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Abstract. Obtaining the optimal query execution plan requires a selectivity estimation. The selectivity value allows to predict the size of a

query result. This lets choose the best method of query execution. There are many selectivity obtaining methods that are based on different

types of estimators of attribute values distribution (commonly they are based on histograms). The adaptive method, proposed in this paper,

uses either attribute values distribution or range query condition boundaries one. The new type of histogram – the Query-Conditional-Aware

V-optimal one (QCA-V-optimal) – is proposed as a non-parametric estimator of a probability density function of attribute values distribution.

This histogram also takes into account information about already processed queries. This information is represented by the 1-dimensional

Query Condition Distribution histogram (HQCD) which is an estimator of the include function PI which is also introduced in this paper.

PI describes so-called regions of user interest, i.e. it shows how often regions of attribute values domain were used by processed queries.

Advantages of the proposed method based on QCA-V-optimal are presented. Conducted experiments reveal small values of a mean relative

selectivity estimation error comparing to the error values obtained by methods based on the relevant classical V-optimal histogram and

Equi-height one.
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1. Introduction

Query execution in Database Management System (DBMS)

consists of two phases – a prepare (parse) phase and an exe-

cution one. One of the most important activity in the prepare

phase is called a query optimization process. During this, the

best method of a query execution (among many other possible

methods) is chosen by a cost-based query optimizer (CBQO).

CBQO obtains so-called an execution plan – the method of

a query execution which satisfies the lowest cost criterion. A

query cost may be measured using many factors but the most

important one is the size of the data that should be retrieved

from a database. This is a reason why a selectivity parameter

is introduced.

Selectivity for a single-table query with a selection con-

dition based on one attribute is the number of rows satisfying

the selection condition divided by the number of all rows

in a table. The selectivity is also a probability of drawing a

row satisfying the selection condition from the set of all table

rows.

The selectivity parameter for a single-table range query Q

with a selection condition based on a one attribute X with

continuous domain may be obtained from:

sel(Q(a < X < b) =

b∫

a

fx(x)dx, (1)

where fx(x) is a probability density function (PDF) describ-

ing X distribution. So we can see that some estimator of

PDF is needed for selectivity calculation. Since many years,

histograms have been used in DBMSs as non-parametric es-

timators of PDF [1].

Most of work related to the selectivity estimation problem

concentrates on obtaining selectivity for queries with a com-

plex selection condition based on many attributes. This is the

problem of selectivity calculation for so-called multidimen-

sional query condition. Thus a multidimensional estimator of

a multivariate PDF is required. Here, the most important prob-

lem is finding a space-efficient multidimensional distribution

representation. Since years, there are known many approaches

to obtaining a small-sized representation of multidimensional

PDF estimator like those ones: PHASED [2, 3], MHIST [2, 3],

GENHIST [3], multidimensional kernel estimator [3, 4], ker-

nel spline [5], Bayesian Network [6], Discrete Cosine Trans-

form [7], Cosine Series [8], Discrete Wavelets Transform [9],

Self-tuning histogram [10–12].

Some researches concentrate on a problem of prediction of

representation of an attribute values distribution. This is im-

portant when a current representation cannot be directly built

on values from a database (e.g. because high Input-Output

workload). A prediction method requires to have an infor-

mation about previous representations (created in previous

moments of execution of update statistics operations). This

requires also a mathematical model of time evolution of at-

tribute values distribution. It may be based on tracking previ-

ous values of non-central moments [18] or previous locations

of quantiles [19]. A dynamical system (especially fluid-flow-

based one) or an artificial neural network (with a different

architecture) may be used as a model of evolution of the men-

tioned above parameters of distribution. The approaches that
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utilize dynamical systems or neural networks are also applied

in other fields of computer science, e.g. [17, 20, 21].

The additional direction of a research on the selectivity

estimation refers to taking into account not only an attribute

values distribution but also a distribution of selection condi-

tion boundaries of already executed queries. Somewhat the

adaptive method based on self-tuning histograms could be al-

so qualified to such approach. Self-tuning histograms use the

size of results of already processed queries to refine them-

selves.

Another considered adaptive approach is HQCA-based

method (Query-Condition-Aware histogram-based method)

[13]. Here we use information about conditions of already ex-

ecuted queries (not about the sizes of results of already execut-

ed queries like in [10, 11]). In this method we collect informa-

tion either about attribute value distribution or query condition

boundaries distribution (using Equi-width HQCD histogram

(Query-Condition-Distribution histogram)). The method of

selectivity estimation may be used only for 1-dimensional

queries. 1-dimensional range queries are described by a 2-

dimesional distribution of query boundaries. Because of the

mentioned space-saving reason this 2-dimesional distribution

of query boundaries is represented here by an approximate

1-dimesional description which is estimated by HQCD. Then

HQCD is used to divide X domain into Nqcd intervals. This

is quantile division of X domain. It is obvious that intervals

are narrow in regions where HQCD values are high. Those

are so-called regions of high user interest. In each interval

an Equi-width subhistogram is created. The number of buck-

ets in a subhistogram equals Neqb and it is the same for all

intervals. All buckets define the final HQCA histogram. The

number of HQCA buckets equals B = Nqcd ·Neqb. HQCA is

neither an Equi-depth histogram nor an Equi-width one. Sizes

of HQCA buckets are small in regions of high user interest. So

HQCA resolution is high in those X regions where query con-

dition intervals extensively overlap them. Some disadvantage

of this method results from the problem of B factorization –

the method cannot work for any B values. Those values of B

which have many factorizations should be used. The new pro-

posed approach based on Query-Condition-Aware V-optimal

histogram (QCA-V-optimal) overcomes this problem.

In the method described in this paper we define a QCA-

V-optimal histogram. The proposed method is based on V-

optimal approach [14] and it extends V-Optimal histogram by

introducing an information about query condition bounds dis-

tribution. In this method, the mentioned HQCD histogram is

used for modifying the error metric formula (which is used

in the classical Voptimal creation algorithm). The dynami-

cal programming method proposed in V-optimal histogram

creation is also used in QCA-V-optimal histogram creation.

The main contributions of the paper are:

• introducing the formal definition of PI – the include func-

tion – which approximately space-efficiently describes a 2-

dimensional query condition boundaries distribution (the

mentioned HQCD is a non-parametric estimator of PI )

(Sec. 3),

• introducing QCA-V-optimal histogram type (more flexible

than HQCA [13]) representing either attribute values dis-

tribution or query condition boundaries one (Sec. 4),

• experimental results presenting advantages of the selectiv-

ity estimation method based on QCA-V-optimal histogram

(i.e. the smallest average mean relative selectivity estima-

tion error comparing to the error values obtained using V-

optimal histogram and Equi-depth one for a given constant

size of the distribution representation) (Sec. 7).

The paper is organized as follows. Section 2 shortly

presents the known-method of describing an attribute values

distribution using a V-optimal histogram. In Sec. 3 we in-

troduce the proposal of including function and its estimator

– HQCD histogram. They approximately describe boundaries

of range query conditions. In Sec. 3 we show how to build

a HQCD histogram using boundaries values from range con-

ditions of already processed queries. Section 4 describes a

new type of histogram i.e. the QCA-V-optimal one which

is based on either a distribution of table attribute values

or a range query conditions distribution. Steps of the algo-

rithm of creating a QCA-V-optimal histogram are presented

in Sec. 5. Section 6 shows exemplary concrete distributions of

attribute values (Subsec. 6.1) and query range boundaries val-

ues (Subecs. 6.2–6.5). Those distributions are used in Sec. 7

for experimental verifying an accuracy of query selectivity es-

timations based on QCA-V-optimal histogram, V-optimal one,

and Equi-depth one. Subsections 7.1–7.4 show either result

QCA-V-optimal histograms or result values of mean relative

selectivity estimation error for the boundaries values distrib-

utions assumed in Subsecs. 6.2–6.5. Subsection 7.5 gives a

synthetic view on all obtained experimental results.

2. V-optimal histogram – non-parametric

estimator of attribute value distribution

V-optimal histogram [14] is a well-known approach to es-

timate a probability distribution and obtain an approximate

selectivity value.

Let us assume the following notations and definitions

(based on [14]):

X – attribute of relation R (with real or integer domain),

V – sequence of unique X values that exist in relation R,

V = (vi)
N
i=1 where ∀

j>i
vi < vj ,

f(v) – frequency of v occurrence i.e. the number of tuples

t ∈ R where t.X = v,

F – frequency vector, F = (vi)
N
i=1 where fi = f(vi),

B – number of histogram buckets where B < N ,

bj , ej – indexes of endpoints (begin, end) of the j-th buck-

et interval where j = 1...B ∧ bj ≤ ej ∧ bj , ej ∈ {1...N},

hj – frequency approximation in the j-th bucket for

j = 1...B:

hj = Avg(bj , ej) =

∑
bj≤m≤ej

fm

ej − bj + 1
, (2)

where Avg(k, l) for k, l = 1...N and k ≤ l is an average

frequency of fk...fl.
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SSE (k, l) – sum square error of frequencies fm for

1 ≤ k ≤ m ≤ l ≤ N :

SSE(k, l) =
∑

k≤m≤l

(fm − Avg(k, l))2. (3)

SSE (bj , ej) may be considered as a metric of frequency

approximation error in the j-th bucket (j = 1...B).

SSE satisfies the rule:

SSE(k, l) ≥ SSE(k, m) + SSE(m, l) (4)

for 1 ≤ k ≤ m ≤ l ≤ N .

Let us denote OSSE(m, k) – the optimal sum square er-

ror – as a minimum SSE for a subsequence of F : f1, ..., fm

(m ≤ N ) using k buckets (k ≤ B).

Because of the property ([14]):

OSSE(m, k) = min
1≤j≤m

(OSSE(j, k−1)+SSE(j+1, m)), (5)

the Bellman’s principle and concept of dynamical program-

ming may be used to obtain the optimal solution – just OSSE

(N , B) should be determined. The problem of finding the op-

timal solution for k buckets of histogram may be reduced to

finding the optimal solutions of subproblem for k−1 buckets.

Finally, obtaining OSSE(N , B) is equivalent to finding

V-optimal histogram with B buckets for a given F vector.

Calculating OSSE(N , B) allows to find required SSE-optimal

set of endpoints (bj , ej) (where j = 1...B).

The presented-above algorithm and its improved faster ver-

sion but also the approximate-optimal one were considered

in [14].

We may also assume another interpretation of V which is

useful for X with continuous domain. We may approximate

X distribution using an Equi-width histogram. Then centers

of intervals of the Equi-width histogram can be treated as

elements of V . Values of the Equi-width histogram can be

treated as elements of F .

3. Including function – description of range

query boundaries distribution

3.1. Including function definition. Let us consider a space

[0, 1]2 as a domain of a × b. This simplifies the prob-

lem description but it does not lessen generality of conclu-

sions.

Let us introduce a functional PI(y, f) which approximate-

ly describes a range query boundaries distribution defined by

probability density function f(a, b). For a concrete f(a, b) the

PI becomes a function of y, where y belongs to [0, 1]. PI is

probability that randomly chosen y value is included in any

interval [a, b] defined by some range query (i.e. 0 ≤ a ≤ y

and y ≤ b ≤ 1). PI will be called include function.

The definition of PI for all query bounds can be formu-

lated as:

PI(y, f)
def
=

1

number of pairs

∑

all possible pairs (a,b)

P (a ≤ y ≤ b). (6)

For a continuous joint distribution of a and b the PI may

be obtained as follows:

PI(y, f) =

∫∫

Dom(a,y)×Dom(b,y)

f(a, b)dadb =

y∫

0

1∫

y

f(a, b)dbda, (7)

where Dom(a, y) is a range of variation of a for a given y

value, and Dom(b, y) is a range of variation of b for a giv-

en y value. The method of calculating value PI as a definite

double integral over some Dom(a, y) × Dom(b, y) region is

illustrated in Fig. 1.

a)

b)

Fig. 1. a) domains of a and b values for given y value, b) differentials

of a and b in integration of f

Univariate PI is a lossy representation of bivariate f .

Because PI (y, f ) is based on integral operations it satis-

fies the linearity property, i.e.:

PI(y, f1 + f2) = PI(y, f1) + PI(y, f2) ∧ PI(y, αf)

= αPI(y, f),
(8)

where α = const.
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To show an example of some concrete PI let us con-

sider a simple 2-dimensional uniform distribution defined by

f2D−uniform density function as follows:

f2D−uniform(a, b)=

{
2 for 0 ≤ a ≤ 1 ∧ 0 ≤ b ≤ 1 ∧ b ≤ a

0 otherwise
.

(9)

It is shown in Fig. 2a.

a)

b)

Fig. 2. a) bivariate probability density function f2D−uniform, b) cor-

responding including function PI(y, f2Duniform)

Using Eq. (7) and (9) we can find the include function for

f2D−uniform as follows:

PI(y, f2D−uniform) =

y∫

0

1∫

y

2dbda = 2y(1 − y). (10)

PI(y, f2D−uniform) is shown in Fig. 2b.

3.2. HQCD – histogram estimator of including function.

A non-parametric estimator of including function is called

HQCD – histogram of a query condition boundaries distri-

bution. HQCD histogram was proposed in HQCA-based ap-

proach in [13]. HQCD is an Equi-width histogram.

Values of HQCD buckets of may be updated during on-

line query processing (i.e. during a prepare phase). If a query

condition interval [a, b] overlaps some buckets of HQCD than

values in those buckets are incremented (When a bucket is

overlapped by the interval [a, b] in more than 50% of its

length, a corresponding bucket value is incremented). The

process of HQCD updating is presented in Fig. 3.

a)

b)

c)

Fig. 3. Technique of a HQCD building: a) initial state of the HQCD,

b) some interval of a query condition, c) HQCD state after taking

into account the interval (source: [13] Fig. 4)

The last activity in HQCD creation process is done after

data about range condition boundaries of processed queries is

gathered. Every number from a HQCD bucket is divided by

a total number of queries that modified any HQCD bucket.

a)

b)

Fig. 4. a) sample set of (a, b) pairs based on 2D-uniform distribution,

b) HQCD2D−uniform histogram estimating the include function for

2D-uniform distribution (the histogram based on the samples shown

in Fig. 4a)
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Figure 4a presents a sample data set which satisfies 2D-

uniform distribution. The size of the sample set is Nqb =
1000. Figure 4b presents HQCD histogram built on this

sample set. The histogram is an non-parametric estimator

of PI(y, f2D−uniform) (shown if Fig. 2b). The number of

HQCD2D−uniform buckets equals Nq = 100.

4. Query-Condition-Aware-V-optimal histogram

– estimator based on either attribute value

distribution or range query condition

boundaries one

A new type of histogram – the Query-Condition-Aware-V-

optimal histogram – is proposed in this section. This his-

togram is based on the V-optimal approach which was de-

scribed in Sec. 2. However in QCA-V-optimal histogram ei-

ther an attribute value distribution or a query boundaries dis-

tribution are taken into account. Include function is used as

an approximate representation of a 2-dimensional distribution

of query boundaries. The general method of histogram con-

structing is the same like the one described in Sec. 2 but the

error metric is different than this given by Eq. (3).

A sum square error in a histogram interval is modified by

a sum of include function values for frequencies belonging

to this interval. This new error metric is denoted by SSEW

(Weighted Sum Square Error) and defined by:

SSEW(k, l) = SSE(k, l) ·
∑

k≤m≤l

HQCD(m)

=
∑

k≤m≤l

(fm − Avg(k, l))2 ·
∑

k≤m≤l

HQCD(m).

(11)

HQCD is estimator of PI function (according to the consid-

eration in Sec. 2). HQCD(m) in Eq. (11) is the approximate

value of include function for the m-th element of F .

Usage of
∑

k≤m≤l

HQCD(m) factor in Eq. (11) affects that

even some intervals with high value of SSE may have small

value of SSEW. Intervals with small values of PI (i.e. inter-

vals rarely used by queries) will have rather small values of

SSEW. The method of QCA-V-optimal histogram constructing

implicitly divides intervals with high values of SSEW. Such

regions of X domain (with a high SSEW) are represented by

a high resolution regions of QCA-V-optimal histogram.

QCA-V-optimal histogram satisfies the compromise be-

tween the criteria based on: including of X values into query

condition intervals (described by HQCD) and a variance of

X (described by differences between adjacent elements of F ,

i.e. described by SSE values).

5. Procedure of Query-Condition-Aware

V-optimal histogram creating

Process of QCA-V-optimal histogram constructing consists of

the following activities:

• turning on the process of gathering information about range

query condition boundaries, i.e. starting HQCD buckets up-

dating,

• turning off the HQCD updating process after some period

of time,

• gathering information about attribute values distribution by

creating F vector,

• creating QCA-V-optimal histogram based on either F vec-

tor or HQCD histogram (after that HQCD and F represen-

tations may be removed).

After finishing the described-above process we can turn on

(enable to CBQO) the selectivity estimation method based on

the newly created QCA-V-optimal histogram.

6. Validation data sets

This section describes sample distributions and data sets used

for validation of the proposed selectivity estimation method.

We use some synthetic data sets created by pseudorandom

generators. Probability distributions use in experiments are

described in details below. For 1-dimensional attribute val-

ues distribution (i.e. X distribution) we use Gaussian clusters

(Subsec. 6.1). 2-dimensional range query condition bound-

aries distributions (i.e. distribution of pairs (a, b)) are based

on:

• Narrow Interval preferred distribution (combined distrib-

ution: normal distribution of a and truncated exponential

one of b) (Subsec. 6.2 )

• Superposition of Gaussian clusters with one or two peaks

(Subsec. 6.3 and 6. 4)

• Individual Uniform distribution (distribution of a is uni-

form; conditional distribution of b for given a value is also

uniform) (Subsec. 6.5).

6.1. Sample attribute value distribution. X values distrib-

ution – a superposition of two normal distributions – is given

by the probability density function:

fx(x) = 0.5 PDF(N(0.5, 0.06))

+ 0.5 PDF(N(0.6, 0.002))
(12)

and it is shown in Fig. 5a (bold line). Figure 5b shows F vec-

tor obtained from a sample set values o X variable i.e. f(vi).
The size of F vector equals N = 100. Nx = 1000 is a sample

size used for F vector creation.

Basing on the method described in the Sec. 2, the V ele-

ments are grouped into buckets shown in Fig. 6. The number

of buckets B equals 20. Vertical dashed lines in Fig. 6 show

boundaries of bucket intervals.

Using the division shown in Fig. 6, the relevant V-optimal

histogram was created and it is shown in Fig. 7. A represen-

tation of the histogram requires to allocate 41 numbers, i.e.

B +1 boundaries of buckets and B histogram values (one for

each bucket).
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a) b)

Fig. 5. a) probability density function of X variable distribution based on two 1D Gaussian clusters, b) f(vi) for i = 1...100 – the frequency

vector built on the sample of X variable [13]

Fig. 6. Error optimal X domain division using SSE – the classical error metric given by Eq. (3). V elements (shown in Fig. 5b) grouped

into buckets of V-optimal histogram

Fig. 7. Classical V-optimal histogram shown along the X distribution support (the number of bucket equals 20)

In our work we also consider a usage of an Equi-

height histogram type (also called Equi-depth) for describ-

ing X distribution. This enables to compare the proposed

selectivity estimation method to the method based on his-

togram that are commonly used in DBMSs (e.g. Oracle

DBMS, MS SQL Server). Figure 8 shows the Equi-height

histogram for X attribute based on the data set described

by F vector. The number of buckets of this Equi-height

histogram equals 40. This results from the general as-

sumption that the size of a space-allocation for an Equi-

height histogram and the size for a V-optimal one are the

same.
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Fig. 8. Classical Equi-height histogram shown along the X distribution support (the number of bucket equals 40)

6.2. NI query boundaries distribution – Narrow Interval

preferred distribution. (a, b) pairs of query condition end-

points (satisfying NI probability distribution) are generated as

follows:

• a variable satisfies normal distribution N(0.6, 0.05),

• b value for a given a value can be obtained from: b =
(1 − a)z + a,

where z is a length of a generated query interval.

z is described by a truncated exponential distribution. To

generate a z value an additional variable z′ will be intro-

duced. A z’ value is obtained from a pseudorandom generator

which is based on the exponential distribution described by

the probability density function −f(z′) = λe−λz′

1(z′) where

E(z′) =
1

λ
= 0.1. If z′ is less or equal zmax = 1 − a then

z′ becomes z else a new z′ value is generated etc. Thus z is

described by the conditional probability density function as

follows:

f(z|a) = f(z| zmax = 1 − a)

=
λe−λz

1 − e−λzmax

{1(z)− 1(z − zmax)}
(13)

and it is shown in Fig. 9b.

Mean value of z can be obtained from:

E(z) =

zmax∫

0

f(z)dz =
1

λ

(1 − (1 + λzmax)e
−λzmax)

(1 − e−λzmax)
. (14)

Because of the exponential distribution property (positive

skewness property), small intervals are preferred. This means

that generated query intervals z are rather smaller than

E(z|a). For example in Fig. 9b for a = 0.7 (i.e. zmax =
0.3) we can see that z values are rather less than value

E(z|a) ≈ 0.084 (which is obtained from Eq. (14)) because

P (Z ≤ E(z|a=0.7) ≈ 0.6 > P (Z > E(z|a=0.7) ≈ 0.4. Thus

results the name of the joint a and b distribution (this is a

reason why “narrow interval” appears in the name of distrib-

ution).

Figure 9a shows a smoothed histogram describing NI

query boundaries distribution. This 2-dimensional histogram

was built on the sample set of (a, b) pairs presented in

Fig. 10a. The size of the sample set is Nqb = 1000.

HQCDNI histogram based on the sample set (shown in

Fig. 10a) is presented in Fig. 10b. The number of HQCDNI

buckets equals Nq = 100. We can see that about 45% of X

domain is out of HQCD support (i.e. only X values form

0.45 to 1 are included in ranges of queries described by NI

probability distribution).

a) b)

Fig. 9. a) smoothed histogram describing NI distribution based on the sample set of (a, b) pairs (shown in Fig. 10a), b) f(z|a) – probability

density function of distribution of length query interval z = b – a for a = 0.7 (i.e. zmax = 0.3)
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a) b)

Fig. 10. a) sample set based on NI distribution, b) HQCDNI histogram estimating the include function for NI distribution (the histogram

based on the samples shown in Fig. 10a)

6.3. 1GC query boundaries distribution – 1 Gaussian

Cluster distribution. The probability density function of

1GC distribution of query boundaries – f1GC(a, b) is de-

scribed by:

f1GC(a, b) = PDF(N(m, Σ)) (15)

with mean vector and covariance matrix:

m =

[
0.4

0.6

]
, Σ =

[
0.0004 −0.0001

−0.0001 0.0001

]
(16)

is shown in Fig. 11a.

The sample set of query boundaries is presented in

Fig. 11b and 12a. The size of the set is Nqb = 1000. The

set was generated according to the distribution described by

f1GC(a, b). A HQCD was created using this set. The num-

ber of intervals of HQCD equals Nb = 100. The HQCD1GC

estimating the PI(y, f1GC) is shown in Fig. 12b.

a) b)

Fig. 11. a) f1GC(a, b) density function based on 1 Gaussian cluster, b) sample set of query boundaries generated using f1GC(a, b)

a) b)

Fig. 12. a) zoomed view of the sample set of query boundaries (shown in Fig. 11b), b) HQCD1GC histogram estimating the include function

PI(y, f1GC) based on the samples (shown in Fig. 11b and 12a)
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a) b)

Fig. 13. a) f2GC(a, b) density function based on 2 Gaussian clusters, b) contour graph for f2GC(a, b)

a) b)

Fig. 14. a) sample set of query boundaries generated using f2GC(a, b), b) HQCD2GC histogram estimating the include function PI(y, f2GC)
based on the samples (shown in Fig. 14a)

6.4. 2GC query boundaries distribution – 2 Gaussian

Clusters distribution. The probability density function of

2GC distribution of query boundaries – f2GC(a, b) is a su-

perposition of two Gaussian clusters:

f2GC(a, b) = 0.5 PDF(N(m1, Σ1)) + 0.5 PDF(N(m2, Σ2))
(17)

with mean vectors and covariance matrices:

m1 =

[
0.15

0.45

]
, Σ1 =

[
0.0025 −0.025

−0.0025 0.01

]
,

m2 =

[
0.55

0.8

]
, Σ1 =

[
0.0025 −0.00125

−0.00125 0.0025

] (18)

is shown in Fig. 13.

The sample set of query boundaries is presented in

Fig. 14a. The size of the set is Nqb = 1000. The set was gen-

erated according to the distribution described by f2GC(a, b).
HQCD was created using this set. The number of intervals

of HQCD equals Nb = 100. The HQCD2GC estimating the

PI(y, f2GC) is shown in Fig. 14b.

6.5. IU query boundaries distribution – Individual Uni-

form distribution. (a, b) pairs of query condition endpoints

(satisfying IU probability distribution) are generated as fol-

lows:

• a variable satisfies the unit rectangular uniform distribution

(i.e.: a = RAND()),

• b value for a given value of a can be obtained from:

b = (1 − a) RAND() + a

were RAND() is a function generating pseudorandom num-

bers satisfying continuous uniform distribution (rectangular

distribution) on the unit interval.

The marginal probability density function of a distribution

is given by:

fa(a) =

{
1 for 0 ≤ a ≤ 1

0 otherwise
(19)

and it is shown in Fig. 15a.

The conditional probability density function of b distrib-

ution for a given value of a (where 0 ≤ a ≤ 1):

fb(b|a) =






1

1 − a
for a < b ≤ 1

0 otherwise
(20)

and it is shown in Fig. 15b.
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a)

b)

Fig. 15. a) marginal probability density function of a distribution,

b) conditional probability density function of b distribution for given

value of a = 1/4

Using formula for obtaining the conditional probability

density:

fb(b| a) =
fIU (a, b)

fa(a)
(21)

we can find the joint density function:

fIU (a, b) = fb(b| a)fa(a)

=
1

1 − a
{1(b − a) − 1(b − 1)} {1(a) − 1(a − 1)} ,

(22)

where 1(x) is Heavide step function.

The smoothed 2-dimensional histogram – an estimator

of fIU based on the samples from the set of query condi-

tion boundaries – is presented in Fig. 16a. The sample set

is presented in Fig. 16b. The size of the sample set equals

Nqb = 1000.

HQCD histogram based on some sample set (shown in

Fig. 16b) is presented in Fig. 17a. The number of buck-

ets of HQCD equals Nb = 100. HQCDIU is an estimator

PI(y, fIU ).

PI(y, fIU ) can be obtained from:

PI(y, fIU ) =

y∫

0

1∫

y

1

1 − a
dbda = − ln(1 − y)(1 − y) (23)

and it is shown in Fig. 17b.

We can see a similarity between Fig. 17a and 17b.

a) b)

Fig. 16. a) smoothed histogram estimating fIU (a, b) based on a sample set of (a, b) pairs, b) corresponding sample set presented in [0,1]2

space

a) b)

Fig. 17. a) HQCDIU histogram estimating PI(y, fIU ) based on samples shown in Fig. 16a, b) include function PI(y, fIU ) obtained using

the analytical technique
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7. Method of validation

and experimental results

A relative error metric was used to validate the proposed

method of selectivity estimation.

The relative error of selectivity estimation for some Q

query is defined as follows:

RESE(Q) =
|sel(Q) − sêl(Q)|

sel(Q)
100%, (24)

where sel(Q) is an exact selectivity value calculated using F

and sêl(Q)is an approximate selectivity value calculated us-

ing QCA-V-optimal histogram (with B buckets) or V-optimal

(with B buckets) one or Equi-height one (with 2B buckets).

The mean relative error of selectivity estimation is defined

as follows:

MRESE = Avg
j=1...Nqb

(RESE(Qj)) (25)

and it is an error metric for a set of queries. The size of the set

of conditional endpoints pairs equals Nqb. In our experiments

we used Nqb = 1000.

7.1. Experimental results for NI query boundaries distri-

bution. Using the data sets described in Subsec. 6.1 and 6.2

(NI distribution) we obtained the X domain division presented

in Fig. 18.

The division presented in Fig. 18 was used to build

a QCA-V-optimal histogram. The QCA-V-optimal histogram

(bold line) and the standard V-optimal one (dashed line) are

shown in Fig. 19.

In Fig. 20 the QCA-V-optimal histogram (bold line) and

the HQCDNI one (dashed line) are shown together. This al-

lows to see dependency between regions with high resolution

of QCA-V-optimal and regions with high values of HQCD.

Fig. 18. Error optimal X domain division based on HQCDNI (from Fig. 10b) using SSEW error metric given by Eq. (11). V elements

(shown in Fig. 5b) are grouped into buckets of QCA-V-optimal histogram (shown in Fig. 19)

Fig. 19. QCA-V-optimal histogram based on HQCDNI (bold line) shown along the X distribution support; for comparison the classical

V-optimal histogram represented by the dashed line is also shown (this V-optimal histogram is individually shown in Fig. 7)
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Fig. 20. QCA-V-optimal histogram (bold line) based on HQCDNI shown along the full domain of X, i.e. [0, 1]; the dashed line shows a

shape of the relevant HQCDNI histogram (values of the histogram from Fig. 10b are multiplied by 100)

We experimentally obtained mean relative errors for each

method of selectivity estimation as follows:

MRESE for QCA-V-optimal histogram ≈ 21.9%,

MRESE for V-optimal histogram ≈ 42.0%,

MRESE for Equi-height histogram ≈ 37.1%.

7.2. Experimental results for 1GC query boundaries dis-

tribution. Using the data sets described in Subsec. 6.1

and 6.3 (1GC distribution) we obtained the X domain di-

vision presented in Fig. 21.

The division presented in Fig. 21 was used to build

a QCA-V-optimal histogram. The QCA-V-optimal histogram

(bold line) and the standard V-optimal one (dashed line) are

shown in Fig. 22. In Fig. 22 we can see a high improvement of

QCA-V-optimal histogram resolution in the middle of X do-

main range (comparing to the standard V-optimal histogram).

Of course, this was achieved at the expense of resolution de-

crease at the beginning and the end of the X domain range.

In Fig. 23 the QCA-V-optimal histogram (bold line) and

the HQCD1GC one (dashed line) are shown together.

Fig. 21. Error optimal X domain division based on HQCD1GC (from Fig. 12b) using SSEW error metric given by Eq. (11). V elements

(shown in Fig. 5b) are grouped into buckets of QCA-V-optimal histogram (shown in Fig. 22)

Fig. 22. QCA-V-optimal histogram based on HQCD1GC (bold line) shown along the X distribution support; for comparison the classical

V-optimal histogram represented by the dashed line is also shown (this V-optimal histogram is individually shown in Fig. 7)
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Fig. 23. QCA-V-optimal histogram (bold line) based on HQCD1GC shown along the full domain of X, i.e. [0, 1]; the dashed line shows a

shape of the relevant HQCD1GC histogram (values of the histogram from Fig. 12b are multiplied by 20)

We experimentally obtained mean relative errors for each

method of selectivity estimation as follows:

MRESE for QCA-V-optimal histogram ≈ 15.1%,

MRESE for V-optimal histogram ≈ 35.2%,

MRESE for Equi-height histogram ≈ 27.1%.

7.3. Experimental results for 2GC query boundaries dis-

tribution. Using the data the sets described in Subsec. 6.1

and 6.4 (2GC distribution) we obtained the X domain division

presented in Fig. 24.

The division presented in Fig. 24 was used to build

a QCA-V-optimal histogram. The QCA-V-optimal histogram

(bold line) and the standard V-optimal one (dashed line) are

shown in Fig. 25.

In Fig. 26 we can see the improvement of QCA-V-optimal

histogram resolution at the beginning of X domain range

(comparing to the standard V-optimal histogram). Of course

this was achieved at the expense of resolution decrease in the

middle of X domain range.

Fig. 24. Error optimal X domain division based on HQCD2GC (from Fig. 14b) using SSEW error metric given by Eq. (11). V elements

(shown in Fig. 5b) are grouped into buckets of QCA-V-optimal histogram (shown in Fig. 25)

Fig. 25. QCA-V-optimal histogram based on HQCDGC (bold line) shown along the X distribution support; for comparison the classical

V-optimal histogram represented by the dashed line is also shown (this V-optimal histogram is individually shown in Fig. 7)
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Fig. 26. Zoomed part of QCA-V-optimal histogram (based on HQCD2GC (bold line)) and zoomed part of V-optimal histogram. (The higher

resolution of QCA-V-optimal histogram for small values of X (i.e. for high values of HQCD2GC , too))

Fig. 27. QCA-V-optimal histogram (bold line) based on HQCD2GC shown along the full domain of X, i.e. [0, 1]; the dashed line shows a

shape of the relevant HQCD2GC histogram (values of the histogram from Fig. 14b are multiplied by 100)

In Fig. 27 the QCA-V-optimal histogram (bold line) and

the HQCD2GC one (dashed line) are shown together.

We experimentally obtained mean relative errors for each

method of selectivity estimation as follows:

MRESE for QCA-V-optimal histogram ≈ 26.4%,

MRESE for V-optimal histogram ≈ 37.2%,

MRESE for Equi-height histogram ≈ 34.0%.

7.4. Experimental results for IU query boundaries distri-

bution. Using the data sets described in Subsec. 6.1 and 6.5

(IU distribution) we obtained the X domain division present-

ed in Fig. 28.

The division presented in Fig. 28 was used to build

a QCA-V-optimal histogram. The QCA-V-optimal histogram

(bold line) and the standard V-optimal one (dashed line) are

shown in Fig. 29. In Fig. 29 we can see some increasing of

QCA-V-optimal histogram resolution at the beginning of X

domain range (X ∈[0.3, 0.49]), comparing to the standard

V-optimal histogram.

Fig. 28. Error optimal X domain division based on HQCDIU (from Fig. 17a) using SSEW error metric given by Eq. (11). V elements

(shown in Fig. 5b) are grouped into buckets of QCA-V-optimal histogram (shown in Fig. 29)
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Fig. 29. QCA-V-optimal histogram based on HQCDIU (bold line) shown along the X distribution support; for comparison the classical

V-optimal histogram represented by the dashed line is also shown (this V-optimal histogram is individually shown in Fig. 7)

Fig. 30. QCA-V-optimal histogram (bold line) based on HQCDIU shown along the full domain of X, i.e. [0, 1]; the dashed line shows a

shape of the relevant HQCDIU histogram (values of the histogram from Fig. 17a are multiplied by 100)

In Fig. 30 the QCA-V-optimal histogram (bold line) and

the HQCDIU one (dashed line) are shown together.

We experimentally obtained mean relative errors for each

method of selectivity estimation as follows:

MRESE for QCA-V-optimal histogram ≈ 16.1%,

MRESE for V-optimal histogram ≈ 23.2%,

MRESE for Equi-height histogram ≈ 21.9%.

7.5. Experimental results – summary. To obtain statisti-

cally significant results we preformed experiments for many

instances of set of query interval endpoint pairs. The average

of mean relative error of selectivity estimation (AvgMRESE)

and the standard deviation of the mean relative error of selec-

tivity estimation (STDMRESE) were experimentally obtained.

The number of set instances (generated in accordance with NI

or 1GC or 2GC or UI distribution) was assumed as 10. Each

time a new sample set of X values was generated too (in ac-

cordance with the distribution given by Eq. (12)) so a new F

vector was also created each time.

The results are presented in Table 1 and Fig. 31. Apply-

ing QCA-V-optimal histograms gives the best results for all

experiments. For all used query conditional boundaries dis-

tributions (i.e. NI, 1GC, 2GC, UI) we obtained the smallest

AvgMRESE when QCA-V-optimal histogram was used.

Table 1

Averages and standard deviations of mean relative selectivity estimation for query boundaries distributions: NI, 1GC, 2GC, UI with usage of histograms:

QCA-V-optimal, V-optimal, Equi-height

Histogram

MRESE – Mean Relative Error of Selectivity Estimation [%]

NI 1GC 2GC UI

Avg STD Avg STD Avg STD Avg STD

QCA-V-optimal 22.8 1.82 15.2 1.8 27.1 1.52 16.4 1.52

V-optimal 42.12 1.93 35.32 2 37.1 1.8 23.1 1.8

Equi-height 36.5 1.7 28 1.7 32.5 1.75 22.2 1.75
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Fig. 31. Averages of mean relative selectivity estimation (AvgMRESE) for query boundaries distributions: NI, 1GC, 2GC, UI with usage

of histograms: QCA-V-optimal, V-optimal, Equi-height

AvgMRESE (values in columns titled “Avg”) in Table 1

differ for QCA-V-optimal, V-optimal, Equi-high. Those dif-

ferences are statistically significant. For example, using Stu-

dent’s t-distribution we checked that the null hypothesis –

“AvgMRESE values are equal for QCA-V-optimal histogram

and V-optimal one” should be rejected with some assumed

confidence level (value 0.99 was assumed here). Thus, we ac-

cepted the alternative hypothesis – “AvgMRESE for V-optimal

histogram is greater than AvgMRESE for QCA-V-optimal his-

togram”. In such way, for all exemplary distributions (NI,

1GC, 2GC, UI) we accepted the hypothesis that values of

AvgMRESE for QCA V-optimal histogram are statistically

significantly less then relevant values of AvgMRESE for V-

optimal one or Equi-height one (assuming the confidence level

equals 0.99).

8. Conclusions and future work

The experimental results (presented in Table 1 and Fig. 31)

show that applying a QCA-V-optimal histograms gives the

smallest average mean relative error of selectivity estimation

(AvgMRESE) for data sets described in Sec. 6. The method

based on a QCA-V-optimal-histogram is the best for all used

sample sets. This results are rather interesting taking into ac-

count that a 1-dimensional HQCD only approximately de-

scribes a 2-dimensional distribution of range query bound-

aries.

Benefits of the proposed method depend on relative loca-

tion of X domain intervals, i.e.:

• intervals where PI values are large,

• intervals where F values change significantly.

The overlapping of the mentioned-above intervals is rather

required. It is obvious that for some relative locations of in-

tervals this method may be very beneficial.

There is a problem if a description of condition bound-

aries distribution given by include function is really constant

in time. We cannot always assume that PI does not depend on

time (mostly, there are situations in a real system that query

condition boundaries distribution may vary in time). The gen-

eral naı̈ve solution (but which eliminates this problem) is a

frequent updating the statistics (i.e. updating HQCD). But we

may propose some extension of the method which may also

help during the time between sequential updates of HQCD.

We propose some simple “method of prediction” of PI de-

scribed below.

Let us introduce an uncertain level parameter denoted by

p, where p ∈ [0, 1). Let assume that f(a, b) is a query condi-

tion boundaries distribution valid during the time of gathering

statistics (during updating a relevant HQCD). Let f ′(a, b) de-

note an unknown query condition boundaries distribution in

future. Instead of assuming that query condition boundaries

distribution will not change in future (i.e. f ′(a, b) ≡ f(a, b))
we may predict as follows:

f ′(a, b) = (1 − p)f(a, b) + pf2D−uniform(a, b), (26)

where p is a small value (e.g. p = 0.1). f ′(a, b) becomes a

superposition of two distributions. Usage of f2Duniform (see

Fig. 2a) allows to include some pair of (a, b) even if they

might be eliminated by f(a, b) (i.e. such (a, b) pairs where

f(a, b) ≡ 0). Applying such approach is easy because of the

mentioned linear property of PI . Using Eq. (26) and (8) we

can obtain PI(y, f ′) as follows:

PI(y, f ′) = (1 − p)PI(y, f) + pPI(y, f2D−uniform). (27)

Using Eq. (27) and (10) we can obtain:

PI(y, f ′) = (1 − p)PI(y, f) + p2y(1 − y). (28)

The Eq. (28) allows to find a predicted unknown HQCD’ (the

estimator of PI(y, f ′)) using known HQCD (the estimator of

P (y, f)). Let hj denote a value of HQCD histogram in the

j-th bucket defined by interval (bj , ej). Analogously, let h′
j

denote a value of HQCD’ histogram in the j-th bucket defined

by interval (bj , ej). Thus using Eq. (28) we can find h′
j value

as follows:

h′
j = (1 − p)hj + 2p Avg

bj≤y≤ej

(y(1 − y)), (29)

where

Avg
bj≤y≤ej

(y(1 − y))

=
1

ej − bj

ej∫

bj

y(1 − y)dy =
2b3

j − 3b2
j − 2e3

j + 3e2
j

6(ej − bj)
.

(30)

Future work may concentrate on further experimental veri-

fication of this approach and development of a method of
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choosing the optimal p values. We expect that p value should

depend on a level of PI change obtained during a sequence

of time moments between updating of statistics (where the

level of PI change may be estimated as a distance between

subsequently obtained HQCD histograms).

Some future work may also concentrate on applying the

proposed method in selected DBMSs. Many DBMSs support

an interface for extending the functionality of selectivity esti-

mation. For example Oracle DBMS allows to extend CBQO

functionality by introducing Oracle ODCI Stat module [15].

This module lets Java or PL/SQL programmers implement

a customized representation of an attribute values distribu-

tion and a customized method of selectivity estimation (e.g.

[13, 16]). It may be used for either creating HQCD histogram

(i.e. collecting information about range query boundaries dis-

tribution) or creating QCA-V-optimal histogram or enabling

(to CBQO) the implementation of selectivity calculating pro-

cedure based on QCA-V-optimal histogram.
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