeffi cients 2X and Y.

2.2.1. THE SOLUTION OF EQUATION (2.14) IN REGIONS I, III AND IV

If the coeffi cients 2X and Y take their values from the fi rst region k1
2 and k2

2 are nega-
tive real numbers, k1,2 and k3,4 have imaginary values:

(2.22) 14,312,1 , imkipk   

where:

(2.23) YXXmYXXp 2
1

2
1 ,   

In the third region k1
2 and k2

2 are positive real numbers, so k1,2 and k3,4 are actual values:

(2.24) 34,332,1 , mkpk   

where:
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(2.25) YXXmYXXp 2
3

2
3 ,   

In the fourth region, k1
2 is a positive, but k2

2 – a negative number, therefore the roots k1,2 
are real and k3,4 are imaginary numbers:

(2.26) imkpk 4,32,1 ,   

where:

(2.27) ,2 XYXp  .2 XYXm   

If we consider the relationship between the parameters pi and mi  (pi = p, m1 = m, p3 = p, 
m3 = in) and trigonometric dependencies:

(2.28) ziizziz sinsinh,coscosh   

the general integral (2.18) can be written fi nally in the form:

(2.29) mCmCpCpCw sincossinhcosh 4321   

The amplitude equation of the rotation of the beam cross-section is received by substi-
tuting derivatives of the function (2.29) to (2.16):

(2.30) mBCmBCpACpAC
l

cossincoshsinh1
4321   

where:

(2.31) ,3 dpepA  .3 dmemB  

2.2.2. THE SOLUTION OF EQUATION (2.14) IN REGION II

If the coeffi cients 2X and Y take their values from the second region k1
2 and k2

2 are 
complex numbers, k1,2 and k3,4 are complex numbers, too:

(2.32) 
2
1sin

2
1cos4

4,3,2,1 iYk ; 
Y

Xcos   

where υ is an amplitude of a complex number.
The general integral (2.18) for this cases can be expressed as:
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(2.33)
 224

223222221

sinsinh
cossinhsincoshcoscosh

mpC
mpCmpCmpCw

 
 

where:

(2.34) 22
1sin,

22
1cos 4

2
4

2
XYYmXYYp   

and the amplitude equation of the rotation of the beam cross-section (2.16) may be 
written as:

(2.35) 

22224

22223

22222

22221

cossinhcoshsin
sinsinhcoshcos
coscoshsinhsin

sincoshsinhcos

mpFpmEC
mpFpmEC
mpFpmEC

mpFpmECl

  

where:

(2.36) ,3 2
2

2
22 mpedpE  2

2
2
22 3pmedmF .  

2.3. THE DETERMINATION OF THE EIGENVALUES

Analyzing the differential equation (2.14), among the derived expansion functions, the 
expressions can be distinguished that describe the defl ected function of the beam under 
free vibrations or under buckling. In both cases, it is the function (2.29). Four integra-
tion constants Ci appearing in the (2.29) are to be calculated by imposing the boundary 
conditions. For the simply supported beam, boundary conditions:

(2.37) 0)0(w ;  0)0(M ;  0)1(w ;  0)1(M  

lead to the following homogeneous system of equations: 

(2.38) 

0
0
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The condition, from which we determine the eigenvalues, is resetting the primary deter-
minant of equations (2.38), which leads to the equation:

(2.39) 0sinhsin)( 2 pmApBm  

whose fulfi llment is a condition of equilibrium bifurcation of the element under com-
pression. The equation (2.39) has solutions for:

(2.40) ;km  ...3,2,1k   

which, after using the formulas (2.27)2, (2.15) leads to the dependence:

(2.41) 2244

2244

22

44

1 kn
kn

k
w   

If λ = 0, we obtain the formula for the critical compressive force:

(2.42) 2224

224

22

4

1 l
EJ

k
k

k
S w

KR  

and if σ = 0 – two natural frequency bands are received:

(2.43) 4

2

24

2

1 2
4;

2
4

l
EJ

a
acbb

l
EJ

a
acbb

kk  

where:

(2.44) 
.

1,
4224224

2242242

ww

w

kkc

knkbna
 

If we do not take into account the effect of rotational inertia, we get the formula for one 
natural frequency band:

(2.45) .
1 4224

4224224

1 l
EJ

k
kk ww

k   
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A number of specifi c cases of the formulas (2.42) and (2.45) can be distinguished. 
If 0uw kk  0,0 44

w  the equations describe the critical compressive force and 
the natural frequency of Timoshenko beam with no elastic foundations to rest on. If 
ζ = 0 (ε = 1), (2.42) and (2.45) become the formulas of eigenvalues for Bernoulli-Euler 
beam (Table 1).

Table 1
The formulas for the critical compressive force SKR and the natural frequency ω for Bernoulli-Euler and 

Timoshenko simply supported beam

Bernoulli-Euler Timoshenko
beam with elastic foundation to rest on beam with no elastic foundation to rest on

KRS 2lEJ
22

442244

k
kk w  22k 22

22

1 k
k

4lEJ  442244
wkk 22k 22

22

1 k

k

On the basis of the formula (2.41), it is possible to determine the dependence that 
expresses the vibration frequency of the compressive force for the simply supported 
beam. For other conditions of the beam support, we can determine the value of natural 
frequencies and critical forces, and the relationship between them, from the following 
conditional equations:
 for the clamped-clamped beam:

(2.46) 0sinsinhcoscosh12 22 mpBAmpAB   

 for the clamped-hinged beam:

(2.47) 0cossinhsincosh mpBmpABmAp  

 for the cantilever beam:

(2.48) .0sinsinh2
coscosh

2

222222

mpBpAmpmAB
mpBmApABBApmBmAppmAB

 

Equations (2.46)–(2.48) determine the dependence of the frequency of vibration of the 
compressive force for the assumed parameters of elastic foundation and the slenderness 
of the beam.
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3. EXAMPLES AND DISCUSSIONS

3.1. EXAMPLE 1
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Fig. 4. Non-dimensional critical forces σ (a) and non-dimensional frequencies of vibration λ (b) for simply 
supported beam with no elastic foundations to rest on. Infl uence of elastic foundations on σ (c) and on 
λ (d)Bernoulli-Euler beam theory (---),Timoshenko beam theory (—), fi rst values (▲), second values 

(■), third values (●)

A reinforced concrete simply supported beam of length l = 8 m resting on elastic 
foundation is considered. The beam with rectangular cross-section (the shear factor 
κ = 1.2) with width b = 0.5 m and beam cross-section height changing (h = 0.6 ÷ 2.2 m) 
will be taken into account. The beam has Young’s modulus E = 31 × 109 Pa, the 
Poisson’s ratio ν = 0.2 and the mass density ρ = 2500 kgm-3. The moduli of foundation 
are kw = 24.52 × 109 Nm-2 and ku = 5.88 × 106 Nm-2. 
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The effects of shear deformation on non-dimensional frequencies of vibration λ and 
critical forces σ are shown in Figure 4. For beams with large slenderness ratios (the 
smaller ζ, the transverse shear has little effect. Thus, the Bernoulli-Euler beam theory 
can accurately predict the frequencies and critical forces. For beams with small slen-
derness ratios (the largest ζ, the frequency and critical force are signifi cantly smaller 
than predicted by the Bernoulli-Euler theory. For example, the fi rst three frequencies 
are more than 4%, 14% and 27% lower than those given by Bernoulli-Euler theory for 
ζ = 0.0182 and in the cases of the fi rst three critical forces are more than 8%, 31% 
and 61%. It should also be noted that the infl uence of shear deformation on the next 
eigenvalues increases.
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Fig. 5. Infl uence of elastic foundations on non-dimensional critical values σ (a) and on non-dimensional 
frequencies of vibration λ (b); values for beam with no elastic foundations to rest on (---), values for beam 

with elastic foundations to rest on (—); fi rst values (▲), second values (■), third values (●)

The effect of elastic foundations parameters on the critical values and frequencies of 
vibration are shown in Figure 5. The results show that the foundation parameters signif-
icantly affect values  and  for beams with large slenderness ratios (the smaller ζFor 
example, for ζ = 0.0014, the fundamental frequency and the fi rst critical force are more 
than 32% and 54% higher than those given without considering the impact of elastic 
foundation. For ζ = 0.0182, differences in eigenvalues are 2% and 4%. It can be seen 
that the impact is lower while determining the frequency of vibration. The infl uence of 
elastic foundation on the next eigenvalues decreases.
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Fig. 6. The dependence between non-dimensional frequencies of vibration λ and non-dimensional critical 
values σ for ζ=0.0014 (a) and for ζ=0.015 (b)

It is possible to determine the dependence for vibration frequency of the compres-
sive force for two cases ζ = 0.0014 (Figure 6a) and ζ = 0.015 (Figure 6b) on the basis 
of the formula (2.59). As the compressive force increases, the beam vibrations decrease 
and the critical value stops the beam vibrating. It is the dependence of bifurcation.

3.048
3.081

4.624
4.619

3

4

5

0.0014 0.0038 0.0074 0.0122 0.0182

a)

 

10.189

35.614

0

10

20

30

40

0.0014 0.0038 0.0074 0.0122 0.0182

b)

 

Fig. 7. Effect of rotational inertia on non-dimensional fundamental frequencies of vibration λ (a) fi rst 
natural frequency band, (b) second natural frequency band; values for beam with effect of rotational inertia 

(---), values for beam with no effect of rotational inertia (—)

The effect of rotational inertia on non-dimensional fundamental frequencies of 
vibration λ is shown in Figure 7a. The effect is small, as for example, for ζ = 0.0182 
the fi rst frequency is about 1% lower than that given without considering the rotational 
inertia. But if the rotational inertia is accounted for, the second natural frequency band 
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is received (Figure 7b). The infl uence of elastic foundation for this band is insignifi cant 
(0.01%).

3.2. EXAMPLE 2

In the second example, the three exact frequency parameters of the beam are deter-
mined. Four kinds of end conditions, i.e. simply supported (Table 2), clamped- hinged 
(Table 3), clamped-clamped (Table 4) and cantilever beam (Table 5) are consider in this 
study. For the fi rst case, solutions were calculated directly from the analytical closed 
form expression (2.43)1 and (2.45), for others – from equations (2.46)–(2.48), assuming 
σ = 0. The beams resting on Winkler foundation (λw), on two-parametrical foundation 
(λw,  λφ) and with no elastic foundation to rest on are considered. 

The following mechanical and geometric properties of Timoshenko beam used 
by Yokoyama [26] are chosen for the analysis: the Poisson’s ratio ν = 0.25, the shear 
coeffi cient: κ = 1.2 (for rectangular cross-section), the slenderness ratio: 102AlJ . 
Consequently, the shear deformation parameter is: ζ = 0.03. The foundation parameters 
λw = 0.88π and λφ = 1 are assumed. 

For Bernoulli-Euler beam, frequency parameters were obtained assuming ζ = 0 (the 
effect of shear deformation was disregarded) and n = 0 (the effect of rotatory inertia was 
disregarded). The results received in this way are known from literature. This proves the 
formulas developed in this paper are correct.

Table 2
Values of frequency parameter λ for simply supported beam

Bernoulli
-Euler

Timoshenko

without rotatory 
inertia

with rotatory 
inertia

1 st without elastic foundation 3.142 2.944 2.902
Winkler foundation 3.533 3.400 3.350
two-parametrical foundation 3.588 3.458 3.388

2 nd without elastic foundation 6.283 5.168 5.057
Winkler foundation 6.341 5.271 5.157
two-parametrical foundation 6.380 5.285 5.173

3 rd without elastic foundation 9.425 6.812 6.684
Winkler foundation 9.442 6.858 6.728
two-parametrical foundation 9.468 6.863 6.735
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Table 3
Values of frequency parameter λ for clamped-hinged beam

Bernoulli
-Euler

Timoshenko

without rotatory 
inertia

with rotatory 
inertia

 1 st without elastic foundation 3.927 3.379 3.343
Winkler foundation 4.148 3.723 3.683
two-parametrical foundation 4.188 3.743 3.704

2 nd without elastic foundation 7.069 5.334 5.237
Winkler foundation 7.109 5.453 5.361
two-parametrical foundation 7.139 5.463 5.373

3 rd without elastic foundation 10.210 6.874 6.741
Winkler foundation 10.224 6.939 6.828
two-parametrical foundation 10.246 6.944 6.833

Table 4
Values of frequency parameter λ for clamped-clamped beam

Bernoulli
-Euler

Timoshenko

without rotatory 
inertia

with rotatory 
inertia

1 st without elastic foundation 4.730 3.759 3.741
Winkler foundation 4.862 4.045 4.027
two-parametrical foundation 4.889 4.051 4.034

2 nd without elastic foundation 7.853 5.471 5.377
Winkler foundation 7.883 5.605 5.522
two-parametrical foundation 7.907 5.612 5.532

3 rd without elastic foundation 10.996 6.935 6.806
Winkler foundation 11.007 7.018 6.950
two-parametrical foundation 11.025 7.021 6.950
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Table 5
Values of frequency parameter λ for cantilever beam

Bernoulli
-Euler

Timoshenko

without rotatory 
inertia

with rotatory 
inertia

1 st without elastic foundation 1.875 1.814 1.798
Winkler foundation 2.901 2.765 2.765
two-parametrical foundation 2.920 2.765 2.765

2 nd without elastic foundation 4.694 3.962 3.820
Winkler foundation 4.829 4.014 3.864
two-parametrical foundation 4.879 4.075 3.924

3 rd without elastic foundation 7.855 5.879 5.642
Winkler foundation 7.885 5.866 5.607
two-parametrical foundation 7.916 5.888 5.631

For Timoshenko beams, the frequency parameters are signifi cantly smaller than 
those obtained for the Bernoulli-Euler beams. The biggest differences are found for 
the case of clamped-clamped beam. The fi rst three frequency are over 26%, 46% and 
61% lower than those given for Bernoulli-Euler beam. This also proves that shear 
deformation and rotational inertia produce an increasing effect on the next values. It 
is very important the infl uence of rotational inertia on non-dimensional fundamental 
frequencies of vibration is small (of an order of 2%). The biggest effect is produced for 
the hinged-hinged beam and the smallest for the clamped-clamped beam.

If the beams resting on elastic foundation are considered, the frequency parame-
ters will be higher than those obtained for beams with no elastic foundation to rest on. 
The effect is the biggest for the hinged-hinged beam and the smallest for the clamped-
clamped beam. In the fi rst case, the fi rst frequency is over 17% higher than that given 
without considering the impact of elastic foundation and in the second – 8%. The de-
creasing effect on the next frequencies is observed.

No matter what the conditions of the beam support are, the infl uence of the second 
foundation parameter, which is a function of the total rotation of the beam, is small.

4. CONCLUSIONS

The vibrations and stability of uniform beams resting on continuous two-parameter 
elastic foundation were studied. The equation of motion for Timoshenko and Bernoul-
li-Euler beam was derived. The relationships between the parameters describing vibra-
tion, the compressive force and the foundation parameters were investigated.
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Using analytical formulas developed in this paper, it was possible to obtain the 
non-dimensional parameters σ and λ, which describe the critical force and vibration 
frequencies. The individual effect of foundation stiffness parameters, transverse shear 
deformation and rotatory inertia on eigenvalues of the beam can be examined by per-
forming a parametric study. 
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