
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 60, No. 4, 2012
DOI: 10.2478/v10175-012-0090-x

VARIA

The choice of optimal 3-rd order polynomial packet dropping

function for NLRED in the presence of self-similar traffic

J. DOMAŃSKA1∗, D.R. AUGUSTYN2, and A. DOMAŃSKI2

1 Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, 5 Baltycka St., 44–100 Gliwice, Poland
2 Institute of Informatics, Silesian Technical University, 16 Akademicka St., 44–100 Gliwice, Poland

Abstract. Algorithms of queue management in IP routers determine which packet should be deleted when necessary. The article investigates
the influence of the self-similarity on the optimal packet rejection probability function in a special case of NLRED queues. This paper
describes another approach to the non-linear packet dropping function. We propose to use the solutions based on the polynomials with
degree equals to 3. The process of obtaining the optimal dropping packets function has been presented. Our researches were carried out
using the Discrete Event Simulator OMNET++. The AQM model was early verified using the discrete-time Markov chain. The obtained
results show that the traffic characteristic has the great impact on the network node behavior, but self-similarity of network traffic has no
influence on the choosing of the optimal dropping packet function.
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1. Introduction

The necessity of computer modeling appears in many areas
of computer networks design and exploitation. The computer
networks modeling helps developers:

• to predict the behaviour of a proposed network,
• to compare different topologies,
• to locate overloaded nodes,
• to characterize a network load,
• to determine the number and type of necessary compo-

nents.

For the proper evaluation of the computer network perfor-
mance it is necessary to create not only appropriate models
of network mechanisms, but also the realistic packet traffic
model.

In the traditional queuing models it is assumed that the
input stream of customers (packets, frames, cells . . . ) is char-
acterized by the interarrival time distribution. The interarrival
times are independent and represent the values of the same
random variable, hence the generated traffic was character-
ized by the short-term dependencies. However, network traffic
measurements have shown that these dependencies are long-
term. This feature is associated with the self-similarity of the
stochastic processes [1]. The problem of self-similarity has
been described in Sec. 2.

The Internet has evolved from a limited size data transfer
network into enormous public net offering various services
where the quality of service – determined by transfer time,
jitter and loss probability – becomes an important issue. Al-
gorithms of queue management in IP routers determine which
packet should be deleted when necessary. The Active Queue
Management, recommended by IETF (Internet Engineering

Task Force) [2], enhances the efficiency of transfers and coop-
erates with a TCP congestion window mechanism in adapting
flow intensity to a network congestion.

There are many kinds of AQM algorithms. One of them
– the RED (Random Early Detection) algorithm was first de-
scribed by Sally Floyd and Van Jacobson [3]. Its idea is based
on a dropping function yielding probability that a packet is
rejected. There are many researches concerning improvement
of the RED efficiency [4–10]. The existing varieties of the
RED algorithm mostly differ in the way of defining the pack-
et dropping probability functions [11–14]. Sometimes they
differ in a choice of the packet dropping strategy [15]. One
of these modifications is NLRED (non-linear RED) [13]. In
NLRED, the linear packet dropping function is replaced by a
quadratic function. This paper describes another approach to
packed dropping function used in NLRED. We reconsider the
problem of non-linear packet loss probability function based
on sum of linearly independent polynomials. Our conference
paper [16] has presented the first steps in the research asso-
ciated with the use of polynomial packet dropping function
p(x). In the paper [17] we have also considered the polyno-
mial function p(x), but our study concerned only the Poisson
type of traffic sources. We have considered a minimal index
of quality built on several traffic parameters. In this article we
use the self-similar traffic source and for such type of traffic
we look for the optimal form of function p(x).

Section 3 provides the basic notions for the active queue
management mechanisms and the description of the proposed
modification of the NLRED packet dropping function. Section
4 describes the full algorithm of obtaining the optimal packets
dropping function. This algorithm lets us to obtain the opti-
mal set of NLRED parameters (see Sec. 5). Section 5 demon-
strates also how much NLRED performance is influenced by
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self-similarity of incoming traffic and therefore advocates the
necessity of considering the self-similar processes in stud-
ies of congestion-control mechanisms. Some conclusions are
presented in Sec. 6.

2. Self-similarity of network traffic

Traditionally, the traffic intensity, has been treated as a sto-
chastic process, was represented in queuing models by short
term dependencies [18]. However, the analysis of measure-
ments shows that the traffic possesses also long-terms de-
pendencies and has a self-similar character. It was observed
on various protocol layers and in different network structures
[19–24].

The term “self-similar” was introduced by Mandelbrot
[25] in description of processes in the field of hydrolo-
gy and geophysics. It means that a change of a time scale
does not influence statistical properties of the process. A sto-
chastic process Xt is self-similar with Hurst parameter H
(0.5 ≤ H ≤ 1) if for a positive factor g the process g−HXgt

has the same distribution as the original process Xt, [1].
Mathematically, the difference between short-range dependent
processes and long-range ones (self-similar) is as follows [26]:

For a short-range dependent process:

–
∞∑

r=0

Cov(Xt, Xt+τ ) is convergent,

– spectrum at ω = 0 is finite,

– for large m, Var (X
(m)
k ) is asymptotically of the form

Var (X)/m,

– the aggregated process X
(m)
k tends to the second or-

der pure noise as m → ∞;

For a long-range dependent process:

–
∞∑

r=0
Cov(Xt, Xt+τ ) is divergent,

– spectrum at ω = 0 is singular,

– for large m, Var (X
(m)
k ) is asymptotically of the form

Var (X)m−β ,

– the aggregated process X
(m)
k does not tend to the

second order pure noise as m → ∞,

where the spectrum of the process is the Fourier transforma-
tion of the autocorrelation function and the aggregated process
X

(m)
k is the average of Xt on the interval m:

X
(m)
k =

1

m
(Xkm−m+1 + ... + Xkm) k ≥ 1.

Self-similarity of a process means that a change of a time
scale does not affect statistical characteristics of the process.
It results in long-range dependence and makes the occurrence
of very long periods of high (or low) traffic intensity possible.
These features have a great impact on a network performance.
They enlarge mean queue lengths at buffers and increase pack-
et loss probability, reducing this way the quality of services
provided by a network [27]. TCP/IP traffic has been charac-
terized by burstiness and long-term correlation as well [28].

Its features are additionally influenced by the performance
of congestion avoidance and congestion management mecha-
nisms, [21, 29]. According to Stallings [27], “Self-similarity
is such an important concept that, in a way, it is surprising
that it has only recently been applied to data communications
traffic analysis”. As mentioned above, many empirical and
theoretical studies have shown the self similar characteristics
of the network traffic. That is why it is necessary to take into
account this feature when you want to create a realistic model
of traffic sources [30].

To represent the self-similar traffic we use here a SMPP
(Special Semi-Markov Process) model introduced by S.
Robert [31, 32]. The time of the model is discrete and divid-
ed into unit length slots. Discrete-time models can be more
complex to analyze than equivalent continuous-time ones, but
computer networks operate on the basis of time-slotting and
such discrete representation seems natural. Only one packet
can arrive during each time-slot. In the case of memoryless,
geometrical source, the packet comes into system with fixed
probability α. In the case of self-similar traffic, packet arrivals
are determined by a n-state discrete time Markov chain called
modulator. It was assumed that modulator has n = 5 states
(i = 0, 1, . . .4) and packets arrive only when the modulator is
in state i = 0. The elements of the modulator transition proba-
bility matrix depend only on two parameters: q and a – there-
fore only two parameters should be fitted to match the mean
value and Hurst parameter of the process. If pij denotes the
modulator transition probability from state i to state j, then it
was assumed that p0j = 1/aj , pj0 = (q/a)j , pjj = 1−(q/a)j

where j = 1, . . . , 4, p00 = 1−1/a−. . .−1/a4, and remaining
probabilities are equal to zero. The passages from the state 0
to one of other states determine the process behavior on one
time scale, hence the number of these states corresponds to
the number of time-scales where the process may be consid-
ered as self-similar. Figure 1 presents the normalized variance
of the aggregated series of SSMP traffic as a function of time
scale in log-log coordinates. For comparison, the same plot is
also drawn for the Poisson process. The SSMP model enable
us to represent a network traffic which is self-similar over
several time-scales.

Fig. 1. Log-log variance-time plot for SSMP(5) model
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3. Active queue management

In passive queue management, packets coming to a buffer are
rejected only if there is no space in the buffer to store them,
hence the senders have no earlier warning on the danger of
growing congestion. In this case all packets coming during
saturation of the buffer are lost. The existing schemes may
differ on the choice of packet to be deleted (end of the tail,
head of the tail, random). During a saturation period all con-
nections are affected and all react in the same way, hence they
become synchronized. To enhance the throughput and fairness
of the link sharing, also to eliminate the synchronization, the
Internet Engineering Task Force (IETF) recommends active

algorithms of buffer management. They incorporate mecha-
nisms of preventive packet dropping when there is still place
to store some packets, to advertise that the queue is growing
and the danger of congestion is ahead. The probability of pack-
et rejection is growing together with the level of congestion.
The packets are dropped randomly, hence only chosen users
are notified and the global synchronization of connections is
avoided. A detailed discussion of the active queue manage-
ment goals may be found in [2]. The RED (Random Early
Detection) algorithm has been proposed by IETF to enhance
the transmission via IP routers. It was primarily described by
Sally Floyd and Van Jacobson in [3]. Its idea is based on a
drop function giving probability that a packet is rejected. The
argument avg of this function is a weighted moving average
queue length, acting as a low-pass filter (Fig. 2) and calculated
at the arrival of each packet as

avg = (1 − w)avg′ + wq, (1)

where avg′ is the previous value of avg, q is the current
queue length and w is a weight determining the importance
of the instantaneous queue length, typically w ≪ 1. If w is
too small, the reaction on arising congestion would be too
slow, if w is too large, the algorithm would be too sensitive
on ephemeral changes of the queue (noise). Articles [3, 33]
recommend w = 0.001 or w = 0.002, and [34] shows the
efficiency of w = 0.05 and w = 0.07. Article [35] analyses
the influence of w on queuing time fluctuations, obviously the
larger w, the higher fluctuations. The RED drop function has
two thresholds Minth and Maxth. If avg < Minth all pack-
ets are admitted, if Minth < avg < Maxth then dropping
probability p is growing linearly from 0 to Pmax:

p(avg) = Pmax
avg − Minth

Maxth − Minth

(2)

and if avg > Maxth then all packets are dropped. The value
of Pmax has also a strong influence on the RED performance:
if it is too large, the overall throughput would be unnecessar-
ily choked and if it’s too small the danger of synchronization
arises; [33] recommends Pmax = 0.1. The problem of the
choice of parameters is still being discussed, see e.g. [34, 36,
37]. The mean avg may be also determined in other way, see
[38] for discussion. Despite evident highlights, RED has also
such drawbacks as low throughput, unfair bandwidth sharing,
introduction of variable latency, deterioration of network sta-
bility. Therefore numerous propositions of basic algorithms

improvements appear, their comparison may be found e.g.
in [39].

Fig. 2. Dropping functions for RED algorithm

One of these modifications is NLRED (non-linear RED)
[13]. In NLRED, the linear packet dropping function is re-
placed by a quadratic function. For this solution dropping
probability p is growing non-linearly as follows:

p(x)=






0 for x<Minth(
x − Minth

Maxth − Minth

)2

Pmax for Minth≤x≤Maxth

1 for x>Maxth

(3)

where x is an average queue size. Figure 3 shows dropping
functions for RED and NLRED.

This paper describes another approach to a non-linear
packet dropping function. Instead of the well-known quadratic
function we propose to use the solutions based on the third
degree polynomials. This solution seems to be more flexible
and allows to choose the optimal shape of dropping packet
function.

Any continuous function f(x) with domain [0, l] can be
approximated by f̂(x) as a finite linear combination of basic
functions:

f̂(x) =

N∑

i=1

ajΦj(x), (4)
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where aj are undetermined parameters and basis functions
{Φj} is a set of linearly independent polynomials:

Φj = xj−1(l − x). (5)

Fig. 3. Dropping functions for RED and NLRED

Optimal values of aj can be numerically obtained by find-
ing minimum of some functional J implicitly defined on f .
In the real application only a few elements Φj are required to
obtain accurate approximation of f .

Using approach described above (Eq. (4) and (5)) we pro-
pose to define the probability of packet dropping function as
follows:

p(x, a1, a2, Pmax)=






0 for x < Minth

ϕ0(x) + a1ϕ1(x) + a2ϕ2(x)

for Minth ≤ x ≤ Maxth

1 for x > Maxth

(6)

where set of basis function is defined as follows:

ϕ0(x) = Pmax
x − Minth

Maxth − Minth

, (7)

ϕ1(x) = (x − Minth)(Maxth − x), (8)

ϕ2(x) = (x − Minth)2(Maxth − x). (9)

Sample packet dropping functions for set of exemplary
parameters (a1, a2, Pmax) are shown in Fig. 4.

Fig. 4. Sample functions of probability of packed dropping for
some a1, a2 and given values Minth = 100, Maxth = 200,

Pmax = 0.6, 0.7, 0.8, 0.9

4. The method

In this section we describe the process of obtaining the opti-
mal packets dropping function for our NLRED modification
(see Sec. 3). This issue may be considered as a problem in
a 5 dimensional space. The first dimension affects type net-
work traffic source (nts). Two type of sources are taken into
account: the geometric source and the self-similar one. The
second one is µ – probability of the end of service within
a current time-slot. The values of parameter µ changes from
0.05 to 0.5 step 0.15. Due to the changes of µ, different traf-
fic loads (very low, low, medium, and high) were considered.
Remaining three dimensions affect parameters Pmax, a1, a2 of
the polynomial function (Eq. (4)) of dropping packets.

Finding the best values of Pmax, a1, a2 for the given type
of traffic source may be considered as optimization problem
in 3 dimensional space. An evaluation functional J should
have a minimal value for the optimal parameters (Pmax, a1,
a2).

Many types of functional were considered (e.g. mean wait-
ing time, mean queue length, number of dropped packets,
probability of dropping packet by RED mechanism, etc.) but
most of them are correlated. This is the reason why only the
mean waiting time is used as the score functional J .

Determining of the domain of J i.e. such subspace of
A1 × A2 × Pmax where 0 ≤ p(x) ≤ 1 is not trivial task. We
propose simple necessary conditions for domain of J (which
allows to limit the domain). They are based on the first two
derivates of p respect to x. Obviously, values of p-function in
a local extrema and an inflection point should be included in
[0, 1].

The local extrema and the inflection point can be easily
found by solving the following equations:

dp

dx
= 0, (10)

d2p

dx2
= 0. (11)

The Eq. (10) is equivalent to:

a1(Maxth − Minth)(Maxth + Minth − 2x)

+a2(Maxth − Minth)(x − Minth)

· (2Maxth + Minth − 3x) + Pmax = 0.

(12)

When the discriminant of Eq. (12) is greater than 0 it
lets to find roots x1 and x2. This allows to set conditions as
follows:

for i = 1, 2 : Minth < xi < Maxth ∧ 0 ≤ p(xi) ≤ 1.
(13)

Regions of A1 × A2 satisfying some selected conditions
for (Pmax = 0.8, Minth = 100, Maxth = 200) are shown in
Fig. 5, i.e. Fig. 5a (x1 ≥ Minth) and Fig. 5b (p(x1) ≤ 1).
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Fig. 5. Regions of A1 × A2 (gray colour) for some selected conditions: a) x1 ≥ Minth, b) p(x1) ≤ 1, c) x0 ≤ Maxth, d) p(x0) ≤ 1

Equation (11) is equivalent to:

(a1 − a2(Maxth − 2Minth − 3x))(Minth − Maxth) = 0
(14)

and lets to find root x0. This allows to set conditions as fol-
lows:

Minth < x0 < Maxth ∧ 0 ≤ p(x0) ≤ 1. (15)

Regions of A1 × A2 satisfying selected conditions for
(Pmax = 0.8, Minth = 100, Maxth = 200) are shown in
Fig. 5, i.e. Fig. 5c (x0 ≤ Maxth) and Fig. 5d (p(x0) ≤ 1).

The final domain for (Pmax = 0.8, Minth = 100,
Maxth = 200) based on the logical product of all condi-
tions (Eq. (13) and (14)). The domain is an intersection of all
obtained regions (inter alia those ones from Fig. 5).

This assignment of the domain A1×A2 allows to set con-
straints for a method of searching minimum of functional J .
In this solution the Hooke-Jeves method was applied [40].

The full algorithm of obtaining the optimal packet drop-
ping function may be described in a pseudocode as follows:

1. For a type of network traffic source (nts =

geometric or self-similar)

2. For a source frequency (µ from 0.05 to 0.5

step 0.15)

3. For a parameter Pmax of p-function (Pmax from

0.55 to 0.95 step 0.05)

4. Assign domain for space A1 × A2

5. Find JValue – minimum of bivariate fun-
ctional J (a1, a2) using Hooke-Jeeves
method.

6. Store results (nts, µ, Pmax, a1, a2, JV alue)

5. Experimental results

The algorithm described in the previous section allows to ob-
tain results presented in Table 1. For given accuracy of J
(∆J = 0.1) the optimal values of parameters a1 and a2 were
obtained (for given nts and µ). Obtained acuracy values of
a1 and a2 are equal ∆a1 = 0.00002 and ∆a2 = 0.0000002.
Value of Pmax accuracy (∆Pmax) equals 0.05.

The experimental results show the existence of one opti-
mal set of values of parameters of p (a1, a2, Pmax) indepen-
dently on type of network traffic source and traffic load for
given score functional J , i.e. the mean waiting time.

The set of optimal parameters is (Pmax, a1, a2) = (0.855,
0.00042, −0.0000038). The shape of p-function for optimal
values of parameters has been shown in Fig. 6.
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Table 1
Selected simulation results for the mean waiting time used as the score functional J

nts µ Pmax a1 a2 ∆a1 ∆a2 JValue

Geo 0.5 0.855 0.00042 −0.0000038 0.00002 0.0000002 52.2

Geo 0.35 0.855 0.00042 −0.0000038 0.00002 0.0000002 72.1

Geo 0.20 0.855 0.00042 −0.0000038 0.00002 0.0000002 78.9

Geo 0.05 0.855 0.00042 −0.0000038 0.00002 0.0000002 109.1

... ... ... ... ... ... ... ...

Self 0.5 0.855 0.00042 −0.0000038 0.00002 0.0000002 75.0

Self 0.35 0.855 0.00042 −0.0000038 0.00002 0.0000002 91.4

Self 0.20 0.855 0.00042 −0.0000038 0.00002 0.0000002 101.0

Self 0.05 0.855 0.00042 −0.0000038 0.00002 0.0000002 126.4

... ... ... ... ... ... ... ...

Fig. 6. The shape of optimal packet dropping function for parameters
(Pmax, a1, a2) = (0.855, 0.00042, −0.0000038)

We have analyzed the NLRED queues behaviour for the
described above parameters. The NLRED queue mechanisms
are represented by a single-server model. The service time
represents the time of a packet treatment and dispatching. Its
distribution is geometric. For modelling incoming traffic, time
is divided into slots and at each slot at most one packet may
come. In case of a geometric interarrival time distribution
(which corresponds to Poisson traffic in case of continuous
time models) the probability α of a packet arrival is constant.
In case of self-similar traffic this probability is determined by
a 5-state independent Markov chain (modulator) and follows
the model proposed in [31] and described in Sec. 2. For both
geometrical traffic and self-similar one the considered traffic
intensities are the same. A detailed discussion of the choice
of SSMP model parameters has been also presented in [41].

Our NLRED analysis was carried out in the OMNeT++
simulation environment [42, 43]. OMNeT++ is a public-
source, component-based, modular, and open-architecture
Discrete Event Simulator. It is free for academic and non-
profit use; commercial users should obtain a license. Our
AQM simulation model was early validate using the discrete-
time Markov chain [15].

Figures 7–10 show the influence of the input traffic char-
acteristics on the NLRED queue distributions and queuing

times. Input traffic intensity (for geometric and self-similar
traffic) was chosen as α = 0.5, and due to the modulator
characteristics, the Hurst parameter of self-similar traffic was
fixed to H = 0.85.

Fig. 7. Queue length distribution for NLRED: geometric and self-
similar sources, α = 0.5, µ = 0.5

Fig. 8. Waiting time distribution for NLRED: geometric and self-
similar sources, α = 0.5, µ = 0.5
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Fig. 9. Queue distribution for NLRED: geometric and self-similar
sources, α = 0.5, µ = 0.25

Fig. 10. Waiting time distribution for NLRED: geometric and self-
similar sources, α = 0.5, µ = 0.25

It is clearly visible that the buffer content is much greater
in case of self-similar traffic, especially for a light load. Sim-
ilarly as for queue sizes, traffic self-similarity also makes the
waiting time substantially longer for a light traffic. These re-
sults confirm that the NLRED performance is influenced by
self-similarity of incoming traffic and therefore advocates the
necessity of considering self-similar processes in studies of
congestion control mechanisms.

6. Summary

In this paper we have presented the problem of packet loss
probability function and its influence on the behavior of the
AQM queue. We have also considered the problem of choos-
ing the optimal shape of dropping packet function for NLRED
algorithm. We have focused our attention on obtaining the
minimum packet waiting time. We have based our solution
on polynomials with degree equals 3. The process of obtain-
ing the optimal packet dropping function has been presented.

During the tests we analyzed the following parameters
of the transmission with AQM: the length of the queue, the
number of rejected packets and waiting times in queues. The

waiting time in queues parameter was chosen for optimiza-
tion. This minimization is done at the expense of increasing
the number of rejected packets. This is useful only for multi-
media applications. Depending on a particular criterion of op-
timization a proper form of non-linear function may be found.
Our researches were carried out using the Discrete Event Sim-
ulator OMNET++. The RED model was early verified using
the discrete-time Markov chain.

In the studies we have also reconsidered the problem of a
non linear packet loss probability function in presence of self-
similar traffic. The obtained results show that the traffic char-
acteristic has the great impact on the network node behavior,
but the the optimal values of parameters of p-function (a1, a2,
Pmax) are independent on type of network traffic source (self-
similarity, geometrical) and the network node load (for given
score functional J based on mean waiting time). The authors
think that this is due to the rapid grow of the packet dropping
function. The values of this function grow very quickly from
the first moment of exceeding the Minth parameter. It’s very
likely that the optimal packet dropping function will not have
the same shape for self-similar and not self-similar traffic in
the case of choice two optimization parameters: the number
of rejected packets and the waiting time in queues. Our fu-
ture works will focus on obtaining such a packet dropping
function.

We have studied the models of AQM in IP routers in open-
loop scenario because of the difficulty in analyzing AQM
mathematically [15, 44]. Our future works will also focus
on using the fluid flow approximation technique to model the
interaction between the set of TCP/UDP flows and AQM.
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