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SELECTED PROBLEMS OF ROBOT CONTROL

Motion planning of the trident snake robot equipped

with passive or active wheels
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Institute of Computer Engineering, Control and Robotics, Wrocław University of Technology,
11/17 Janiszewskiego St., 50-372 Wrocław, Poland

Abstract. We study the kinematics of the trident snake robot equipped with either active joints and passive wheels or passive joints and active
wheels. A control system representation of the kinematics is derived, and control singularities examined. Two motion planning problems are
addressed, corresponding to diverse ways of controlling the robot, and solved by means of the endogenous configuration space approach. The
constraints imposed by the presence of control singularities are handled using the imbalanced Jacobian algorithm assisted by an auxiliary
feedback. Performance of the motion planning algorithms is demonstrated by computer simulations.
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1. Introduction

The trident snake robot has been designed as a sort of testbed
for examining motion planning algorithms of nonholonomic
systems [1]. The robot can be regarded as a wheel-legged
robot [2] whose wheels and leggs are used simultaneously in-
stead of alternatively. The original robot has had the form of
a triangular body equipped with three articulated branches or
arms fastened to its vertexes. Each branch consists of a num-
ber of links connected by rotational joints: active or passive.
Each link is supported by a wheel moving without the lateral
slip. The kinematics of the trident snake are represented by
a driftless control system with three controls that can be re-
lated either to the position and orientation of the body or to
the positions of the active joints. The challenge of the motion
planning problem for this kind of robot results primarily from
the presence of very complex singular configurations. The ro-
bot recently built in our laboratory is shown in Fig. 1. The
robot’s design has been described in [3].

For the trident snake with a single link in every branch
a Lie algebraic approach to the motion planning problem, il-
lustrated with experimental results, has been presented in [4].
The paper [5] offers a practical trajectory tracking algorithm,
based on the transverse function approach, and coping with
control singularities by forcing the joint angles to stay close
to the zero position. Besides the transverse function approach,
the motion planning of trident snake can be done by means of
the Lie algebraic approach [6]. In [7] the trident snake with a
double link in every branch has been studied, and a periodic
control algorithm is proposed in a subspace spanned by the
second order Lie brackets of the control vector fields. A sys-
tematic derivation of kinematics representations of the trident
snake with multi-link branches, along with a motion plan-
ning algorithm based on the endogenous configuration space
approach has been developed in [8].

Fig. 1. Trident snake robot

The purpose of this paper is to further advance the mo-
tion planning strategies for the trident snake robot, based on
selected results obtained by the first author of this paper in
[9]. Specifically, we allow the trident snake to be equipped
with either passive or active wheels, that corresponds to the
motion without either solely the lateral or both the lateral
and the longitudinal slip. Two motion planning problems are
addressed: the trident snake equipped with active joints and
passive wheels will be controlled by its joint angles, while in
the case of passive joints and active wheels the control will
involve the rolling angles of the wheels. In the case of the
joint and rolling angle control the control singularities of the
trident snake need to be avoided. The motion planning prob-
lems are solved by means of the endogenous configuration
space approach [10]. The singularities have been handled us-
ing the imbalanced Jacobian motion planning algorithm [11]
combined with an auxiliary feedback strategy. Performance of
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the designed motion planning algorithms has been illustrat-
ed by numeric computations. The main contribution of this
paper is threefold: the derivation of the trident snake kine-
matics with active wheels, the introduction of the auxiliary
feedback motion planning strategy, and the application of the
imbalanced Jacobian algorithm of motion planning. It should
be borne in mind that the motion planning results in defin-
ing an admissible robot trajectory that further will serve as
a reference trajectory for the robot controller.

The paper is composed in the following way. Section 2
contains the derivation of the control system representations
of kinematics of the trident snake. The motion planning prob-
lems, singularities, and the motion planning strategies are pre-
sented in Sec. 3. Section 4 is devoted to computer simulations.
The paper is concluded with Sec. 5.

2. Models

In this section we provide kinematics models of the trident
snake robot moving without either the lateral or both the lat-
eral and the longitudinal slip. First, we shall derive the con-
straints in the Pfaffian form A(q)q̇ = 0, then a control system
representation of the kinematics will be given in the form of a
driftless control system q̇ = G(q)u. A geometric schematic of
the trident snake has been displayed in Fig. 2. The generalized
coordinates q = (ξT , φT )T ∈ R

6, where ξ = (x, y, θ)T and
φ = (φ1, φ2, φ3)

T describe, respectively, the position and ori-
entation of the body relative to an external coordinate frame,
and the angular positions of the branches. Assuming that a
body coordinate frame is placed at the body center, and the
robot’s orientation is measured between the X axes of these

two frames, the angles α1 = −2π

3
, α2 = 0, α3 =

2π

3
de-

scribe the position of the triangle’s vertices with respect to
the X axis of the body frame. Each branch is supported by a
wheel, either passive or active.

Fig. 2. Trident snake robot: schematic

2.1. Motion without lateral slip. On condition that the
wheels are passive and cannot slip laterally, the kinematic
constraints can be given the Pfaffian form







sin(α1 + φ1) − cos(α1 + φ1) −l − r cosφ1

sin(α2 + φ2) − cos(α2 + φ2) −l − r cosφ2

sin(α3 + φ3) − cos(α3 + φ3) −l − r cosφ3







·RotT (Z, θ)ξ̇ − lφ̇ = A(q)q̇ = 0,

(1)

where Rot(Z, θ) denotes the rotation with respect to the Z
axis. The Pfaffian constraints yield a control system represen-
tation of the trident snake kinematics in the form of a driftless
control system

q̇ = G(q)u,

u = (u1, u2, u3)
T ∈ R

3 denoting the control, defined by the
matrix G(q) whose columns span the null space of A(q), i.e.
A(q)G(q) = 0. The following matrix G(q) has been found
in [1]

G(q) =




























cos θ − sin θ 0

sin θ cos θ 0

0 0 1
1

l
sin(φ1 + α1) −1

l
cos(φ1 + α1) −1

l
(l + r cosφ1)

1

l
sin(φ2 + α2) −1

l
cos(φ2 + α2) −1

l
(l + r cosφ2)

1

l
sin(φ3 + α3) −1

l
cos(φ3 + α3) −1

l
(l + r cosφ3)





























=

[

G1(θ)

G2(φ)

]

.

(2)
The matrix (2) corresponds to the trident snake whose con-
trols have the meaning of rotated position and orientation
velocities ξ̇. This control strategy will be referred to as the
position and orientation control. An alternative strategy is to
control the branch joint angle velocities φ̇, that will be called
the joint angle control. To obtain a kinematics representation
suitable to the joint angle control strategy, we need to employ
a feedback v = G2(φ)u arriving at

Gφ(q)=

[

G1(θ)G2(φ)−1

I3

]

=











1

detG2







f1 f2 f3

g1 g2 g3

h1 h2 h3







I3











,

(3)
where I3 denotes the 3 × 3 unit matrix. Entries of the ma-
trix (3) are defined in Appendix. The feedback v = G2(φ)u
is well defined outside certain control singularities that will
be examined in more detail in the next section.

2.2. Motion without lateral and longitudinal slip. The ro-
bot’s geometry remains the same as in Fig. 2, but now it is
assumed that the wheels are active and not permitted to slip
either laterally or longitudinally. The vector of generalized co-
ordinates q = (ξT , φT , βT )T ∈ R

9, where β = (β1, β2, β3)
T
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collects the rolling angles of the wheels. The lack of lateral
slip requires that for each wheel its velocity components obey
the identity

ẋi sin(θ+αi+φi)−ẏi cos(θ+αi+φi) = 0, i = 1, 2, 3. (4)

Fig. 3. The i-th wheel of the robot

The contact point coordinates (xi, yi) of the ith wheel
should be expressed in the generalized coordinates q of the
robot, so

xi = x + r cos(θ + αi) + l cos(θ + αi + φi),

yi = y + r sin(θ + αi) + l sin(θ + αi + φi).
(5)

The velocities are obtained by differentiation of (5). The in-
sertion into (4) yields

(ẋ − θ̇r sin(θ + αi) − l sin(θ + αi + φi)

·(θ̇ + φ̇)) sin(θ + αi + φi) − (ẏ + θ̇r cos(θ + αi)

+l cos(θ + αi + φi)(θ̇ + φ̇)) cos(θ + αi + φi) = 0,

leading finally to the Pfaffian form corresponding to (1). In
order to exclude the longitudinal slip, the wheels will have to
satisfy a condition

vi − Riβ̇i = 0, (6)

where vi stands for the linear velocity of the i-th wheel, and
Ri is the wheel’s radius. After computing the linear velocity
as

vi = ẋi cos(αi + φi + θ) + ẏi sin(αi + φi + θ) (7)

and invoking (5), we obtain

ẋ cos(φi + θ + αi) + ẏ sin(φi + θ + αi)

+θ̇r sin φi − Riβ̇i = 0.
(8)

Assuming R1 = R2 = R3 = R, the condition that all the
wheels will not slip longitudinally can be written in the Pfaf-
fian form as follows






cos(φ1 + α1 + θ) sin(φ1 + α1 + θ) r sin φ1

cos(φ2 + α2 + θ) sin(φ2 + α2 + θ) r sin φ2

cos(φ3 + α3 + θ) sin(φ3 + α3 + θ) r sin φ3













ẋ

ẏ

θ̇







−R







β̇1

β̇2

β̇3






= A(q)q̇.

(9)

The control matrix G(q) has been found analogously to the
matrix (2)

G(q) =




















































cos θ − sin θ 0

sin θ cos θ 0

0 0 1
1

l
sin(φ1 + α1) −1

l
cos(φ1 + α1) −1

l
(l + r cosφ1)

1

l
sin(φ2 + α2) −1

l
cos(φ2 + α2) −1

l
(l + r cosφ2)

1

l
sin(φ3 + α3) −1

l
cos(φ3 + α3) −1

l
(l + r cosφ3)

1

R
cos(φ1 + α1)

1

R
sin(φ1 + α1)

r

R
sinφ1

1

R
cos(φ2 + α2)

1

R
sin(φ2 + α2)

r

R
sinφ2

1

R
cos(φ3 + α3)

1

R
sin(φ3 + α3)

r

R
sinφ3





















































=







G1(θ)

G2(φ)

G3(φ)






.

(10)
The control system based on matrix (10) is tailored to the
position and orientation control strategy. If the system is to
be controlled by the rolling angles velocities β̇ of the wheels,
referred to as the rolling angle control, we need to apply
a feedback v = G3(φ)u resulting in the following control
matrix

Gβ(q) =











G1(θ)G
−1
3 (φ)

G2(φ)G−1
3 (φ)

I3











=



















































f11

2∆

f12

2∆

f13

2∆

f21

2∆

f22

2∆

f23

2∆

f31

r∆

f32

r∆

f33

r∆

f41

rl∆

f42

rl∆

f43

rl∆

f51

rl∆

f52

rl∆

f53

rl∆

f61

rl∆

f62

rl∆

f63

rl∆

I3



















































. (11)

Entries of matrix (11) have been defined in Appendix. Again,
the feedback is well defined provided that matrix G3(φ) has
full rank. The corresponding control singularities will be char-
acterized in more detail in the next section.

3. Motion planning

This section is devoted to the statement of the motion planning
problems for the trident snake robot, and to the presentation
of the motion planning strategies. Also, a characterization of
singularities is provided.
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3.1. Problems. In the previous section we have derived the
control system representations of the trident snake kinematics
in the form of a driftless control system. By adding an output
function we obtain the control system with output







q̇ = G(q)u,

y = k(q),
(12)

where q ∈ R
n, u ∈ R

m and y ∈ R
s denote, respectively,

the configuration, control, and output variables. The control
matrix G(q) assumes either of the forms (2), (3), (10) or
(11). The control function u(t) determines the state trajectory
q(t) = ϕq0,t(u(·)) and the output trajectory y(t) = k(q(t)).
Given the system (12), we shall address the following mo-
tion planning problem: given a task space point yd ∈ R

s and
a time horizon T > 0, find a control function u(t), such that
y(T ) = yd. As we have already noticed, the motion planning
problem for the position and orientation control does not in-
volve singularities, whereas adopting either the joint or the
rolling angle control strategy requires to take into account the
control singularities.

3.2. Singularities.

Joint angle control. In this case the control singularities oc-
cur when the matrix

G2(φ) =


















1

l
sin(φ1 + α1) −1

l
cos(φ1 + α1) −1

l
(l + r cosφ1)

1

l
sin(φ2 + α2) −1

l
cos(φ2 + α2) −1

l
(l + r cosφ2)

1

l
sin(φ3 + α3) −1

l
cos(φ3 + α3) −1

l
(l + r cosφ3)



















(13)
becomes singular. This is tantamount to the condition

(l + r cosφ1) sin

(

φ3 − φ2 +
2

3
π

)

+(l + r cosφ2) sin

(

φ1 − φ3 +
2

3
π

)

+(l + r cosφ3) sin

(

φ2 − φ1 +
2

3
π

)

= 0.

The Fig. 4 illustrates the dependence of detG2(φ) = 0 on the
joint angles φi, i = 1, 2, 3, varying over the interval [−π, π],
for the unit lengths l, r = 1. The surface detG2(φ) = 0 di-
vides the cube [−π, π]3 into two regions: det G2(φ) < 0 and
detG2(φ) > 0, presented in Fig. 5. Apparently, the former

region contains the cube
[

−π

3
,
π

3

]3

identified in [1, 4] as a

singularity–free area. This provides a rationale for keeping the
robot’s joints within the region detG2(φ) < 0.

Fig. 4. Joint angle control: the surface detG2(φ) = 0

a)

b)

Fig. 5. Joint angle control: a) the region of det G2(φ) < 0, b) the
region of detG2(φ) > 0
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Fig. 6. Rolling angle control: the singularity locus det G3(φ) = 0

a)

b)

Fig. 7. Rolling angle control: a) the region of detG3(φ) < 0, b) the
region of det G3(φ) > 0

Rolling angle control. The singularity locus is now defined
by the identity det G3(φ) = 0, where

G3(φ) =














1

R
cos(φ1 + α1)

1

R
sin(φ1 + α1)

r

R
sin φ1

1

R
cos(φ2 + α2)

1

R
sin(φ2 + α2)

r

R
sin φ2

1

R
cos(φ3 + α3)

1

R
sin(φ3 + α3)

r

R
sin φ3















.
(14)

The surface

sin φ3 sin

(

φ2 − φ1 +
2

3
π

)

+ sin φ1 sin

(

φ3 − φ2 +
2

3
π

)

+ sinφ2 sin

(

φ1 − φ3 +
2

3
π

)

= 0

corresponding to detG3(φ) = 0 has been displayed in Fig. 6
for the joint angles φi ranging within the interval [−π, π].
As before, this surface defines two regions: detG3(φ) < 0
and det G3(φ) > 0, shown in Fig. 7. For a further study of
motion planning we have chosen the region detG3(φ) < 0
encompassing the origin.

3.3. Motion planning algorithms. Since the motion plan-
ning problem for the position and orientation control of the
trident snake does not involve control singularities, it may
be solved with the help of a Jacobian inverse kinematics al-
gorithm provided by the endogenous configuration space ap-
proach [10]. The situation is quite different, when the joint
or rolling angle control is used. In this case, the presence of
singularities imposes severe constraints on the motion plan-
ning algorithm. To cope with these constraints, we shall use
the imbalanced Jacobian motion planning algorithm, based
on the Jacobian pseudo inverse [11]. The main idea of this
algorithm will be sketched below. We begin with the system
(12). To guarantee that its trajectory stays within the set of
regular configurations, an additional variable will be added to
the system, whose evolution is governed by the violation of
constraints. Let the regular region be defined as c(q) ≤ −ǫ,
for a positive number ǫ, where either c(q) = detG2(q) or
c(q) = detG3(q). Then, the extended system associated with
(12) will assume the following form















q̇e = Ge(qe)u =

[

G(q)

p(ǫ + c(q), α)

]

u,

ye = ke(qe) = (k(q), qn+1),

(15)

where qe = (qT , qn+1)
T , ye = (yT , qn+1)

T , u ∈ R
m is the

same as in (12), and the function p(x, α) = x + 1
α

ln(1 +
exp(−αx)), α > 0, smoothly approximates the plus function
max{x, 0}.

The motion planning problem in the extended system
takes the following formulation: given a task space point yd

and a time T > 0, find a control function u(t), such that
ye(T ) = yed = (yd, 0)T . This is tantamount to requiring that
u(t) solves the original motion planning problem and simul-
taneously makes c(q) ≤ −ǫ. Assuming that the control func-
tions of (15) belong to the Hilbert space of Lebesgue square

Bull. Pol. Ac.: Tech. 60(3) 2012 551



D. Paszuk, K. Tchoń, and Z. Pietrowska

integrable functions on [0, T ], we define the endogenous con-
figuration space as X = L2

m[0, T ]. For the fixed initial state
qe0 and the control time T , the end point map of the extended
system

Ke : X → R
s

assigns to every control function a task space point,
Ke(u(·)) = ye(T ) = ke(ϕqe0,T (u(·)). The motion planning
problem in the extended system consists of defining a control
function u(t), such that Ke(u(·)) = yed. This problem can
be solved by means of the Jacobian pseudo inverse algorithm,
whose associated dynamic system takes the form

duϑ(t)

dϑ
= −γCT

eϑ(T )BT
eϑ(t)ΦT

eϑ(T, t)

·M−1
e (uϑ(·))(Ke(uϑ(·)) − yed).

(16)

In (16) uϑ(·), ϑ ∈ R is a smooth curve of control functions.
Given a control–trajectory pair (u(t), qe(t)) of the extended
system, we define the matrices

Be(t) = Ge(qe(t)), Ae(t) =
∂Ge(qe(t))u(t)

∂qe

,

Ce(t) =
∂ke(qe(t))

∂qe

,

and find Φe(t, s) by solving the evolution equation

dΦ(t, s)

dt
= Ae(t)Φe(t, s)

with initial condition Φe(s, s) = In+1. Finally, the mobility
matrix is equal to

Me(u(·)) = Ce(T )

T
∫

0

Be(t)Φe(T, t)ΦT
e (T, t)BT

e (t)dtCT
e (T ).

(17)
The dynamic system (16) evolves in the endogenous con-
figuration space, starting from an initial control function
u0(t). A solution to the motion planning problem is ob-
tained by passing to the limit with the trajectory of (16),
ud(t) = limϑ→+∞ uϑ(t). However, it has been observed that
when the constraints are satisfied, the mobility matrix of the
extended system becomes singular. To overcome this problem,
in [12] the extended system has been subject to regulariza-
tion. In the case of (15) the regularization will be achieved by
adding to the last differential equation the quadratic function
ρ(q) = 1

2φT φ, φ = (φ1, φ2, φ3)
T denoting the joint angles.

The regularized system














q̇r = Gr(qr)u =

[

G(q)

p(ǫ + c(q), α) + ρ(q)

]

u,

yr = kr(q) = (k(q), qn+1).

(18)

The essential idea of the imbalanced Jacobian algorithm is to
combine in the associated dynamic system corresponding to
the Jacobian pseudo inverse algorithm for (18) the dynamic
data coming from the regularized system with the error pro-
vided by the extended system. The resulting associated system
takes the following form

duϑ(t)

dϑ
= −γCT

rϑ(T )BT
rϑ(t)ΦT

rϑ(T, t)

·M−1
r (uϑ(·))(Ke(uϑ(·)) − yed).

(19)

All the data appearing in (19) need to be computed along
the pair (u(t), qr(t)), analogously as for the extended system.
Again, a solution of the motion planning problem is the limit
ud(t) = limϑ→+∞ uϑ(t). Sufficient conditions under which
the imbalanced Jacobian algorithm solves the original motion
planning problem have been provided in [11].

Usually, in practical computations the control functions
are represented by a finite dimensional space of coefficients
of truncated expansions with respect to an orthogonal basis
in the endogenous configuration space [13]. In this paper we
have chosen the Fourier basis, so that

u(λ, t) = λ0 +

w
∑

j=1

λ2j−1 sin jωt + λ2j cos jωt = P (t)λ,

(20)
where

u(λ, t), λj ∈ R
m,

λ = (λ0, λ1, . . . , λ2w)T ∈ R
(2w+1)m, ω =

2π

T
,

and the matrix P (t) collects the basis functions. After the
substitution of (20) into (19) we derive a finite dimensional
and discrete version of the imbalanced Jacobian algorithm

λ(i + 1) = λ(i) − γJ#P
r (λ(i))e(λ(i)), (21)

where i ≥ 0 denotes the step number, the error e(λ) =
Ke(u(λ, ·)) − yed, and

J#P
r (λ) = JT

r (λ)
(

Jr(λ)JT
r (λ)

)−1
. (22)

Observe that here above Jr(λ)JT
r (λ) represents the mobility

matrix (17). The Jacobian matrix in (22) is defined as

Jr(λ) = Crλ(T )Srλ(T ), (23)

whereas the matrix Srλ(t) satisfies the matrix differential
equation

dSrλ(t)

dt
= Arλ(t)Srλ(t) + Brλ(t)P (t), (24)

with initial condition Srλ(0) = 0. The matrices Arλ(t),
Brλ(t) and Crλ(t) refer to the regularized system (18) steered
by the control function (20).

3.4. Auxiliary feedback strategy. As we have already said,
the motion planning problem for the trident snake controlled
by the joint or the rolling angles is difficult due to the pres-
ence of singularities. On the other hand, the motion planning
in the case of position and orientation control is non-singular.
This being so, we have proposed the following motion plan-
ning strategy: we are solving the problem for the position and
orientation control, simultaneously preserving non-singularity
of the corresponding feedback matrix G2(φ) or G3(φ), see
(13) or (14). It turns out that this problem is solvable by
means of the imbalanced Jacobian algorithm. Then, the mo-
tion planning problem for the joint angles or the rolling angles
can be solved using an auxiliary feedback. Suppose that we
have solved the motion planning problem for the position and
orientation control in the system
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{

q̇ = G(q)u,

y = k(q),
(25)

where G(q) is given by either (2) or (10), resulting in a con-
trol u(t) that makes non-singular the matrix G2(φ) or G3(φ).
Then, the motion planning problem for the joint angles















q̇ = Gφ(q)v =

[

G1(ϑ)G−1
2 (φ)

I3

]

v,

y = k(q) = (ξT , φT )T ,

(26)

or for the rolling angles






















q̇ = Gβ(q)v =







G1(ϑ)G−1
3 (φ)

G2(φ)G−1
3 (φ)

I3






v,

y = k(q) = (ξT , φT )T ,

(27)

has the solution

v(t) = G2(φ(t))u(t) or v(t) = G3(φ(t))u(t). (28)

The efficiency of this approach will be illustrated in the next
section by numerical computations.

4. Computer simulations

As an illustration of the motion planning algorithms presented
in the previous section, we shall solve the same example mo-
tion planning problem, first for the trident snake with active
joints and passive wheels, and then for the robot with passive
joints and active wheels. For the joint and the rolling angle
control the kinematics representations (26) and (27) will be
employed, and the motion planning problem will be solved in
accordance with the auxiliary feedback strategy described in
the Subsec. 3.4. This means that we shall first find the position

and orientation control for the representation (25) respecting
the constraints detG2(q) ≤ −ǫ or detG3(q) ≤ −ǫ and then
apply the feedback (28).

In computations the control function of the form (20) has
been employed, over the control horizon T = 2, depending
on control coefficients λ ∈ R

15 (m = 3, w = 2). Geometric
parameters of the robot are taken as l = r = 1, R = 0.1. The
update of λ will proceed in accordance with the imbalanced
Jacobian pseudo inverse algorithm defined by (21), starting
from the initial

λ(0) = (0.5, 0.3, 0.3, 0.3, 0.3,−0.5, 0.3, 0.3, 0.3, 0.3,

−0.5, 0.3, 0.3, 0.3, 0.3)T .

The starting points are

q0 = (−
√

2/2,
√

2/2, 0,−π/6,−π/6,−π/6)T

for the joint angle control and

q0 = (−
√

2/2,
√

2/2, 0,−π/6,−π/6,−π/6, 0, 0, 0)T

for the rolling angle control.

yd = (0, 0, 0,−π/6,−π/6,−π/6)T

is chosen as the final task space point. The simulations termi-
nate, when the task space error drops below 0.01. To prevent
the ill-conditioning of the algorithm close to the singulari-
ties of the regularized system, the singularity robust Jacobian
pseudo inverse is used [10], whenever necessary, relying on
the addition to the mobility matrix appearing in (22) a term
κIs+1 with κ = 0.01. The convergence coefficient γ = 0.5,
and the constraint coefficient ǫ = 0.1. The results of compu-
tations have been summarized in Figs. 8 and 9. The requested
accuracy has been achieved after, respectively, 9 and 40 it-
erations. It is concluded that both the control strategies have
provided a correct solution to the problem.

a) Motion path y(x) b) Joint angles φi(t) c) Determinant −det G2(t)

d) Controls vi e) Error norm

Fig. 8. No lateral slip, joint angle control
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a) Motion path y(x) b) Joint angles φi(t) c) Determinant −det G3(t)

d) Controls vi e) Error norm

Fig. 9. No lateral and longitudinal slip, rolling angle control

5. Conclusions

For the trident snake robot with active joints and passive
wheels or passive joints and active wheels, controlled by ei-
ther the joint or the rolling angles, we have devised the mo-
tion planning algorithms capable of respecting the control
singularities. Advantages of the feedback strategy have been
demonstrated. Presented results extend the range of applica-
bility of the endogenous configuration space approach. Future
research will focus on the dynamics model of the trident snake
and on the implementation of the motion planning algorithms
on the physical model of the trident snake robot presented in
Fig. 1.

Appendix

Entries of the matrix (3), for i = 1, 2, 3 read modulo 3:

fi =
1

l2
[(l + r cosφi+2) cos(φi+1 + αi+1 + θ)

− (l + r cosφi+1) cos(φi+2 + αi+2 + θ)],

gi = − 1

l2
[(l + r cosφi+1) sin(φi+2 + αi+2 + θ)

− (l + r cosφi+2) sin(φi+1 + αi+1 + θ)],

hi = − 1

l2
sin(αi+1 − αi+2 + φi+1 − φi+2),

detG2 = − 1

l3

[

(l + r cosφ1) sin

(

φ3 − φ2 +
2

3
π

)

+ (l + r cosφ2) sin

(

φ1 − φ3 +
2

3
π

)

+(l + r cosφ3) sin

(

φ2 − φ1 +
2

3
π

)]

.

Entries of the matrix (11):

f11 = R(cos(α2 + φ2 − φ3 + θ) − cos(α3 − φ2 + φ3 + θ)

− cos(α2 + φ2 + φ3 + θ) + cos(α3 + φ2 + φ3 + θ)),

f12 = R(− cos(α1 + φ1 − φ3 + θ) + cos(α3 − φ1 + φ3 + θ)

+ cos(α1 + φ1 + φ3 + θ) − cos(α3 + φ1 + φ3 + θ)),

f13 = R(cos(α1 + φ1 − φ2 + θ) − cos(α2 − φ1 + φ2 + θ)

− cos(α1 + φ1 + φ2 + θ) + cos(α2 + φ1 + φ2 + θ)),

f21 = R(sin(α2 + φ2 − φ3 + θ) − sin(α3 − φ2 + φ3 + θ)

− sin(α2 + φ2 + φ3 + θ) + sin(α3 + φ2 + φ3 + θ)),

f22 = R(− sin(α1 + φ1 − φ3 + θ) + sin(α3 − φ1 + φ3 + θ)

+ sin(α1 + φ1 + φ3 + θ) − sin(α3 + φ1 + φ3 + θ)),

f23 = R(sin(α1 + φ1 − φ2 + θ) − sin(α2 − φ1 + φ2 + θ)

− sin(α1 + φ1 + φ2 + θ) + sin(α2 + φ1 + φ2 + θ)),

f31 = −R sin(α2 − α3 + φ2 − φ3),

f32 = R sin(α1 − α3 + φ1 − φ3),

f33 = −R sin(α1 − α2 + φ1 − φ2),

f41 = R((l + r cosφ1) cos(α3 + φ3) sin(α2 + φ2)

+ r sin(α1 + φ1) sin(α2 + φ2) sin(φ3)

+ cos(α1 + φ1)(−r cos(α3 + φ3) sin φ2

+ r cos(α2 + φ2) sin φ3) − l cos(α2 + φ2) sin(α3 + φ3)

− r cosφ1 cos(α2 + φ2) sin(α3 + φ3)

− r sin(α1 + φ1) sin φ2 sin(α3 + φ3)),

f42 = −R(r sin(α1 − α3 − φ3)

+ l sin(α1 − α3 + φ1 − φ3) + r sin φ3),

f43 = R(r sin(α1 − α2 − φ2)

+ l sin(α1 − α2 + φ1 − φ2) + r sin φ2),

554 Bull. Pol. Ac.: Tech. 60(3) 2012



Motion planning of the trident snake robot equipped with passive or active wheels

f51 = R(r sin(α2 − α3 − φ3)

+ l sin(α2 − α3 + φ2 − φ3) + r sin φ3),

f52 = R(−(l + r cos(φ2)) cos(α3 + φ3) sin(α1 + φ1)

− r sin(α1 + φ1) sin(α2 + φ2) sin φ3

+ r cos(α2 + φ2)(cos(α3 + φ3) sin φ1

− cos(α1 + φ1) sin φ3) + l cos(α1 + φ1) sin(α3 + φ3)

+ r cos(α1 + φ1) cos(φ2) sin(α3 + φ3)

+ r sin φ1 sin(α2 + φ2) sin(α3 + φ3)),

f53 = R(−r sinφ1 + r sin(α1 − α2 + φ1)

+ l sin(α1 − α2 + φ1 − φ2)),

f61 = R(−r sinφ2 + r sin(α2 − α3 + φ2)

+ l sin(α2 − α3 + φ2 − φ3)),

f62 = −R(−r sin φ1 + r sin(α1 − α3 + φ1)

+ l sin(α1 − α3 + φ1 − φ3)),

f63 = R(cos(α2 + φ2)(−r cos(α3 + φ3) sin φ1

+ (l + r cos(φ3)) sin(α1 + φ1)) + cos(α1 + φ1)

· (r cos(α3 + φ3) sin φ2 − (l + r cos(φ3)) sin(α2 + φ2))

+ r(sin(α1 + φ1) sin φ2

− sin φ1 sin(α2 + φ2)) sin(α3 + φ3)),

∆ = cos(α3 +φ3)(sin(α1 +φ1) sin φ2− sin φ1 sin(α2 +φ2))

+ cos(α2 +φ2)(− sin(α1 +φ1) sin φ3 +sinφ1 sin(α3 +φ3))

+ cos(α1 + φ1)(sin(α2 + φ2) sin φ3 − sin φ2 sin(α3 + φ3)).
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