
ARCHIVES OF CIVIL ENGINEERING, LVIII, 1, 2012

DOI: 10.2478/v.10169-012-0004-1

ANN-BASED MODELLING OF FLY ASH COMPACTION CURVE

K. ZABIELSKA-ADAMSKA1, M.J. SULEWSKA2

The use of fly ash as a material for earth structures involves its proper compaction. Fly ash
compaction tests have to be conducted on separately prepared virgin samples because spherical ash
grains are crushed during compaction, so the laboratory compaction procedure is time-consuming
and laborious. The aim of the study was to determine the neural models for prediction of fly ash
compaction curve shapes. The attempt of applying the artificial neural networks type MLP was
made. ANN inputs were new-created variables – principal components dependent on grain-size
distribution (as D10–D90 and uniformity and curvature coefficients), compaction method, and fly
ash specific density. The output vectors were presented by co-ordinates of generated compaction
curve points. Each point (wi, ρdi) was described by two independent ANNs. Using ANN-based
modelling method, models which enable establishing the approximate compaction curve shape
were obtained.

Key words: Compaction curve, fly ash, fly ash compactibility, compaction parameters, geotechnical para-
meters, artificial neural networks, neural modelling.

1. I

Soil compactibility is defined as an ability to obtain maximum possible dry density
of solid particles, ρd, and is dependent on compaction energy, the way that is used,
as well as the type of soil and its water content. Soil compaction is measured by the
degree of compaction Is:

(1.1) Is =
ρd

ρd max

where ρd is the dry density of solid particles determined for soil compacted in an
earth structure, ρd max the maximum dry density of solid particles determined in the
laboratory for the same material as ρd. Laboratory compaction test requires us to carry
out compaction in standardized ways at various water contents and as a result of that
plotting the relationship between dry density of solid particles (or unit weight) and

1 PhD, DSc, Eng, Univ. Professor, Faculty of Civil and Environmental Engineering, Bialystok Uni-
versity of Technology, Bialystok, Poland, e-mail: kadamska@pb.edu.pl (corresponding author)

2 PhD, DSc, Eng, Faculty of Civil and Environmental Engineering, Bialystok University of Techno-
logy, Bialystok, Poland, e-mail: m.sulewska@pb.edu.pl



58 K. Z-A, M.J. S

water content. The moisture content at which compacted soil reaches the maximum
dry density of solid particles is called optimum water content, wopt. Compaction curves
ρd(w), which are obtained at various values of compaction energy, run asymptotically
to the line of maximum compaction, called the zero air voids line, calculated assuming
that soil pores are completely filled with water, as well as the line of saturation degree
Sr =1, which determines the degree of saturation when the soil sample is completely
saturated.

The use of fly ash as a material for earth structures involves its proper compac-
tion. Compaction is the most common method of the mechanical improvement of soil
condition. It increases soil density, improves its strength and penetration resistance, as
well as decreases compressibility and permeability. In engineering practice materials
built-in road subgrade and embankment have their own specifications, which are de-
pendent on type of earth structure and soil plasticity characteristics. Construction of
mineral sealing layers usually requires cohesive soil compaction to obtain 90 or 95% of
maximum compaction, relating to the Standard or Modified Proctor methods. Concern
should be taken not to use degree of compaction, Is, as the only parameter to assess
compaction of material in a sealing layer or road structure. The permeability and me-
chanical properties of compacted cohesive soils are dependent on water content during
compaction, as are properties of fly ash. Consequently, different values of geotechnical
parameters are obtained for water content, w, on either side of the optimum water
content, wopt, on the compaction curve, for the same dry densities, ρd. This applies to
both cohesive soil and fly ash [1]. It explains, not only a great importance of compac-
tion parameters, but also compaction curve shape, so establishing fly ash compaction
curves as density–water content relationships is very important. Additionally, fly ash
compaction tests have to be conducted on separately prepared virgin samples – each
point of fly ash compaction curve (w, ρd) should be compacted once only in a Proctor’s
mould. Fly ash samples compacted many times can not be considered as representative
– values for maximum dry density of solid particles increase with number of repe-
ated compaction at decreasing optimum water contents, in comparison with samples
compacted only once under the same conditions. Spherical ash grains, crushed during
compaction, can be stuffed with smaller grains, which improve their packing [2]. This
phenomenon motivates a necessity of determination of fly ash compaction curve on
virgin samples, so the procedure is time-consuming and laborious.

The paper aim is to analyse the influence of fly ash grain-size distribution (re-
presenting by the effective sizes and curvature coefficients) and specific density on
its compaction parameter values, and to determine the relationship between physical
parameters of tested fly ash and its compaction curve shapes. The attempt of using the
artificial neural networks type Multi-Layer Perceptron (MLP) for fly ash compaction
curve points was made. Results enable us to predict the shape of the tested fly ash
compaction curve. Consequently, on the basis of size-grain distribution and specific
density of fly ash the compaction curve shape can be modeled.
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2. T   

Tests were performed on a fly ash and bottom ash mixture from a dry storage yard,
which are referred to as fly ash because there is only a vestige of bottom ash in the
mix. Fly ash is a by-product of hard coal combustion at the Bialystok Thermal-Electric
Power Station. The scheme of carried out laboratory tests, which results are taken into
analysis, is shown in Fig. 1.

Fig. 1. Scheme of tests carried out on fly ash samples.
Rys. 1. Schemat badań przeprowadzonych na próbkach popiołu lotnego

The grain-size distribution of the tested Class F fly ash (according to ASTM C618)
in most cases corresponds to sandy silt, except same cases of silty sand. On the whole,
according to the criterion that mineral soils are estimated by their uniformity, CU, and
curvature, CC, coefficients the tested fly ash qualifies as a material that responds poorly
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to compaction [3]. Table 1 presents ranges of fly ash specific density and graining
values.

Table 1
Tested fly ash parameters.

Parametry badanego popiołu lotnego

Parameter Unit Range

ρs Mg/m3 2.08–2.29
D10
D20
D30
D40
D50
D60
D70
D80
D90

mm
mm
mm
mm
mm
mm
mm
mm
mm

0.009–0.025
0.013–0.045
0.015–0.060
0.018–0.550
0.022–0.500
0.028–0.117
0.040–0.156
0.065–0.204
0.105–0.500

CU

CC

–
–

2.00–6.11
0.80–1.73

Fig. 2. The compaction curves from laboratory tests.
Rys. 2. Krzywe zagęszczalności z badań laboratoryjnych
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Compaction tests were carried out by means of the Standard and Modified Proctor
methods. During the tests, fly ash samples were compacted once only in a Proctor’s
mould – each point of compaction curve (w, ρd) was determined for separately prepared
virgin sample [2]. Samples were moisturized so as to produce an increase in water
content of each subsequent specimen of about 2% and were then stored for 24 h
in closed tins. Fragmentary curves were taken into consideration for water contents
ranging over wopt±5% that are shown in Fig. 2.

3. ANN   

There is no many examples of neural-biased modelling of the soil compaction curve
shape or even compaction parameters, wopt and ρdmax, in literature.

One of the first attempt of applying ANNs to prediction values of wopt and ρdmax
(as two outputs) for the synthetic and natural cohesive soils was made by Najjar et
al. [4] on the basis of graining (soil composition percentages), specific density, as
well as consistency parameters: liquid and plastic limits. Fineness modulus, uniformity
coefficient and effective sizes, D50 and D10, were recognized as less significant. It
should be stated that calculations were based on data available in the literature and
only compaction parameters, wopt and ρdmax, were complemented in laboratory due to
the limited data available, so computation results could be less accurate.

Similar research was presented in [5, 6]. The first analysis of Sinha and Wang
[5] was performed for five input variables: specific density, fineness modulus, effective
size, D10, plastic and liquid limits, and the only one output – maximum dry density of
solid particles. The second one [5] was carried out for three inputs: fineness modulus,
coefficient of uniformity and plastic limit for optimum water content prediction. Next,
the combined model was considered, where both compaction parameters, wopt and
ρdmax, were predicted together with coefficient of permeability. All three models could
become an efficient tool useful in earth works. In Günaydın’s analysis [6], including
five different models, the number of inputs changed from seven to two was employed.
The inputs were: contents of particular soil fraction (fine-grained, sand, gravel), specific
density, liquid and plastic limits and soil type (the soil name). Compaction parameters,
wopt and ρdmax, were both applied as outputs. All of the models were discussed in
detail.

The compaction parameters, wopt and ρdmax, or minimum and maximum dry densi-
ties determined by vibration of dry soil, ρdmin and ρdmax, were found for non-cohesive
soils in dependence on soil graining (coefficient of uniformity and effective sizes:
D10–D90) by Sulewska [7, 8, 9]. Principal Component Analysis was also used to de-
crease the ANN size through input data compression. As outputs were applied: wopt,
ρdmax, and determined by vibration: ρdmax and ρdmin, separately or in combination.

In all the mentioned cases only one dynamic compaction method was considered
– the Standard Proctor test.
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The shape of compaction curve was only predicted by Basheer [10] for cohesive
soils, depending on soil graining (fines content, clay content), specific density, con-
sistency parameters: liquid and plastic limits, and compaction energy (reduced, the
Standard and Modified Proctor energy). The research was developed for determining
compaction curves in two stages: optimum water content from one model and dry den-
sity of solid particles from another. The density models were found to be significantly
more accurate, so actual values of wopt were used in curve simulations.

Authors made an attempt of applying the ANNs for fly ash compaction curve
shape for standard and modified compaction methods, which was described briefly in
[11].

4. ANN-  

Analysed data set of a total of 71 compaction curves (P=71 cases) was described by
means of 22 variables (Fig. 1):
• compaction method (standard or modified);
• co-ordinates of points on compaction curves (wi, ρdi) where wi is: wopt−5%,

wopt−2.5%, wopt, wopt+2.5%, wopt+5%, and ρdi is: ρd(wopt−5%), ρd(wopt−2.5%), ρdmax,
ρd(wopt+2.5%), ρd(wopt+5%);

• specific density, ρs;
• grain-size distribution described by effective sizes: D10, D20, D30, D40, D50, D60,

D70, D80, D90 and uniformity and curvature coefficients, CU and CC.
In order to perform the data set compression to reduce the size of the network with a
large number of parameters Principal Component Analysis (PCA) was used [12, 13].
PCA reduces the dimensionality of the data set, while retaining a variance by map-
ping the co-ordinate system described by actual variables to a new lower dimensional
co-ordinate system specified by principal components. PCA lies in the fact of redistri-
bution of variance over new-created variables that can explain, when all the principal
components are considered, 100% of the total variance. Each new-created variable (the
principal component, PC) is a linear combination of the actual variables. Contribution
of the particular variables to element of PC is determined by loadings of each original
variable on the appropriate PC. In the paper the PCs are a result of original set of
13 data: compaction method, ρs, D10 − D90, CU, CC. The PCs are orthogonal (that is
uncorrelated) linear combinations of the original variables. STATISTICA software was
used for calculating the principal components by means of the factor analysis function.

Table 2 presents the percentage of variance that is explained by each of principal
components. The first principal component, PC1, accounts for 41.46% of the total
variance; the second (PC2) and third (PC3) principal components account for 25.28%
and 10.57% of the total variance respectively; the fourth (PC4) and fifth (PC5) principal
components account for 8.40% and 7.40% of the total variance respectively; the sixth
(PC6) accounts for 4.24%.
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Table 2
Analysis of principal components.

Analiza składowych głównych

PCs % Total Variance Cumulative %

PC1 41.46 41.46

PC2 25.28 66.74

PC3 10.57 77.31

PC4 8.40 85.71

PC5 7.10 92.81

PC6 4.24 97.05

PC7 1.83 98.88

PC8 0.71 99.59

PC9 0.29 99.88

PC10 0.08 99.96

PC11 0.02 99.98

PC12 0.01 99.99

PC13 0.01 100.00

Fig. 3. Percentage of variance explained by following PCs.
Rys. 3. Procent wariancji określony przez kolejne składowe główne

A number of principal components taken into further analysis was establish on
the basis of Cattell’s criterion [14] (Fig. 3). It was necessary to establish the points
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on the left of the straight line on the graph presenting percentage of variance that
was explained by following PCs (or eigenvalues). Such a point is determined by initial
six PCs, which explained 97.05% of the total variance, at a loss of 2.95% of the
information. In accordance with this criterion it is sufficient to use only six PCs.

Table 3 shows the loadings of each original variable on the corresponding prin-
cipal component. These loadings describe correlations between the particular original
variables and the PCs. It can state that PC1 is characterised by high loading on: ρs,
D60–D90 and CU. PC2 is characterised by high loading on variables: D10–D30 and CC;
PC3 – by D40; PC4 – by D50; PC5 – by variable: compaction method. PC6 is not
characterised by any dominant loading.

Table 3
Loadings for PC1–PC6.

Ładunki czynnikowe zmiennych dla PC1–PC6

Variable PC1 PC2 PC3 PC4 PC5 PC6

Method 0.091 –0.035 0.363 –0.505 0.765 0.134

ρs –0.739 0.286 –0.111 0.268 0.060 0.521

D10 0.158 –0.849 –0.382 –0.127 –0.038 0.257

D 20 0.446 –0.796 –0.220 –0.183 –0.065 –0.025

D 30 –0.375 –0.919 0.042 0.047 0.013 –0.017

D 40 0.347 –0.276 0.744 0.398 –0.112 0.241

D 50 0.150 –0.098 –0.447 0.660 0.550 –0.163

D 60 –0.897 –0.357 0.073 0.021 –0.000 –0.062

D 70 –0.987 –0.117 –0.030 0.049 0.027 0.074

D 80 –0.967 –0.181 –0.085 0.008 0.058 –0.018

D 90 –0.893 –0.319 0.032 –0.208 –0.063 –0.099

CU –0.858 0.246 0.309 0.066 0.026 –0.267

CC 0.281 –0.762 0.412 0.261 0.069 –0.140

The data set was randomly split into the learning (L), the validating (V ) and
the testing (T ) subsets. The pattern number in particular subsets was in the ratio of
50:25:25% of the total number of patterns, respectively. Co-ordinates of points on
compaction curves were modelled using multilayer feed forward neural networks (type
MLP) with 6 or 5 inputs, one hidden layer and one output. In neurons of the hidden
layer the tangensoidal (tanh) activation function was applied, and in the output neurons
– the linear activation function. The Levenberg-Marquardt method was used for neuron
networks training. ANN simulation was performed using STATISTICA Neural Networks
software. ANNs with the best prediction accuracy were quantified by the means of the
various error measure analysis. In the paper both the root mean squared error, RMSE
and the determination coefficient, R2, independently for L, V, and T subsets were
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shown:

(4.1) RMSE =

√√√
1
P

P∑

i=1

(
di − yi

)2

(4.2) R2 = 1 −
∑

(di − yi)2

∑(
di − d̄

)2

where di are the measured values, yi are the predicted values of di, and d̄ is the mean
of the di values. ANNs with the best prediction accuracy along with values of error
measures are shown in Table 4.

Table 4
ANNs of the best prediction accuracy and their error measures.

SNN o najlepszej dokładności predykcji i ich miary błędów

Output Inputs ANN Epochs
RMSE R2

L V T L V T

wopt−5% PC1–PC6 6-2-1 324 0.130 0.094 0.122 0.615 0.697 0.579

wopt−2.5% PC1–PC6 6-4-1 264 0.055 0.091 0.117 0.933 0.823 0.709

wopt PC1–PC6 6-3-1 787 0.057 0.122 0.123 0.925 0.671 0.743

wopt+2.5% PC1–PC6 6-4-1 184 0.112 0.136 0.125 0.697 0.575 0.564

wopt+5% PC1–PC6 6-3-1 289 0.117 0.109 0.167 0.632 0.557 0.584

ρd(wopt−5%) PC1–PC5 5-3-1 101 0.051 0.083 0.080 0.929 0.903 0.741

ρd(wopt−2.5%)
PC1–PC2,
PC4–PC6 5-3-1 517 0.077 0.088 0.100 0.880 0.878 0.906

ρdmax
PC1–PC2,
PC4–PC6 5-3-1 117 0.053 0.100 0.096 0.949 0.839 0.867

ρd(wopt+2.5%) PC1–PC6 6-3-1 138 0.064 0.094 0.079 0.927 0.837 0.874

ρd(wopt+5%) PC1–PC6 6-3-1 993 0.075 0.087 0.083 0.867 0.916 0.914

Figures 4a and b present the exemplary comparison of the measured values and
the predicted ones with ANNs in the set of all data, along with relative error areas

(4.3) RE =

∣∣∣∣∣
yi − di

yi

∣∣∣∣∣ · 100%

respectively for wopt and ρdmax. Exemplary compaction curves predicted by ANNs
compared with actual fly ash compaction curves are presented in Figure 5.

5. S  

The aim of the study was to determine the neural models for prediction of fly ash
compaction curve shapes characterised by co-ordinates of five points on the basis of
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Fig. 4. Values obtained from laboratory tests and calculated by ANNs in all data set: (a) wi values along
with 10% relative errors areas, (b) ρdi values along with 5% relative errors areas.

Rys. 4. Wartości otrzymane z badań laboratoryjnych i obliczone przez SSN w całym zbiorze danych:
(a) wartości wi z obszarem 10% błędu względnego, (b) wartości ρdi z obszarem 5% błędu względnego

Fig. 5. Exemplary actual and predicted by ANNs compaction curves.
Rys. 5. Przykładowe rzeczywiste i przewidywane za pomocą SSN krzywe zagęszczalności



68 K. Z-A, M.J. S

grain-size distribution and specific density. Each point (wi, ρdi) was described by two
independent ANNs. ANN inputs were new-created variables – principal components
PCs, and outputs were co-ordinates of the compaction curve points. PCs are a result
of: compaction method, ρs, D10 − D90, CU, CC.

The neural networks of various topology: 6-3-1, 6-2-1 and 6-4-1 for moisture, wi,
predicted values, and 5-3-1 and 6-3-1 for dry density of solid particles, ρdi, values
proved to be the best. The obtained neural networks have a satisfactory prediction
quality, especially for ρdi values. The determination coefficient, R2, between the me-
asured values of point co-ordinate and the predicted ones is in the range 0.557–0.823
in the validating subset and 0.564–0.743 in the testing subset, and 0.837–0.916 in the
validating subset and 0.867–0.914 in the testing subset, respectively for wi and ρdi
values. Water content at compaction decreases accuracy of the predicted compaction
curve shapes, especially for wi greater than optimum water content.

Using ANN-based modelling method, models which enable establishing the ap-
proximate compaction curve shape were obtained.
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MODELOWANIE KRZYWEJ ZAGĘSZCZALNOŚCI POPIOŁU LOTNEGO ZA POMOCĄ SSN

S t r e s z c z e n i e

Wykorzystanie popiołu lotnego do konstrukcji ziemnych wymaga jego właściwego zagęszczenia. Zagęsz-
czanie powoduje wzrost gęstości gruntu, zwiększa jego wytrzymałość i zdolność do przenoszenia obciążeń,
a także zmniejsza ściśliwość i przepuszczalność. Oznaczenie zagęszczalności popiołu lotnego musi być
przeprowadzane na próbkach jednokrotnie zagęszczanych, ponieważ sferyczne ziarna popiołu są niszczone
w trakcie ubijania, w związku z tym, laboratoryjne ustalenie krzywej zagęszczalności popiołu jest bar-
dzo czasochłonne. Celem artykułu było wykorzystanie modelowania neuronowego do prognozy kształtu
krzywej zagęszczalności popiołu lotnego. Podjęto próbę zastosowania sztucznych sieci neuronowych SSN
typu MLP do opisu punktów krzywej zagęszczalności. Każdy punkt krzywej (wi, ρdi) został opisany przez
dwie niezależne SSN. Wykorzystano SSN o różnych wejściach, którymi były nowo utworzone zmienne
– składowe główne, zależne od uziarnienia (średnic efektywnych d10–d90 oraz wskaźników jednorodności
i krzywizny uziarnienia), metody zagęszczenia oraz gęstości właściwej szkieletu gruntowego. Wektorami
wyjścia były współrzędne punktów krzywej zagęszczalności popiołu lotnego. Najlepszymi sieciami neu-
ronowymi były sieci o topologii: 6-3-1, 6-2-1 i 6-4-1 dla prognozy wartości wilgotności wi, oraz 5-3-1 i
6-3-1 dla predykcji wartości gęstości objętościowej szkieletu gruntowego ρdi. Uzyskano sieci neuronowe
o zadowalającej precyzji, szczególnie w przypadku wartości ρdi. Modelowanie krzywej za pomocą SSN
umożliwiło ustalenie przybliżonego kształtu krzywej zagęszczalności popiołu lotnego.
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