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Abstract. The present study is concerned with the reflection and transmission of plane waves between two different fluid saturated porous

half spaces when longitudinal and transversal waves impinge obliquely at the interface. Amplitude ratios of various reflected and transmitted

waves are obtained .The variations of amplitude ratios with angle of incidence are depicted graphically. A particular case of reflection at

the free surface in fluid saturated porous half spaces has been deduced and discussed. A special case of interest has also been deduced from

the present investigation.

Key words: porous, amplitude ratios, reflection, transmission, longitudinal waves.

1. Introduction

The dynamic response of porous media is of great interest in

various areas such as geophysics, soil-mechanics, civil engi-

neering, petroleum engineering and environmental engineer-

ing. As most of the modem engineering structures are gener-

ally made up of multiphase porous continuum, the classical

theory, which represents a fluid saturated porous medium as a

single phase material, is inadequate to represent the mechan-

ical behavior of such materials especially when the pores are

filled with liquid. In this context the solid and liquid phases

have different motions. Due to these different motions and

different material properties and the complicated geometry of

pore structures; the mechanical behavior of a fluid saturated

porous medium is very complex and difficult. So from time

to time, researchers have tried to overcome this difficulty and

considerable work has been done in this regard.

Based on the work of von Terzaghi [1, 2], Biot [3] pro-

posed a general theory of three-dimensional consolidation.

Taking the compressibility of the soil into consideration, the

water contained in the pores was taken to be incompressible.

Biot [4, 5] developed the theory for the propagation of stress

waves in porous elastic solids containing a compressible vis-

cous fluid and demonstrated the existence of two types of

compressional waves (a fast and a slow wave) along with one

shear wave. The Biot’s model was broadly accepted and some

of his results have been taken as standard references and the

basis for subsequent analysis in acoustic, geophysics and other

such fields.

Based on the work of Fillunger model [6] (which is fur-

ther based on the concept of volume fractions combined with

surface porosity coefficients), Bowen [7] and de Boer and

Ehlers [8, 9] developed and used another interesting theory in

which all the constituents of a porous medium are assumed to

be incompressible. There are reasonable grounds for the as-

sumption that the constituents of many fluid saturated porous

media are incompressible. For example, taking the compo-

sition of soil, the solid constituents are incompressible and

liquid constituents, which are generally water or oils are al-

so incompressible. Moreover in an empty porous solid as a

case of classical theory, the change in the volume is due to

the changes in porosity during the propagation of longitu-

dinal waves. The assumption of incompressible constituents

does not only meet the properties appearing in many branches

of engineering practice, but it also avoids the introduction of

many complicated material parameters as considered in the

Biot theory. So this model meets the requirements of further

scientific developments. Based on this theory de Boer and

Ehlers [10] and Recently, Kumar and Hundal [11–15] studied

some problems of wave propagation in fluid saturated incom-

pressible porous media.

In the study of propagation of seismic waves in liquid sat-

urated porous solids, problem of reflection of seismic waves

is useful both for its seismological interest and geophysical

exploration such as hydrocarbons prospecting, ground water

prospecting or mineral prospecting. Employing Biot’s theory,

reflection of waves at free permeable boundary was studied

by Deresiewicz [16] and Malla Reddy and Tajuddin [17]. Ex-

pression for reflection coefficients were obtained but neither

numerical work was carried out nor discussed. Kumar and

Deswal [18] studied the reflection of waves in micro-polar

liquid-saturated porous solid for a free boundary and calcu-

lated only reflection coefficients. Tomar and singh [19] studied

the problem of transmission of longitudinal waves through a

plane interface between two dissimilar porous elastic solid

half spaces. Tomar and Arora [20] investigated the reflection

and transmission of elastic waves at an elastic / porous sol-

id saturated by two immiscible fluids. Tajuddin and Hussaini

[21] studied the reflection of plane waves at boundaries of

a liquid filled poroelastic half- space. However, no attempt
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has been made to study the problem of reflection and trans-

mission of plane waves at the interface of two fluid saturated

incompressible porous media.

In the present investigation, we studied the reflection and

transmission of plane waves at the interface between two flu-

id saturated incompressible porous half spaces. The reflection

coefficients of reflected waves at the free surface have also

been obtained. We also obtained the components of stress in

two fluid saturated incompressible porous half spaces with

incidence angle of longitudinal and transversal waves.

2. Basic equations

Following de Boer and Ehlers [9] the equations governing the

deformation of an incompressible porous medium saturated

with non-viscous fluid in the absence of body forces are

∇.(ηS
u̇S + ηF

u̇F ) = 0, (1)

(λS + µS)∇(∇.uS) + µS∇2
uS−

− ηS∇p− ρS
üS + sV (u̇F − u̇S) = 0,

(2)

ηF∇p+ ρF
üF + sV (u̇F − u̇S) = 0, (3)

T
S

E
= 2µS

ES + λS
ES.I)I, (4)

ES =
1

2
(graduS + gradT

uS), (5)

where ui, u̇i , üi, i = F, S denote the displacement, ve-

locities and acceleration of fluid and solid phases respectively

and p is the effective pore pressure of the incompressible pore

fluid. ρs and ρF are the densities of the solid and fluid re-

spectively. T
S

E is the stress in the solid phase and ES is the

linearized langrangian strain tensor. λs and µs are the macro-

scopic Lame’s parameters of the porous solid and ηs and ηF

are the volume fractions satisfying ηs + ηF = 1.

The case of isotropic permeability, the tensor SV describ-

ing the coupled interaction between the solid and fluid is given

by de Boer and Ehlers [9] as

SV =
(ηF )2γFR

KF
I,

where γFR is the effective specific weight of the fluid and KF

is the Darcy’s permeability coefficient of the porous medium.

3. Formulation of the problem

We consider two fluid saturated incompressible porous half

spaces being in contact with each other at the plane surface

which we designate as plane z = 0 of rectangular Carte-

sian coordinate system OXYZ. The Z-axis is taken downward

pointing into the medium. For two dimensional problem,we

assume the displacement vector ui (i = F, S) as

ui = (ui, 0, wi) where i = F, S. (6)

Using Eqs. (6) in Eqs. (1)–(3) we obtain the following equa-

tions for fluid saturated incompressible porous medium as:

(λS + µS)
∂θS

∂x
+ µS∇2uS − ηS ∂p

∂x
−

− ρS ∂
2uS

∂t2
+ SV

[

∂uF

∂t
− ∂uS

∂t

]

= 0,

(7)

(λS + µS)
∂θs

∂z
+ µS∇2wS − ηS ∂p

∂z
−

− ρS ∂
2wS

∂t2
+ SV

[

∂wF

∂t
− ∂ws

∂t

]

= 0,

(8)

ηF ∂p

∂x
+ ρF ∂

2uF

∂t2
+ SV

[

∂uF

∂t
− ∂uS

∂t

]

= 0, (9)

ηF ∂p

∂z
+ ρF ∂

2wF

∂t2
+ SV

[

∂wF

∂t
− ∂ws

∂t

]

= 0, (10)

ηS

[

∂2uS

∂x∂t
+
∂2wS

∂z∂t

]

+ ηF

[

∂2uF

∂x∂t
+
∂2wF

∂z∂t

]

= 0, (11)

where

θS =
∂(uS)

∂x
+
∂(wS)

∂z
.

We define the dimensionless quantities defined as:

x′ =
ω∗

C1

x, z′ =
ω∗

C1

z, t′ = ω∗t,

u′S =

[

λS + 2µS

E

]

ω∗

C1

uS ,

w′s =

[

λS + 2µS

E

]

ω∗

C1

wS ,

u′F =

[

λS + 2µS

E

]

ω∗

C1

uF ,

w′F =

[

λS + 2µS

E

]

ω∗
C1

wF ,

p′ =
p

E
, T ′

31 =
T31

E
, T ′

33 =
T33

E
. (12)

In these relations E is the Young’s modulus of the solid

phase, ω∗ is a constant having the dimensions of frequency,

C1 is the velocity of a longitudinal wave propagating in a fluid

saturated incompressible porous medium and is given by

C1 =

√

(ηF )2(λS + 2µS)

(ηF )2ρS + (ηS)2ρF
. (13)

If pore is absent or gas is filled in the pores then ρF is

very small as compare to ρS and can be neglected so the

relation reduce to

C0 =

√

λS + 2µS

ρS
. (14)

This gives the velocity of the longitudinal wave propagat-

ing in an incompressible empty porous solid where the change

in volume is due to the change in porosity and well known re-

sult of the classical theory of elasticity. In an incompressible

non porous solid ηF → 0, then (13) becomes C1 = 0 and

physically acceptable as longitudinal wave cannot propagate

in an incompressible medium.
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Making use of non dimensional quantities given by (12)

in Eqs. (7)–(11) we obtain the following equations:

(1 − δ
2)
∂θS

∂x
+ δ2∇2uS − ηS ∂p

∂x
− δ2

1

∂2uS

∂t 2
+

+ δ2

(

∂uF

∂t
− ∂uS

∂t

)

= 0,

(15)

(1−δ2)∂θ
S

∂z
+ δ2∇2wS − ηS ∂p

∂z
− δ2

1

∂2wS

∂t2
+

+ δ2

(

∂wF

∂t
− ∂wS

∂t

)

= 0,

(16)

ηF ∂p

∂x
+
ρF

ρS
δ21
∂2uF

∂t2
+ δ2

(

∂uF

∂t
− ∂uS

∂t

)

= 0, (17)

ηF ∂p

∂z
+
ρF

ρS
δ2
1

∂2wF

∂t2
+ δ2

(

∂wF

∂t
− ∂wS

∂t

)

= 0, (18)

ηS

(

∂2uS

∂x∂t
+
∂2wS

∂z∂t

)

+ ηF

(

∂2uF

∂x∂t
+
∂2wF

∂z∂t

)

= 0, (19)

where

δ1 =
C1

CO

, δ =
β0

CO

, βO =

√

µS

ρS
,

δ2 =
SVC

2

1

w∗ρSC2

O

.

The displacement components ui and wi are related to the

non dimensional potential φi and ψi as

ui =
∂φi

∂x
+
∂ψi

∂z
,

wi =
∂φi

∂z
− ∂ψi

∂x
, i = F, S.

(20)

With the help of (20) we obtain the following equations

determining φS , φF , ψS , ψF , p as:

∇2φS − ∂2φS

∂t2
− δ2

(ηF )2
∂φS

∂t
= 0, (21)

φF = − ηS

ηF
φS , (22)

δ2∇2ψS − δ21
∂2ψS

∂t2
+ δ2

[

∂ψF

∂t
− ∂ψS

∂t

]

= 0, (23)

δ2
1

ρF

ρS

∂2ψF

∂t2
+ δ2

[

∂ψF

∂t
− ∂ψS

∂t

]

= 0, (24)

(ηF )2p− ηSδ21
ρF

ρS

∂2φS

∂t2
− δ2

∂φS

∂t
= 0, (25)

4. Reflection and transmission of the waves

We consider a plane wave propagating through a medium

M1 which we designate as the region Z > 0 and incident

at the plane z = 0 and making an angle θ0 with normal

to the surface. Corresponding to each incident wave (longi-

tudinal/transversal wave) we get two reflected waves in the

medium M1 and two transmitted waves in medium M2. We

write all the variables without bar in the region Z > 0 (medi-

um M1) and attach a bar to denote the variables in the region

Z < 0 (medium M2) as shown in Fig. 1.

Fig. 1. Geometry of the problem

We assume the solution of the system of Eqs. (21)–(25)

in the form

(φS , φF , ψS , ψF , p) = (φS
1
, φF

1
, ψS

1
, ψF

1
, p1)

exp[i k(x sin θ − z cos θ) − iωt],
(26)

where k is the wave number and ω is the complex circular

frequency.

Making the use of (26) in Eqs. (21)–(25) we obtain two

quadric equations in V given by

V 2 +AV +B = 0, (27)

V 2 + CV +D = 0, (28)

where

A =
i δ2

k (ηF )2
, B = −1,

C =
δ2

kδ2
1

[

i+
δ2ρ

S

δ2
1
ρFω + iδ2ρS

]

,

D = −δ
2

δ2
1

,

where V =
ω

k
is the velocity of the wave.

The velocities of the longitudinal waves are the roots of

Eq. (27) are:

V1 =
−A ±

√
A2 − 4B

2

and the velocities of the transversal waves are the roots of

Eq. (28) are:

V2 =
−C ±

√
C2 − 4D

2
,

where the upper sign correspond to the incident wave and

lower sign correspond to the reflected wave.
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5. Boundary conditions

Boundary conditions at the interface z = 0 are

(T S
33

− p)M1
= (T S

33
− p)M2

, (29)

i.e. total normal stress of medium M1 is equal to total normal

stress of medium M2.

(T S
31)M

1
= (T S

31)M2
, (30)

i.e. total tangential stress of medium M1 is equal to total

normal stress of medium M2.

(uS)M1
= (uS)M2

, (31)

(wS)M1
= (wS)M2

, (32)

In view of (26) we assume the values of φS , φF , ψS , ψF

and p satisfying the boundary conditions for medium M1 and

M2 as:

Medium M1:

{φS , φF , p} = {1,m1,m2}
[A01 exp {ik1(x sin θ0 − z cos θ0)−

− iω1t} +A1 exp {ik1(x sin θ1 + z cos θ1) − iω1t}],
(33)

{ψS , ψF } = {1,m3}
[B01 exp {ik2(x sin θ0 − z cos θ0) − iω2t}+
+B1 exp {ik2(x sin θ2 + z cos θ2) − iω2t}].

(34)

Medium M2:

{φS
, φ

F
, p} = {1,m1, m2}

[A1 exp {ik1(x sin θ1 − z cos θ1) − iω1t}],
(35)

{ψS , ψF } = {1,m3}
[B1 exp {ik2(x sin θ2 − z cos θ2) − iω2t}],

(36)

where

m1 = − ηS

ηF
,

m2 = −
[

ηSδ21ρ
Fω2 + iωδ2ρ

S

(ηF )
2
ρS

]

,

m3 =
iδ2ρ

S

δ2
1
ρFω + iδ2ρS

,

m1 = − ηS

ηF
,

m2 = −
[

ηSδ
2

1
ρFω2 + iωδ2ρ

S

( ηF )2 ρS

]

,

m3 =
iδ2ρ

S

δ
2

1ρ
Fω + iδ2ρ

S
.

and A01, B01 are amplitudes of the incident longitudinal and

transversal waves respectively. A1, B1 and A1, B1 are am-

plitudes of the corresponding reflected and transmitted waves

respectively.

In order to satisfy the boundary conditions, the extension

of the Snell’s law will be

sin θ0
V0

=
sin θ1
V1

=
sin θ2
V2

=
sin θ1

V 1

=
sin θ2

V 2

, (37)

where

k1V1 = k2V2 = k1V 1 = k2V 2 = ω at z = 0. (38)

For longitudinal wave,

V0 = V1, θ0 = θ1. (39)

For transversal wave,

V0 = V2, θ0 = θ2. (40)

Making the use of potentials given by Eqs. (33)–(36) in

boundary conditions (29)–(32) and using the Eqs. (37)–(40),

we get a system of four non- homogenous equations which

can be written as
4

∑

i=1

aijZj = Yi, (j = 1, 2, 3, 4), (41)

where

a11 = −(r1 sin2 θ1 + cos2 θ1)k
2

1 −m2,

a12 = −(r1 − 1)(sin θ2 cos θ2)k
2

2
,

a13 = (r3 sin2 θ1 + r4 cos2 θ1)k
2

1 +m2,

a14 = (r4 − r3)(sin θ2 cos θ2)k
2

2
,

a21 = (−2r2 sin θ1 cos θ1)k
2

1 ,

a22 = r2(sin
2 θ2 − cos2 θ2)k

2

2
,

a23 = (−2r5 sin θ1 cos θ1)k
2

1,

a24 = r5(cos2 θ2 − sin2 θ2)k
2

2
,

a31 = (ik1 sin θ1),

a32 = (ik2 cos θ2),

a33 = −(ik1 sin θ1),

a34 = (ik2 cos θ2),

a41 = (ik1 cos θ1),

a42 = (−ik2 sin θ2),

a43 = (ik1 cos θ1),

a44 = (ik2 sin θ2),

and

r1 =
λS

λS + 2µS
, r2 =

µS

λS + 2µS
,

r3 =
λ

S

λS + 2µS
, r4 =

λ
S

+ µS

λS + 2µS
,

r5 =
µS

λS + 2µS
,

Z1 =
A1

A∗
, Z2 =

B1

A∗
, Z3 =

A1

A∗
, Z4 =

B1

A∗
. (42)

(i) For incident longitudinal wave:

A∗ = A01, B01 = 0, Y1 = −a11,

Y2 = a21, Y3 = −a31, Y4 = a41.
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(ii) For incident transversal wave:

A∗ = B0, A01 = 0, Y1 = a12,

Y2 = −a22, Y3 = a32, Y4 = −a42,

where Z1, Z2, are amplitude ratio’s of reflected longitudi-

nal wave making an angle θ1 and transversal wave making

an angle θ2 and Z3, Z4 are amplitudes ratio’s of the trans-

mitted longitudinal wave making an angle θ1 and transmitted

transversal wave making an angle θ2 with the normal to the

surface.

6. Particular cases

Case 1. Reflection and transmission at the interface be-

tween fluid saturated porous half space and elastic half

space. If ρF is very small as compare to ρS and can be ne-

glected then medium M2 reduces to elastic half space and we

obtain a system of four non- homogenous equations which

can be written as given by (39) with the changed values of

amn as:

a13 = (r6 sin2 θ1 + r7 cos2 θ1)k
2

1,

a14 = (r7 − r6)(sin θ2 cos θ2)k
2

2,

a23 = (−2r8 sin θ1 cos θ1)k
2

1
,

a24 = r8(cos2 θ2 − sin2 θ2)k
2

2
,

and

r6 =
λ

e

λS + 2µS
, r7 =

λ
e
+ µe

λS + 2µS
,

r8 =
µe

λS + 2µS
.

Case 2.Reflection from free surface. We consider a plane

wave (longitudinal/transversal wave) propagating through the

fluid saturated incompressible porous half space (Z > 0) and

incident at the free surface Z = 0 with direction of propaga-

tion making an angle θ0 with Z axis. Corresponding to each

incident wave we get two reflected waves. Boundary condi-

tions in this case are reduced to

T S
33

− p = 0, (43)

T S
31 = 0 (44)

and we obtain a system of two non- homogenous equations

which can be written as

2
∑

i=1

aijZj = Yi, (j = 1, 2), (45)

where a11, a12, a21, a22 are given by Eqs. (39).

7. Numerical results and discussion

With the view of illustrating the theoretical results and for

numerical discussion we take a model for which the values of

the various physical parameters are taken from de Boer and

Ehlers [10] as follows:

ηS = .67, ηF = .33,

ρS = 1.34 Mg/m3, ρF = .33 Mg/m3,

λS = 5.5833 MN/m2, KF = .01 m/s,

γFR = 10.00 KN/m3, µS = 8.3750 N/m2,

ηS = .6, ηF = .4,

ρS = 2.0 Mg/m3, ρF = 0.01 Mg/m3,

λ
S

= 4.2368 MN/m2, K
F

= .02 m/s,

γFR = 9.00 KN/m3, µS = 3.3272 MN/m2,

ρe = 2.65 Mg/m3, λ
e

= 2.238 MN/m2,

µe = 2.238 MN/m2.

A computer programme has been developed and ampli-

tude ratios of various reflected and transmitted waves has

been computed. The variations of amplitude ratios with angle

of incidence for longitudinal wave (LW) and transversal wave

(TW) has been shown by solid lines and small dashed lines

respectively. Solid lines without central symbols correspond

to the case of fluid saturated porous half space (FS) whereas

Solid lines with central symbols correspond to the case of

elastic half space (ES).

Figure 2 depicts the behavior of variations of amplitude

ratios |Z1| for LW and TW for FS and ES. Initially values of

amplitude ratios in case of LW are more than TW and they

are less in the remaining range for both FS and ES. For LW

values of amplitude ratios in case of ES are greater than FS

in the range 0◦ ≤ θ◦ ≤ 70◦ and are close to each other in the

remaining range whereas for TW, values of amplitude ratios

for ES are less than FS in the range 0◦ ≤ θ◦ ≤ 55◦ and then

reverse behavior is observed in the remaining range. Values

of amplitude ratios |Z2| for FS and ES are close to each for

both LW and TW.

Fig. 2. Variations of the amplitude ratio Z(1) with incident angle of

longitudinal and transversal wave

Values of amplitude ratios ‖Z2| in case of LW decrease

sharply in the range 0◦ ≤ θ◦ ≤ 5◦ and decrease slowly in

the remaining range for both FS and ES whereas for TW, its

Bull. Pol. Ac.: Tech. 59(2) 2011 231
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values in crease sharply in the range 0◦ ≤ θ◦ ≤ 25◦ and

decrease in the range 25◦ ≤ θ◦ ≤ 30◦ and increase in the

remaining range for both FS and ES. These variations are

shown in Fig. 3.

Fig. 3. Variations of the amplitude ratio Z(2) with incident angle of

longitudinal and transversal wave

It is observed from Fig. 4 that values of amplitude ra-

tios |Z3| for LW decrease in the range 0◦ ≤ θ◦ ≤ 50◦ and

then approach to a constant value in the remaining range for

both FS and ES, whereas for TW, its values increase sharply

in the range 0◦ ≤ θ◦ ≤ 25◦, and decrease in the range

25◦ ≤ θ◦ ≤ 40◦ and again increase in the remaining range

for both FS and ES.

Fig. 4. Variations of the amplitude ratio Z(3) with incident angle of

longitudinal and transversal wave

It is observed from Fig. 5 that values of amplitude ra-

tios |Z4| in case of ES are more than FS in the range

0◦ ≤ θ◦ ≤ 25◦, 85◦ ≤ θ◦ ≤ 90◦ and less in the remain-

ing range for TW whereas for LW its values are close to each

other near the value zero for both FS and ES.

Fig. 5. Variations of the amplitude ratio Z(4) with incident angle of

longitudinal and transversal wave

Figure 6 depicts the behavior of variations of amplitude

ratios |Z1| for longitudinal and transversal waves for FS and

ES incident at the free surface. values of amplitude ratios in

case of LW are more than TW in the range 0◦ ≤ θ◦ ≤ 55◦ and

are less in the remaining range for FS whereas for ES values

of amplitude ratios start with small initial increase for both

TW and LW then oscillate in the range 17◦ ≤ θ◦ ≤ 19◦ and

40◦ ≤ θ◦ ≤ 42◦ for TW and in the range 30◦ ≤ θ◦ ≤ 35circ

for LW and decrease slowly in the remaining range for both

TW and LW.

Fig. 6. Variations of the amplitude ratios Z(1) with incident angle of

longitude and transversal wave at the free surface Z = 0
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Figure 7 depicts the behavior of variations of amplitude

ratios |Z2| for longitudinal and transversal waves for FS and

ES incident at the free surface. Values of amplitude ratios for

LW are more than TW for FS for the whole range. For ES val-

ues of amplitude ratio start with small initial increase for both

TW and LW and they oscillate in the range 17◦ ≤ θ◦ ≤ 19◦

and 40◦ ≤ θ◦ ≤ 42◦ for TW and in the range 30◦ ≤ θ◦ ≤ 35◦

for LW and decrease slowly in the remaining range for both

TW and LW.

Fig. 7. Variations of the amplitude ratios Z(2) with incident angle of

longitude and transversal wave at the free surface Z = 0

Figure 8 depicts the variations of normal stress T33 in

medium M1 with angle of incidence for longitudinal and

transversal waves. Values of T33 for TW are more than LW

for the whole range.

Fig. 8. Variations of the normal stress T33 in medium M1 with

incident angle of longitude and transversal wave

Figure 9 shows the variations of tangential stress T31 in

medium M1 with angle of incidence for longitudinal and

transversal waves. Values of T31 for LW are more than TW

in the range 0◦ ≤ θ◦ ≤ 3◦ and 10◦ ≤ θ◦ ≤ 23◦ and are less

in the remaining range.

Fig. 9. Variations of the tangential stress T31 in medium M1 with

incident angle of longitude and transversal wave

Figure 10 depicts the variations of normal stress T33 in

medium M2 with angle of incidence for longitudinal and

transversal waves. Its values for LW increase sharply in the

range 0◦ ≤ θ◦ ≤ 15◦ and then decrease in the remain-

ing range whereas for TW its values increase in the range

0◦ ≤ θ◦ ≤ 20◦ and decrease in the remaining range.

Fig. 10. Variations of the normal stress T33 in medium M2 with

incident angle of longitude and transversal wave

Trend of variation of tangential stress T31 in medium M2

with angle of incidence for longitudinal and transversal waves

is observed in Fig. 1. Values of T31 initially increase sharply

in the range 0◦ ≤ θ◦ ≤ 15◦, and decrease in the remaining

range whereas for LW its values increase in the whole range.
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Fig. 11. Variations of the tangential stress T31 in medium M2 with

incident angle of longitude and transversal wave

8. Conclusions

Detailed numerical calculations have been presented for longi-

tudinal and transversal waves incident at the surface of model

considered. Appreciable effect of porosity has been observed

on the amplitude ratios and stress components. The model

presented in this paper is one of the more realistic forms of

the earth models. It may be of some use in engineering, seis-

mology and geophysics etc.
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