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Abstract. The stability problem of continuous-time linear systems described by the state equation consisting of n subsystems with different

fractional orders of derivatives of the state variables has been considered. The methods for asymptotic stability checking have been given.

The method proposed in the general case is based on the Argument Principle and it is similar to the modified Mikhailov stability criterion

known from the stability theory of natural order systems. The considerations are illustrated by numerical examples.
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1. Introduction

A dynamical system represented by differential (or difference)

equations with not necessarily integer orders of derivatives (or

differences) can be considered as a fractional order system.

The real objects are generally fractional, however, for many

of them the fractionality is very low. Therefore, the fractional

order representation is more adequate to describe real world

systems than the integer order models.

In the last decades, the problem of analysis and synthesis

of dynamical systems described by fractional order differential

(or difference) equations has been considered in many papers

and monographs, see [1–6], for example.

The problems of stability of linear continuous-time and

discrete-time fractional order systems have been investigated

in [7–17] and [18–21], respectively.

The new class of linear fractional order systems, namely

the positive systems of fractional order has been considered

in [21–26].

The aim of the paper is to give the methods for asymptotic

stability analysis of fractional continuous-time linear systems

described by the state-space model consisting of n subsys-

tems with different fractional orders of derivatives of state

variables. Such models have been considered in [13, 17, 24].

In the paper the following notations are used: ℜn×m – the

set of n×m real matrices and ℜn = ℜn×1; Z+ – the set of

non-negative integers; In – the identity n× n matrix.

2. Preliminaries and problem formulation

Consider a continuous-time linear system of fractional orders

described by the homogeneous state equation

0D
α
t x(t) = Ax(t), (1)

where

x(t) =




x1(t)
...

xn(t)


 , 0D

α
t x(t) =




0D
α1

t x1(t)
...

0D
αn

t xn(t)


 , (2)

with xk(t) ∈ ℜnk , k = 1, ..., n, x(t) ∈ ℜN , N = n1 + · · · +
nn, and

A =




A11 ... A1n

... ...
...

An1 ... Ann


 ,

Akr ∈ ℜnk×nr (k, r = 1, ..., n).

(3)

Initial conditions for (1) have the form

x
(r)
k (0) = x

(r)
k0 ∈ ℜnk , (4)

where x
(r)
k (0) = (dr/dtr)xk(t)|t=0 for k = 1, ..., n; r =

0, 1, ..., pk − 1.

In (2) the following Caputo definition of the fractional

αk-order derivative has been used

0D
αk

t xi(t) =
1

Γ(pk − αk)

t∫

0

x
(pk)
i (τ)dτ

(t− τ)αk+1−pk

, (5)

where

x
(pk)
i (t) =

dpkxi(t)

dtpk

, pk − 1 ≤ αk ≤ pk, (6)

pk is a positive integer and

Γ(αk) =

∞∫

0

e−ttαk−1dt, Reαk > 0, (7)

is the Euler gamma function.

The Laplace transform of the fractional derivative of the

state vector x(t) with zero initial conditions has the form

L{0D
α
t x(t)} =




sα1X1(s)
...

sαnXn(s)


 , (8)

where Xk(s) = L{xk(t)}, k = 1, ..., n.
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The characteristic matrix of the fractional system (1)

H(s) =




In1
sα1 −A11 · · · −A1n

−A21 · · · −A2n

...
. . .

...

−An1 · · · Inn
sαn −Ann




(9)

can be computed from the formula

H(s) = I(s) −A, (10)

where

I(s) =




In1
sα1 0 · · · 0

0 In2
sα2 · · · 0

...
...

. . .
...

0 0 · · · Inn
sαn



. (11)

From (10) and (11) it follows that the characteristic func-

tion of the system (1)

w(s) = det(I(s) −A), (12)

is a polynomial of fractional degree

δ = n1α1 + n2α2 + ...+ nnαn. (13)

We consider the following three cases:

Case 1. The fractional order system (1) is of a commensurate

order. In this case there exists a real number α > 0 such that

αi = kiα, i = 1, 2, ..., n, ki ∈ Z+. (14)

Case 2. The fractional order system (1) is of a rational order.

In this case the following conditions hold

αi = vi/ui, vi, ui ∈ Z+ (i = 1, ..., n), (15)

where vi and ui are coprime.

Case 3. The fractional order system (1) is of a non-

commensurate order. In this case the conditions (14) and (15)

do not hold.

From the theory of stability of linear fractional order sys-

tems (see [7, 8, 12], for example) we have the following the-

orem.

Theorem 1. The fractional order system (1) is asymptotically

stable if and only if

w(s) = detH(s) 6= 0 for Re s ≥ 0. (16)

In [15] it was shown that if α1 = α2 = · · · = αn and

the condition (16) holds then components of the vector x(t)
decay to 0 not exponentially but following to the function

t−µ, t > 0, µ > 0. Therefore, the condition (16) is necessary

and sufficient for asymptotic stability (but not for asymptotic

exponential stability) of the system (1).

The aim of the paper is to give the methods for check-

ing the condition (16) for fractional system (1) in three above

mentioned cases.

3. Problem solution

3.1. Stability of the system of a commensurate order. If

the condition (14) holds then substitution of

λ = sα (17)

in (10), (11) gives the natural degree characteristic matrix

H̃(λ) = I(λ) −A (18)

associated with the fractional degree characteristic matrix (9),

where

I(λ) =




In1
λk1 0 · · · 0

0 In2
λk2 · · · 0

...
...

. . .
...

0 0 · · · Inn
λkn



. (19)

Hence, the natural degree polynomial associated with the frac-

tional degree polynomial (12) has the form

w̃(λ) = det H̃(λ) = λp + ap−1λ
p−1 + ...+ a0, (20)

where ak (k = 0, 1, ..., p− 1) are constant coefficients,

p =
n∑

i=1

niki (21)

and natural numbers ki (i = 1, 2, ..., n) are defined in (14).

From the theory of stability of linear fractional order sys-

tems ([7, 8, 12], for example) we have that in Case 1 the

condition (16) holds for the fractional polynomial (12) if and

only if the condition

| argλi| > α
π

2
, i = 1, 2, ..., p, (22)

is satisfied for all roots λi (i = 1, 2, ..., p) of the associated

natural degree polynomial (20), where α is defined in (14).

From the above we have the following theorem.

Theorem 2. The fractional order system (1) of a commensu-

rate order ((14) holds) is asymptotically stable if and only if

γ > απ/2, where

γ = min
i

| argλi|, i = 1, 2, ..., p. (23)

From [8] it follows that the fractional system with the char-

acteristic polynomial

w(s) = spα + ap−1s
(p−1)α + ...+ a0 (24)

is unstable for all α > 2. Therefore, in this paper we consider

the fractional order systems (1) in Case 1 with 0 < α < 2.

The asymptotic stability regions of the system (1), de-

scribed by (22), are shown in Figs. 1 and 2 for 0 < α < 1
and for 1 < α < 2, respectively.
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Fig. 1. Asymptotic stability region of the system (1) in Case 1 with

0 < α < 1

Fig. 2. Asymptotic stability region of the system (1) in Case 1 with

1 < α < 2

Parametric description of the boundary of the asymptotic

stability region has the form

(jω)α = |ω|αejπα/2, ω ∈ (−∞, ∞). (25)

From Theorem 2 and Figs. 1 and 2 we have the following

lemma and remarks for the system (1) in the Case 1.

Lemma 1. If the associated natural degree polynomial (20)

has no real non-negative roots then the fractional order system

(1) is asymptotically stable if and only if α ∈ (0, α0), where

α0 = 2γ/π (26)

and γ is defined by (23).

Remark 1. If 0 < α < 1 then the fractional order system (1)

may be asymptotically stable when not all roots of the poly-

nomial (20) lie in open left half-plane. Moreover, the system

may be asymptotically stable when all roots of (20) are com-

plex conjugate with positive real parts.

Remark 2. If 1 < α < 2 then the fractional order system (1)

may be unstable when all roots of the polynomial (20) lie in

open left half-plane.

Remark 3. If 0 < α < 2 then the fractional order system (1)

is unstable if the polynomial (20) has at least one non-negative

real root. In particular, this holds if

w̃(0) = a0 = det(−A) = 0. (27)

Example 1. Consider the fractional commensurate order

system (1) with n1 = 2, n2 = 1 and matrix A of the form (3)

with n = 2, where

A11 =

[
0 1

0 0

]
, A12 =

[
0

1

]
,

A21 =
[
−1 −2

]
, A22 = −3.

(28)

For the system of a fractional commensurate order the condi-

tion (14) holds. We check stability of the system in two cases:

a) k1 = 1, k2 = 2, b) k1 = k2 = 1.

In the case a) the characteristic polynomial has the form

w(s) = det



sα −1 0

0 sα −1

1 2 s2α + 3


 = s4α +3s2α +2sα +1.

(29)

Substitution λ = sα in (29) gives the associated polyno-

mial of natural degree

w̃(λ) = λ4 + 3λ2 + 2λ+ 1. (30)

The polynomial (30) has the following roots: λ1,2 =
−0.3497± j0.4390 and λ3,4 = 0.3497± j1.7470. From (23)

and (26) we have γ = 1.3732 and α0 = 2γ/π = 0.8742.

From Lemma 1 it follows that the system with k1 = 1
and k2 = 2 in (14) is asymptotically stable if and only if

α ∈ (0, 0.8742).
It easy to check that in the case b) the polynomial of nat-

ural degree, associated with the characteristic polynomial of

the system has the form

w̃(λ) = λ3 + 3λ2 + 2λ+ 1. (30a)

This polynomial has the following roots: λ1 = −2.3247;

λ2,3 = −0.3376 ± j0.5623 and from (23) and (26) it fol-

lows that γ = 2.1116 and α0 = 2γ/π = 1.3443. From Lem-

ma 1 we have that the system with k1 = k2 = 1 in (14) is

asymptotically stable if and only if α ∈ (0, 1.3443).
From (18)–(20) and Example 1 it follows that if the condi-

tion k1 = k2 = · · · = kn = 1 does not hold then the associat-

ed natural degree polynomial (20) has at least one coefficient

ak (k = 0, 1, ..., p− 1) equal to zero. In this case, according

to the Hurwitz stability criterion, there exists at least one root

of polynomial (20) with non-negative real parts. Hence, we

have the following remark.

Remark 4. If for the system (1) of fractional commensurate

order ((14) holds) the condition k1 = k2 = · · · = kn = 1
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is not satisfied then this system may be stable only for

α ∈ (0, α0), where α0 < 1.

3.2. Stability of the system of a rational order. For the

system (1) of a fractional rational order the condition (15)

holds.

Denote by m the lowest common multiple of all ui

(i = 1, ..., n), defined in (15).

In this case we can write

αi = kiα, i = 1, 2, ..., n, ki ∈ Z+, (31)

where

α = 1/m, ki = mαi. (32)

From the above it follows that if the condition (15) holds

then the system (1) is of a rational commensurate order.

This means that in this case we can use the methods de-

scribed in Subsec. 3.1 to asymptotic stability analysis. Be-

cause α = 1/m < 1, the fractional order system (1) in Case 2

is asymptotically stable if and only if all root of the associated

polynomial (20) lie in the stability region shown in Fig. 1.

Example 2. Consider the fractional rational order system (1)

with n1 = 2, n2 = 1 and the matrix A of the form (3),

(28). Check asymptotic stability of the system in two cases:

a) α1 = 2/3, α2 = 3/4 and b) α1 = 1/3, α2 = 6/5.
In case a) according to (15) and (31), (32) we have

u1 = 3, u2 = 4 and m = 12, α = 1/12, k1 = mα1 = 8,

k2 = mα2 = 9.
From (18)–(20) one obtains

H̃(λ) =



λ8 −1 0

0 λ8 −1

1 −2 λ9 + 3


 (33)

and

w̃(λ) = det H̃(λ) = λ25 + 3λ16 − 2λ8 + 1. (34a)

Computing roots λi (i = 1, 2, ..., 25) of the polynomial (34a)

and using (23) we obtain γ = 0.1154. It easy to see that

γ = 0.1154 < απ/2 = π/24 = 0.1309.

This means that the condition of Theorem 2 does not hold

and the system in case a) is unstable.

In case b) we have u1 = 3, u2 = 5, m = 15, α = 1/15,

k1 = 5, k2 = 18 and

w̃(λ) = λ28 + 3λ10 − 2λ5 + 1. (34b)

From (23) for roots of (34b) we have γ = 0.1888. Because

απ/2 = π/30 = 0.1017 the condition γ > απ/2 of Theo-

rem 2 is satisfied and the system in case b) is asymptotically

stable.

The method of Theorem 2 requires computation of roots

of the associated polynomial (20). These roots are different

from eigenvalues of the state matrix A. Moreover, the degree

of polynomial (20) depends on α defined in (14). It is easy to

see that investigation of asymptotic stability of the fractional

order system (1) by checking the condition (22) (or (23)) can

be inconvenient with regard on high degree of the associated

polynomial (20).

To asymptotic stability analysis of the fractional order sys-

tem (1) of commensurate order we can apply the frequency

domain method described in the next section. This method is

a general method which can be applied to asymptotic stability

checking of the fractional order system (1) with commensu-

rate or non-commensurate fractional orders of derivatives.

3.3. Stability of the system of a non-commensurate order.

The methods described in the above sections can not be ap-

plied to asymptotic stability analysis of the fractional order

system (1) in Case 3, i.e. in the case of non-commensurate

orders of fractional derivatives. In this case we apply the fre-

quency domain method.

The frequency domain methods have been proposed, re-

spectively, in [9–11, 18], (see also [26], Chapter 9) for as-

ymptotic stability investigation of fractional order continuous-

time and discrete-time linear systems described by the transfer

function. These methods have been applied in [12] to asymp-

totic stability analysis of continuous-time linear systems de-

scribed by state space models with the same fractional order

of derivatives of all state variables and in [13] with different

fractional commensurate orders.

Denote by wr(s) the reference asymptotically stable frac-

tional polynomial of degree δ (see (13)), that is of the same

fractional degree as the characteristic polynomial (12) of the

fractional order system (1).

Let us consider the rational function

ψ(s) =
w(s)

wr(s)
=

det(I(s) −A)

wr(s)
. (35)

The reference asymptotically stable fractional degree polyno-

mial can be chosen in the form

wr(s) = (s+ c)δ, c > 0. (36)

Theorem 3. The fractional order system (1) (with non-

commensurate or commensurate fractional orders of deriv-

atives) is asymptotically stable if and only if

∆arg
ω∈(−∞,∞)

ψ(jω) = 0, (37)

where ψ(jω) = ψ(s) for s = jω and ψ(s) is defined by (35).

Proof. From (35) it follows that

∆argψ(jω) = ∆argw(jω) − ∆argwr(jω). (38)

From the Argument Principle it follows that the fractional

degree characteristic polynomial (12) is asymptotically stable

if and only if

∆arg
ω∈(−∞,∞)

w(jω) = ∆arg
ω∈(−∞,∞)

wr(jω). (39)

From (38) it follows that (39) holds if and only if (37) is

satisfied.

Satisfaction of (37) means that plot of the function ψ(jω)
does not encircle or cross the origin of the complex plane as

ω runs from −∞ to ∞.
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From (10)–(12), (35) and (36) we have

ψ(∞) = lim
ω→±∞

ψ(jω) = 1 (40)

and

ψ(0) =
det(−A)

cδ
. (41)

From (41) it follows that ψ(0) ≤ 0 if det(−A) ≤ 0.
Hence, from Theorem 3 we have the following lemma.

Lemma 2. If det(−A) ≤ 0, then the fractional order system

(1) is unstable.

Example 3. Consider the fractional order system (1) with

n1 = n2 = 2, α1 = 1.1, α2 =
√

2 and the matrix A of the

form (3) with n = 2, where

A11 =

[
−5 5

0 −2

]
, A12 =

[
1 2

−7 3

]
,

A21 =

[
1 3

1 2

]
, A22 =

[
−2 2

6 −3

]
.

(42)

In this case the characteristic matrix has the form

H(s) =

[
I2s

1.1 −A11 −A12

−A21 I2s
√

2 −A22

]
. (43)

From (43) and (13) it follows that the characteristic poly-

nomial of the system has the fractional degree

δ = n1α1 + n2α2 = 2.2 + 2
√

2. (44)

Plot of the function

ψ(jω) =
detH(jω)

(jω + 3)δ
, ω ∈ (−∞, ∞), (45)

is shown in Fig. 3.

Fig. 3. Plot of the function (45)

According to (40) and (41) we have

ψ(∞) = 1, ψ(0) = det(−A)/3(2.2+
√

2) = 0.2433.

From Fig. 3 it follows that plot of (45) does not encircle

the origin of the complex plane. This means, according to

Theorem 3, that the fractional order system is asymptotically

stable.

4. Concluding remarks

The asymptotic stability problem of continuous-time linear

system (1) consisting of n subsystems with different fraction-

al orders of derivatives of state variables has been considered.

It has been shown that in the case of commensurate or ratio-

nal orders of derivatives, asymptotic stability of the system is

equivalent to satisfaction of the condition of Theorem 2 for

all roots of the associated natural degree polynomial (20).

In the general case of non-commensurate orders of frac-

tional derivatives, the frequency domain method has been pro-

posed in Theorem 3. This method is based on the Argument

Principle and it is a generalisation of the classical modified

Mikhailov asymptotic stability criterion to the class of frac-

tional order systems (1).

Acknowledgments. The work was supported by the National

Science Center in Poland under grant N N514 638940.

REFERENCES

[1] S. Das, Functional Fractional Calculus for System Identifica-

tion and Controls, Springer, Berlin, 2008.

[2] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Ap-

plications of Fractional Differential Equations, Elsevier, Am-

sterdam, 2006.

[3] P. Ostalczyk, Epitome of the Fractional Calculus, Theory and

its Applications in Automatics, Publishing Department of Tech-

nical University of Łódź, Łódź, 2008, (in Polish).

[4] I. Podlubny, Fractional Differential Equations, Academic

Press, San Diego, 1999.

[5] J. Sabatier., O.P. Agrawal, and J.A.T. Machado, Advances in

Fractional Calculus, Theoretical Developments and Applica-

tions in Physics and Engineering, Springer, London, 2007.

[6] L. Debnath, “Recent applications of fractional calculus to sci-

ence and engineering”, Int. J. Mathematics and Mathematical

Sciences 54, 3413–3442 (2003), http://ijmms.hindawi.com.

[7] I. Petras, “Stability of fractional-order systems with rational or-

ders: a survey”, Fractional Calculus & Applied Analysis. Int.

J. Theory and Applications 12, 269–298 (2009).

[8] A.G. Radwan, A.M. Soliman, A.S. Elwakil, and A. Sedeek,

“On the stability of linear systems with fractional-order ele-

ments”, Chaos, Solitons and Fractals 40, 2317–2328 (2009).

[9] M. Busłowicz, “Frequency domain method for stability analy-

sis of linear continuous-time fractional systems”, in: Recent

Advances in Control and Automation, eds. K. Malinowski and

L. Rutkowski, pp. 83–92, Academic Publishing House EXIT,

Warsaw, 2008.

[10] M. Busłowicz, “Stability analysis of linear continuous-time

fractional systems of commensurate order”, J. Automation, Mo-

bile Robotics and Intelligent Systems 3, 16–21 (2009).

[11] M. Busłowicz, “Stability of linear continuous-time fractional

order systems with delays of the retarded type”, Bull. Pol. Ac.:

Tech. 56, 319–324 (2008).

[12] M. Busłowicz, “Stability of state-space models of linear

continuous-time fractional order systems”, Acta Mechanica et

Automatica 5, 15–22 (2011).

[13] M. Busłowicz, “Stability of continuous-time linear systems

described by state equation with fractional commensurate or-

ders of derivatives”, Proc. SENE, Electrical Review 88, 17–20

(2012).

Bull. Pol. Ac.: Tech. 60(2) 2012 283



M. Busłowicz

[14] K. Gałkowski, O. Bachelier, and A. Kummert, “Fractional

polynomial and nD systems a continuous case”, Proc. IEEE

Conf. on Decision & Control 1, CD-ROM (2006).

[15] J. Sabatier, M. Moze, and C. Farges, “LMI stability conditions

for fractional order systems”, Computers and Mathematics with

Applications 59, 1594–1609 (2010).

[16] M.S. Tavazoei, and M. Haeri, “Note on the stability of fraction-

al order systems”, Mathematics and Computers in Simulation

79, 1566–1576 (2009).

[17] W. Deng, C. Li, and J. Lu, “Stability analysis of linear fraction-

al differential systems with multiple time delays”, Nonlinear

Dynamics 48, 409–416 (2007).

[18] M. Busłowicz, “Computer method for stability analysis of lin-

ear discrete-time systems of fractional commensurate order”,

Electrical Review 86, 112–115 (2010), (in Polish).

[19] A. Dzieliński, and D. Sierociuk, “Stability of discrete fractional

state-space systems”, Proc. 2nd IFAC Workshop on Fractional

Differentiation and its Applications 1, 518–523 (2006).

[20] K. Gałkowski and A. Kummert, “Fractional polynomial and

nD systems”, Proc. IEEE Symposium on Circuits and Systems,

ISCAS’ 2005 1, CD-ROM (2005).

[21] M. Busłowicz, “Robust stability of positive discrete-time linear

systems of fractional order”, Bull. Pol. Ac.: Tech. 58, 567–572

(2010).

[22] T. Kaczorek, “Positivity and reachability of fractional electrical

circuits”, Acta Mechanica et Automatica 5, 42–51 (2011).

[23] T. Kaczorek, “Necessary and sufficient stability conditions of

fractional positive continuous-time linear systems”, Acta Me-

chanica et Automatica 5, 52–54 (2011).

[24] T. Kaczorek, “Positive linear systems consisting of n subsys-

tems with different fractional orders”, IEEE Trans. Circuits and

Systems – I: Regular papers 58 (7), 1203–1210 (2011).

[25] T. Kaczorek, “Positive fractional 2D continuous-discrete linear

systems”, Bull. Pol. Ac.: Tech. 59, 575–579 (2011).

[26] T. Kaczorek T., Selected Problems of Fractional Systems The-

ory, Springer, Berlin, 2011.

284 Bull. Pol. Ac.: Tech. 60(2) 2012


