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 EXTENDED PENALTY COEFFICIENTS FOR ELIMINATION THE LOCKING 
EFFECTS IN MODERATELY THICK BEAM AND PLATE FINITE ELEMENTS

W. GILEWSKI1

The present paper is dedicated to presentation and energy verifi cation of the methods of stabiliza-
tion the strain energy by penalty coeffi cients. Verifi cation of the methods is based on the consist-
ency and ellipticity conditions to be satisfi ed by the fi nite elements. Three methods of stabilization 
are discussed. The fi rst does not satisfy the above requirements. The second is consistent but can-
not eliminate parasitic energy terms. The third method, proposed by the author, is based on the 
decomposition of the element stiffness matrix. The method can help to eliminate locking of the 
fi nite elements. For two-noded beam element with linear shape functions and exact integration 
a stabilized free of locking (and elliptical) element is received (equivalent to reduced integration 
element). Two plate fi nite elements are analyzed: four-noded rectangular element and DSG triangle. 
A new method of stabilization with the use of four independent parameters is proposed. The fi nite 
elements with this kind of stabilization satisfy the consistency condition. In the rectangular element 
it was not possible to eliminate one parasitic term of energy which appears during the procedure. 
For DSG triangle all parasitic terms of energy are eliminated. The penalty coeffi cients depends on 
the geometry of the triangle.

Keywords: fi nite elements, shear locking, stabilization, consistency

1. INTRODUCTION

Design of fi nite elements for shells, plates and beams of moderate thickness is one of 
the most demanding area in the fi nite element method for many years. In the exist-
ing fi nite elements one can frequently observe the phenomena of locking and parasitic 
strains. There are a lot of methods for design of fi nite elements free from locking. An 
extensive bibliography is collected and discussed in the reference Gilewski [8] and oth-
er publications (i.e. Dhanajaya et al. [5], Rezaiee-Pajand et al. [14]). Among others, the 
method of stabilization of the fi nite element strain energy by selection of multipliers is 
an interesting idea (Bischoff and Bletzinger [1,2], Bletzinger, Bischoff and Ramm [3], 
Carpenter, Belytschko and Stolarski [4], Fried [6], Lyly, Stenberg and Vihinen [12], 
Mohr [13], Tessler [15]). Correct fi nite element should satisfy the consistency, ellipticity 
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in inf-sup conditions for mixed as well as displacement based FE models (Iosilevich et 
al. [11], Gilewski [8]).

Consistency condition means that the quadratic form of the strain energy in the 
fi nite element formulation, which depends on the typical element dimension a, should 
be equivalent to the bi-linear form of the mathematical model in the limit case a → 0. 
Ellipticity condition is the main condition for existence and synonymous of the FE 
solution. This condition is related to the strain energy properties and can be checked by 
the analysis of eigenvalues and eigenvectors of a single unsupported element. Inf-sup 
condition is diffi cult to be analyzed analytically, can be checked numerically (Gilewski, 
Sitek [10]) and will not be considered below.

The objective of the present paper is to check the correctness of the use the strain 
energy multipliers to eliminate shear locking, which is commonly used in commercial 
fi nite element systems. The criterion of the correctness is satisfying the consistency 
condition. The ellipticity condition can be checked in the second phase of the analysis. 
In the 1st part of the paper the coeffi cients existing in the literature are evaluated. The 
new, original way for construction the multipliers are presented and evaluated in the 2nd 
part. A couple of well known fi nite elements for Timoshenko beam and Mindlin plate 
are analyzed and modifi ed.

2. FEM ENERGY MULTIPLIERS

One of the method of elimination (stabilization) of shear locking (or parasitic shear) for 
moderately thick beams and plates is the use of the strain energy multipliers (see i.e. Bi-
schoff and Bletzinger [1,2], Bletzinger, Bischoff and Ramm [3], Carpenter, Belytschko 
and Stolarski [4], Fried [6], Lyly, Stenberg and Vihinen [12], Mohr [13], Tessler [15]). 
Let us consider how it works. The stiffness matrix of beam or plate fi nite element can 
be expressed as a sum 

(2.1) K = K b + K s ,

where K b is a part of stiffness matrix related to bending and K s is related to shear. The 
method of the multipliers of strain energy, known in the literature of the subject, is the 
following modifi cation of the fi nite element stiffness matrix 

(2.2) K = K b + α K s .

The coeffi cient α should be sensitive for geometrical parameters of the element and 
selected to minimize the effect of locking. Let us consider the geometric parameter for 
Timoshenko beam elements in the form of a proportion of the bending rigidity EJ to 
shear rigidity H, 

2Ha
EJ , where a is half of the length of the element. This parameter 
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is depending on 

2

a
h , where h is the beam thickness, and is slightly sensitive for the 

shape of cross section. The easiest way of construction the coeffi cient α (see Bischoff 
and Bletzinger [1], Bletzinger, Bischoff and Ramm [3], Gilewski [8,9]) is the following 

(2.3) c
a
h ,

where c is especially selected constant. Using this coeffi cient one can control the share 
of the transverse shear strain energy in the fi nite element solution. The value of the 
constant c, is usually defi ned after extensive numerical analysis.

The other method for selection of the coeffi cient α was proposed by Lyly, Stenberg 
and Vihinen [12], and extended by Bishoff and Bletzinger [1,2]:

(2.4) ca
h

1
1 .

This coeffi cient does not disturb the strain energy when the dimension of the ele-
ment tends to be zero. It is well seen when we expand the coeffi cient into Taylor power 
series with respect to the parameter c

(2.5) ...1...1
1

1 2

EJ
Hacc

c
c  

The suitable selection of the constant c allow to reduce the infl uence of transverse shear 
strain energy. It is recommended to take c = 0.1 (Bischoff and Bletzinger [1]).

The energy criterion of the correctness of the FEM formulation (described in details 
and used for evaluation of many fi nite elements in papers (Gilewski [7-9])) allow to 
check the strain energy terms for which the coeffi cient c has the infl uence and to verify 
if the correctly selected coeffi cient can help to cancel the element locking or parasitic 
shear. In the next part of the paper one can propose the extension of the ideas presented 
in (Gilewski [8], Bischoff and Bletzinger [2]) and for the following form of stabilized 
fi nite element stiffness matrices

(2.6) K = β K b + α K s ,

where

(2.7) ...1...,1 cd



W. GILEWSKI370

Numerical constants d and c should be duly selected to cancel the element dysfunctions.
The procedure for development of the stabilized stiffness matrices is the following:
Step 1.
Defi ne the element stiffness matrix in the form of Eq. (2.1).
Step 2.
Verify the parasitic terms of the strain energy with the use of stabilized matrices in Eqs. 
(2.6)-(2.7).
Step 3.
Select the constants d and c to cancel the parasitic strain energy terms. 

The procedure presented above can be used to select the best stabilized coeffi cients 
without necessity of calculating time consuming examples. The examples can only con-
fi rm that the constants were selected correctly and locking is canceled.

3. SELECTED TIMOSHENKO BEAM AND MINDLIN PLATE FINITE ELEMENTS

The subject under consideration is moderately thick Timoshenko beam with the thick-
ness h, bending rigidity EJ, shear rigidity H = kGA (E – Young modulus, G – Kirch-
hoff modulus, A – area of the cross-section, J – moment of inertia of the cross-section, 
k – shear correction factor). In the theory we have displacement, strain and internal 
forces defi ned as:

(3.1)  

)(),()( xxwxu , 

)(),()( xxx , 

)(),()( xTxMx , 

where: w – transverse displacement, ϕ – average angle of the cross section, κ – curva-
ture, χ – transverse shear strain, M – bending moment, T – shear force.

Basic equations of Timoshenko beam in the matrix form are the following

(3.2) Du ,   E ,   
1

0

dx
d

dx
d

D ,   
H

EJ
0

0
E .

Strain energy of the beam can be expressed as

(3.3) 
x

s dx
dx
dwH

dx
dEJE

22

.
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The subject under consideration is also moderately thick Mindlin plate with con-
stant thickness h, in the rectangular co-ordinate system x, y, z. In the present theory we 
have displacement, strain and internal forces in the following form:

(3.4) 
,,,,,),(

,,,,,),(

,,,),(

yxxyyx

yxxyyx

yx

TTMMMyx

yx

wyxu

where: w – transverse displacement, ϕx, ϕy – average fi ber angles, κx, κy, κxy curvatures, 
γx, γy – transverse shear strains, Mx, My, Mxy – bending and twisting moments, Tx, Ty 

– shear forces, 
)1(12 2

3EhD , 
)1(2

kEhH , E – Young modulus, ν – Poisson ratio, 

k – transverse shear strain correction factor.

Basic equations of Mindlin plate in the matrix form are the following

(3.5) Du ,   E ,   

10

01

0

00

00

y

x

xy

y

x

D ,  

H
H

D
DD
DD

0000
0000

00
2

1
00

000
000

E .

The strain energy of the plate should be expressed in the form

(3.6) d

y
w

x
wH

yx
D

yx
D

x
D

y
D

y
D

x
D

E

yx
xyyx

yyxx

s 22

2222

12

2
1

2
1

2
1 .

In the present paper one beam and two plate fi nite elements are considered.
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3.1. 2-NODED ELEMENT BEAM ELEMENT WITH LINEAR SHAPE FUNCTIONS AND EXACT INTEGRATION

Let us consider Timoshenko beam fi nite element which demonstrates parasitic strain 
energy (see Fried [6]). Stiffness matrix of the 2-node beam element of the length 2a, 
natural d.o.f. 

[ ])
2211 ,,, wwq , linear shape functions and exact integration can be 

expressed as 

(3.7) .

3
4

3
2

11
3
2

3
4

11

2
22

22

2

aaaa

aa

aaaa

aa

a
HFULLWK

The terms of the stiffness matrices with the parameter γ are related to the bending 
matrix K b. The other terms are related to transverse shear matrix K s. 

3.2. 4-NODED RECTANGULAR PLATE BENDING FINITE ELEMENT WITH LINEAR SHAPE FUNCTIONS 
AND EXACT INTEGRATION

 

 
Fig. 1. 4-node rectangular plate bending element.

The subject under consideration is a rectangular moderately thick plate bend-
ing element (see Figure 1) on the dimensions 2a × 2b and thickness h. Let us intro-
duce a non-dimensional co-ordinate system 

a
x , 1,1 , 

b
y , 1,1 . 

The nodal parameter vector with corner nodes is natural },,,{ 4321 qqqqq , where 

},,{ yixiii wq . Standard fi nite element procedure with bi-linear shape functions is 
introduced
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(3.8) 4321 N,N,N,NN ,   
i

i

i

i

N
N

N

00
00
00

N ,   )1)(1(
4
1

iiiN ,

 1,1,1,1,1,1,1,1 43214321 .

The element stiffness matrix can be expressed as follows:

(3.9) 

44434241

34333231

24232221

14131211

KKKK
KKKK
KKKK
KKKK

K ,   kl
ijij kK ,   3,2,1,,4,3,2,1, lkji , ,

 
 ji

ji
ji

ji
ij b

aH
a
bHk

3
222

163
222

16
11 , 

 
 ii

i
ij

bHk
3
222

16
12 ,   ji

i
ij

a
Hk

3
222

16
13 ,   ji

j
ij

b
Hk

3
222

16
21 , 

 
 jijiji

ji
ji

ji
ij

abH
a
bD

b
aDk

3
22

3
22

163
222

2
1

163
222

16
22 , 

 42
1

4
23 ijji
ij DDk ,   ji

j
ij

a
Hk

3
224

16
31 ,   

42
1

4
32 jiij
ij DDk , 

The terms with coeffi cient D are related to the bending part of the stiffness matrix, 
as well as the terms with the coeffi cient H belongs to the shear part. One can observe 
the locking phenomena in the above fi nite element (see Gilewski [8]).
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3.3. TRIANGULAR PLATE BENDING ELEMENT DSG (DISCRETE SHEAR GAP)

Let us consider the triangular moderately thick plate bending fi nite element after 
Bletzinger and Bischoff [1,2]. Element geometry in orthogonal co-ordinate sys-
tem x, y is described in Figure 2. We have the natural vector of nodal displacements 

},,{ 321 qqqq , where },,{ yixiii wq .

Fig. 2. Triangular plate bending element DSG.

The interested reader is recalled to the reference (Bischoff and Bletzinger [2], 
Bletzinger, Bishoff and Ramm [3]) for detailed description of the element. The expres-
sions necessary to calculate the stiffness matrix are the following: 

(3.10) 

33

22

11

1
1
1

2
1

yx
yx
yx

,   

,,,

,,,

,,,

12321312213

31213231132

23132123321

xxcyybyxyxa

xxcyybyxyxa

xxcyybyxyxa
 

(3.11) 

22220
22220

000
000000

000000

2
1

3232
3

2232
21

3223
3

3232
21

222211

321

321

cbccccbcccc

bbcbbcbcbbb

bcbcbc
ccc

bbb

iB . 

The element stiffness matrix of the DSG triangular element with 9 d.o.f. has the 
form
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(3.12) ikKK ,   k
T
ik

T
iik d EBBEBBK .

The further calculation for the proposed element are to be done for concrete co-or-
dinates, parameterized by the dimension a. Several positions of the triangular element 
are considered. As it was presented in (Gilewski [8]) the shear locking is observed in 
the DSG fi nite element.

4. ENERGY VERIFICATION OF THE MULTIPLIERS USED IN THE FORMULATION 

The usual method of selection the energy multipliers leads to the number of examples 
and can be called the “method of tests and mistakes”. In the present chapter it is pro-
posed to check easily if and for what value the proposed multipliers can satisfy the 
consistency condition and can eliminate the terms of parasitic strain energy. 

4.1. 2-NODED BEAM ELEMENT

One can propose to analyze the procedure of verifi cation and selection the stabilization 
coeffi cients on the example of 2-noded moderately thick beam fi nite element with linear 
shape functions and exact integration. 

Step 1 – Defi nition of the element stiffness matrix.

(4.1) sb
FULLW

aaaa
aa

aaaa
aa

a
H

a
EJ KKK

22

22

3
2

3
4

3
2

11
3
2

3
4

11

2
1010
0000
1010

0000

2
.

Step 2 – Identifi cation of the parasitic strain energy terms. 
The density of strain energy of the Timoshenko beam in differential form should be as 
follows

(4.2) 
22

2
1~

dx
dwH

dx
dEJEs .

On the other hand the same density should be expressed as a quadratic form regard-
ing the vector q, with the element stiffness matrix as a kernel, divided by the element 
length
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(4.3) KqqT

2
1

2
1~
a

E ES
s .

The nodal displacements can be expressed by the average displacements and their 
derivatives with the use of Taylor power series expansion

(4.4)    ...)(
)(2

1)()( 2
2

2

1 ax
x
wax

x
wxww , ...)(

)(2
1)()( 2

2

2

2 ax
x
wax

x
wxww , 

(4.5)    ...)(
)(2

1)()( 2
2

2

1 ax
x

ax
x

x ,   ...)(
)(2

1)()( 2
2

2

2 ax
x

ax
x

x .  

When we put Eqs. (4.4)-(4.5) to Eq. (4.3) and collect the terms in order to a we can 
obtain

(4.6) 
)(0

)(3
1

)(3
1

)(3

2
1~

4
3

3

2

22
2

3

3
2

22

2

a
x
w

x
w

xx
Ha

xx
EJa

x
wH

x
EJ

E FULLWES
s .

In the limit case, when the element length tends to be zero, we have

(4.7) s
ES
sa

EE ~~lim
0

It means that the consistency condition is satisfi ed. One can observe the doubly 
underlined parasitic term, responsible for locking of the element. It is better seen if we 
rewrite the Eq. (4.6) to the following form 

(4.8) 

)(0
)(3

1
)(

3
11

2
1~

4
3

3

2

2
2

22

2

a
x
w

x
w

x
Ha

x
wkGA

x
EJ

E FULLWES
s .
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The bending strain energy strongly depends on the parameter 1   (and in conse-

quence on 
2

h
a

) which is big for thin beams. This energy is called “parasitic” and is 

large for thin fi nite elements.

Step 3 – Stabilization. 

Variant 1 – 0,c .

Following the expansion described above the modifi ed strain energy density is in the 
form 

(4.9) 
)(0

)(3
1

)(3
1

)(3

2
1~

4
3

3

2

22

3

3
2

2

2

2

2

a
x
w

x
w

xx
cEJ

xx
EJa

x
w

a
cEJ

x
EJ

E FULLWES
s .

It does not satisfy the consistency condition for any numerical value of c. This 
method of stabilization is incorrect from the point of view of the consistency condition. 

Variant 2 – 0,1 c .

Strain energy density is the following

(4.10)       
)(0

)(3
1

)(3
1

)(3
1

2
1~

4
3

3

2

22
2

3

3
2

222

2

a
x
w

x
w

xx
Ha

xx
EJa

x
w

EJ
HacH

x
EJ

E FULLWES ..

The consistency condition is satisfi ed because s
ES
sa

EE ~~lim
0

. It is possibly to modify 
the value of the transverse shear strain energy, but the parasitic term (doubly under-
lined) does not disappear for any c. It means that this method of stabilization is formally 
correct (from the point of view of the consistency condition) but does not allow to 
cancel the parasitic strains. 
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Variant 3 – d1,0 .

Strain energy density is the following

(4.11)    
)(0

)(3
1

)(3
1

)(3

2
1~

4
3

3

2

22
2

3

3
2

22

2

a
x
w

x
w

xx
dHa

xx
EJa

x
wH

x
EJ

E FULLWES
s .

In the limit case s
ES
sa

EE ~~lim
0

, so the consistency condition is satisfi ed. For 3
1d   

the parasitic strain energy term disappears. The stabilized stiffness matrix is the follow-
ing

(4.12) 

11
11

11
11

2
22

22
2

aaaa
aa

aaaa
aa

a
HSTABFULLWK .

It is identical to the stiffness matrix received for 2-noded fi nite element, linear shape 
functions and with the use of reduced integration (see Gilewski [8]). The spectral anal-
ysis of this matrix gives the information thet there are two zero energy modes and the 
third eigenvalue tends to be zero when the parameter γ → 0. It means that the ellipticity 
condition can be not satisfi ed for very thin elements and the stiffness matrix can be over 
singular. The above example is a proof that the proposed selection of the stabilization of 
the strain energy allows to elliminate the shear locking and receive satisfi ed results for 
thick as well as thin beams. 

4.2. 4-NODED PLATE ELEMENT

Strain energy density of the fi nite element can be expressed as a quadratic form of the 
nodal displacements 

(4.13) KqqTES
s ab

E
2
1

4
1 .
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Each nodal displacement q = [w1, ϕx1, ϕy1, …] can be expressed by the average dis-
placement and its derivatives with the use of Taylor power series expansion 

(4.14)     

....))(,(
)(6

1))()(,(
))((6

1))()(,(
))((6

1

))(,(
)(6

1),())(,(
)(2

1

))(,(
)(2

1),(),(),(),(

3
3

3
2

2

3
2

2

3

3
3

32
2

2

2

2
2

2

yyx
y
fxyyx

xy
fyxyx

yx
f

xyx
x
fyxyx

yx
fyyx

y
f

xyx
x
fyyx

y
fxyx

x
fyxfyyxxf

 

For nodal values we have:

(4.15) 
),,(),,(

),,(),,(

43

21

byaxffbyaxff
byaxffbyaxff

 

where  f = w, ϕx, ϕy  and  fi = wi, ϕxi, ϕyi .

The above expansions are to be put to the quadratic form in Eq. (4.13). Without loss 
of generality one can consider the square element a = b. After collection the terms in 
order to a the strain energy density will be expressed in the form

(4.16) ...,);,,();,,();,,(~
13

2
1211 EEE yxyxyx

ES
s wLawaLwLE  

where Lij, (i = 1,…,4, j = 1,2,…) are difference operators.

The analysis of the element without stabilization gives the following results

(4.17) 
22

2222

11

12

2
1

2
1

2
1

y
w

x
wH

yx
D

yx
D

x
D

y
D

y
D

x
D

L

yx
xyyx

yyxx

,,

(4.18) L12 = 0,
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(4.19)  

yxyx
D

yx
wH

yx
w

x
H

yx
w

y
H

x
H

y
H

y
H

x
H

yxy
wH

yxx
wH

yx
H

yx
H

L

yx

yxy

yxxyy

xxyy
x

xx
x

2222

222

222

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

13

6
)3(

3
2

3
2

3
2

3

333

2
1 . .

The comparison of the difference operator L11 (Eq. 4.17) with the differential form 
(Eq. 3.6) shows that the element satisfi es the consistency condition. The parasitic terms 
in the operator L13 are doubly underlined.

The use of stabilization coeffi cient in the form ...1 d  does not change the 
form of difference operators L11 and L12, what means that the stabilized element remains 
consistent. The L13 difference operator with the use of the stabilized matrix is in the 
form

(4.20)  

yx
dH

xy
dH

yxyx
D

yx
wH

yx
w

x
H

yx
w

y
H

x
Hd

y
Hd

y
Hd

x
Hd

yxy
wH

yxx
wH

yx
H

yx
H

L

yxyx

yxy

xyy

xxyy

xxyy
x

xx
x

Stab

21

6
)3(

3
2

3
2

3
2

32
131

3
31

32
131

3
31

2
1

22222

222

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1
13

.



EXTENDED PENALTY COEFFICIENTS FOR ELIMINATION THE LOCKING EFFECTS IN MODERATELY THICK BEAM… 381

The single underlined parasitic term can be eliminated by taking 3
1d   or the dou-

ble underlined term by taking 
)1(3

2d . Two other, new parasitic terms doubly un-

der- and overlined cannot be eliminated. It is well seen that this version of stabilization 
coeffi cient cannot fully eliminate the strain locking with the use on one parameter d and 
two additional parasitic terms appeared in comparison with the not stabilized matrix. 

Let us propose the way for introducing the stabilization with the use of multi-coef-
fi cients. Assume the elasticity matrix in the following form

(4.21)  

H
H

D

DD
DD

0000
0000

00
2

100

000
000

4

32

21

E ,   i
i

d
1 ,   4321 ,,,i= .

In this formulation we have four different coeffi cients that can be used to eliminate the 
parasitic terms. 

If we use the stabilization in the form Eq. (4.21) the difference operators L11 and L12 
remain unchanged. The third operator is in the form

(4.22)   

yx
Hd

xy
Hd

yxyx
D

yx
wH

yx
w

x
H

yx
w

y
H

x
Hd

y
Hd

y
Hd

x
Hd

yxy
wH

yxx
wH

yx
H

yx
H

L

yxyx

yxy

xyy

xxyy

xxyy
x

xx
x

Stab

24

22222

22

4

2

3

2

4

2

12

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
13

21

6
)3(

3
2

3
2

3
2

32
131

3
31

32
131

3
31

2
1 ..

Putting 3
1

1d , 02d , 3
1

3d ,, 
)1(3

2
4d  we can eliminate the parasitic terms 

which are single underlined. Unfortunately it was not possible to eliminate the doubly 
underlined term. 
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4.3. TRIANGULAR DSG PLATE ELEMENT

The DSG triangular plate bending element has the parasitic energy terms that depends 
on the element geometry and the sequence of numbering the nodal points (see Gilewski 
[8]). The method of stabilization described above always leads to satisfy the consist-
ency condition, what means that the L11 difference operator is in agreement with the 
differential one. For triangular elements the operators L12 ≠ 0, but there are no parasitic 
energy terms there. The form of L13 difference operator depends on the element geom-
etry. Three different positions of the element nodes are analyzed below (see Figure 3). 
The element geometries are parameterized with the use of „a”. The fi rst element is 
irregular. The second and third are regular and typical for not concentrated triangular 
meshes.

                       Position 1                              Position 2                               Position 3

Fig. 3. Positions of DSG triangular elements.

The form of parasitic energy terms in the difference operators L13, when the extend-
ed elasticity matrix (4.21) is applied, is the following:

Position 1

(4.23)  

yx
Hd

xy
Hd

x
Hd

y
Hd

y
Hd

x
Hd

L

yxyx

yy

xx

Stab

24

2

4

2

3

2

4

2

1

2
13

1
4

121

8
121

8
13

13
41

8
121

8
5

5
41...

2
1 .



EXTENDED PENALTY COEFFICIENTS FOR ELIMINATION THE LOCKING EFFECTS IN MODERATELY THICK BEAM… 383

Putting 
4
5

1d , 1
2d , 

4
13

3d , 
)1(2

1
4d   one can eliminate all parasitic  

energy terms and have the element totally free from locking.
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The parameters to eliminate locking effects are

 
)1(2
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Position 3

(4.24)       
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The parameters to eliminate locking effects are

 0,
4
1,0,

4
1

4321 dddd .

5. CONCLUSIONS

In the present paper the possibility of the use of energy multipliers for stabilization the 
parasitic strain energy and elimination of locking for moderately thick beam and plate 
elements are discussed. 
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Three ways of introducing the correction coeffi cients were presented and discussed 
on the example of Timoshenko beam 2-node fi nite element. The fi rst way, known in the 
literature, does not satisfy the consistency condition and is incorrect. The second, also 
known in the literature, is correct from the point of view of the consistency condition, 
but does not allow to eliminate the parasitic strain energy terms. The third way, pro-
posed in this paper, allow to eliminate parasitic strains and locking and is consistent. 
The proposed way leads to the stiffness matrix identical to the method of reduced inte-
gration.

A similar way applied to the plate element wasn’t fully successful. A new 
4-parameter idea of construction of the stabilized matrix was proposed. For the 4-noded 
rectangular element with linear shape functions it was possible to eliminate 5 of 
6 parasitic strain energy terms. For triangular DSG element it was possible to fully 
eliminate parasitic terms. The numerical values of the coeffi cients depend on the 
element geometry. 

The similar procedure can be used for other beam, plate and shell fi nite elements.
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