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Abstract. Consider a pair of confocal prolate spheroids S0 and S1 where S0 is within S1. Let the spheroid S0 be a solid and the annular

region between S0 and S1 be porous. The present investigation deals with a flow of an incompressible micropolar fluid past S1 with a uniform

stream at infinity along the common axis of symmetry of the spheroids. The flow outside the spheroid S1 is assumed to follow the linearized

version of Eringen’s micropolar fluid flow equations and the flow within the porous region is assumed to be governed by the classical Darcy’s

law. The fluid flow variables within the porous and free regions are determined in terms of Legendre functions, prolate spheroidal radial

and angular wave functions and a formula for the drag on the spheroid is obtained. Numerical work is undertaken to study the variation of

the drag with respect to the geometric parameter, material parameter and the permeability parameter of the porous region. An interesting

feature of the investigation deals with the presentation of the streamline pattern.
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1. Introduction

The later half of the twentieth century has witnessed con-

siderable research dealing with flows through porous media

in view of its enormous applicability. This inter disciplinary

field, in a broad sense, involves fluid and thermal sciences,

geothermal, petroleum and combustion engineering, intricate

mathematics and use of a wide range of computational tech-

niques. This study has applications in flows through porous

beds, sedimentation of fine particulate suspensions, modeling

of micro molecular coils in solvents, floc settling processes

and catalytic reactions where porous pellets are used. Studies

dealing with enhanced oil reservoir recovery, combustion in

an inert porous matrix, under ground spreading of chemical

waste and chemical catalytic reactors are also instances where

the above research has significant applications.

A class of problems that attracted the attention of a good

number of researchers in fluid dynamics involves the study of

the flow of a viscous liquid past porous bodies. In view of

the simplicity of the geometry, lot of work has been carried

out on the flow of a Newtonian liquid past a porous sphere or

a porous spherical shell. The usual macroscopic continuum

approach to the above ‘simple’ problem, as a satisfactory ap-

proximation in many real processes, is to neglect inertial and

volume forces as well as thermal influences, and to treat it as

a multi field boundary value problem governed by the steady

state Stokes equations in the free flow region and the Darcy

or Brinkman equation in the region occupied by the porous

sphere or spherical shell [1].

In nature as well as in diverse chemical processes the par-

ticles that occur are porous in character. In view of this, for

the past few decades, several contributions have been made

mainly dealing with viscous fluid flows past axisymmetric

porous bodies. While many of the contributions deal with

sphere geometry only, there are some exceptions which deal

with a porous spheroid or a porous approximate sphere. As

early as in 1962, Leonov discussed the slow stationary flow

of a viscous fluid about a porous sphere presenting the typical

form of the streamline pattern [2]. Subsequently Joseph and

Tao studied the effect of the permeability on the slow motion

of a porous sphere in a viscous liquid by employing Darcy’s

law in the porous region and no slip condition at the surface

of the sphere [3]. Sutherland and Tan addressed themselves to

the study of sedimentation of a porous sphere assuming the

continuity of tangential velocity component at the surface of

the sphere [4]. The effect of permeability on the drag expe-

rienced by a porous sphere in a uniform stream was studied

by Singh and Gupta by the method of matched asymptotic

expansions in terms of a Reynolds number [5]. Jones, using

Darcy’s equation for the porous region, solved the problem

of creeping flow around a porous spherical shell with rigid

concentric spherical core [6]. Gupta studied the slow flow

of a viscous fluid past a porous spherical surface in a uni-

form stream [7]. The studies of Nir on linear shear flow past

a porous particle [8] and of Higdon and Kojima on the cal-

culation of Stokes flow past porous particles [9] must also be

recorded in this context. Recently, Srinivasacharya has studied

the viscous fluid flow past a porous approximate sphere and

approximate spherical shell [10, 11].

In this paper the authors propose to study the flow of

an incompressible micropolar fluid past a porous spheroidal

shell. The theory of micropolar fluids is too well known to be

introduced. More than four decades have passed after the in-

troduction of the theory of micropolar fluids by Eringen [12].
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This is a well founded and significant generalization of the

classical Navier Stokes model covering both in theory and

applications many more phenomenon than the classical one

can, as observed by Lukaszewiez [13]. The micropolar fluid

flow equations are presentable in terms of the velocity vec-

tor ~q, and the microrotation ~ν associated with each particle

in the fluid medium. The vector ~ν represents the rotation in

an average sense of the particles centered in a small volume

element about the centroid of the element. Physically, a mi-

cropolar fluid model can represent fluids whose molecules

can rotate independently of the fluid stream flow and its lo-

cal vorticity. The deformation of the fluid molecules is not

taken into consideration. The occurrence of the microrotation

vector which differs from the stream flow vorticity vector and

also from the angular velocity vector, results in the formation

of non-symmetric stresses and couple stresses which conse-

quently result in energy dissipation [14]. The micropolar fluid

flow equations constitute a coupled system of vector differen-

tial equations involving ~q and ~ν. Further, as are the classical

Navier Stokes equations, the micropolar fluid flow equations

are non linear in character. Hence, as such, in general, a mi-

cropolar fluid flow problem, unless it is extremely simple,

cannot be solved exactly. This has led researchers to make

some simplifying assumptions to obtain simplified versions

of the real problems which are mathematically tractable. One

such assumption is the Stokesian assumption (as in the case

of viscous fluids) which states that, whenever there is a flow

past a body or a flow is generated due to the rotation or os-

cillations of a body in an infinite expanse of a fluid, nearer to

the body the viscous effects predominate the inertial effects

when the flow is slow and the fluid is highly viscous. This

has paved the way for finding the solutions of complicated

problems involving highly non linear differential equations in

the micropolar fluid flows as well. Lakshmana Rao, Bhujanga

Rao [15], Lakshmana Rao, Iyengar [16], and Iyengar, Srini-

vasacharya [17] studied flow past axisymmetric bodies dealing

with micropolar fluids. Significant contributions are made by

Ramkissoon and Majumdar [18] and Ramkissoon [19] as well.

All these problems deal with sphere or an approximate sphere

or spheroid which are impervious in nature. However a prob-

lem dealing with the creeping flow past a porous sphere was

studied recently by Srinivasacharya and Rajyalakshmi [20].

Very recently, the present authors studied the slow flow of an

incompressible micropolar fluid past a porous spheroid [21].

In this paper we study the flow of an incompressible mi-

cropolar fluid past a porous prolate spheroidal shell with a sol-

id core region kept in an infinite expanse of the fluid with uni-

form streaming at infinity along the direction of the axis of

the spheroid. We assume that the flow outside the spheroidal

shell is governed by the micropolar fluid flow equations un-

der the Stokesian approximation and that in the porous region

in between the outer spheroid and the solid spheroid by the

classical Darcy’s equation. We determine the velocity field

~q, microrotation field ~ν and the pressure distribution p out-

side the porous shell and also the velocity components and

the pressure distribution within the porous region. The ex-

pressions for the velocity and microrotation components are

obtained in terms of Legendre functions, Associated Legendre

functions, radial prolate spheroidal wave functions and angu-

lar prolate spheroidal wave functions [22]. The expressions for

the velocity and pressure in the porous region are in terms of

Legendre functions and their derivatives. The stresses acting

on the outer surface are estimated and the drag experienced by

the spheroidal shell is obtained. The variation of the drag on

the shell is studied numerically with respect to the geometric

parameter, micropolarity parameter and the permeability con-

stant. The results are displayed through graphs. An interesting

feature of the present investigation is the presentation of the

stream line pattern for various values of the parameters under

consideration.

2. Basic equations

The field equations governing an incompressible micropolar

fluid flow [1] are

∂ρ

∂t
+ div(ρ ~q) = 0 (1)

ρ
d~q

dt
= ρ ~f − grad p+ k curl ~ν−

− (µ+ k) curl curl ~q + (λ1 + 2µ+ k)grad div ~q,
(2)

ρ j
d~ν

dt
= ρ ~l− 2k~ν + k curl ~q − γ curl curl ~ν+

+ (α+ β + γ)grad div ~ν
(3)

in which ~q, ~ν are velocity and microrotation vectors, f , l are

body force per unit mass, body couple per unit mass respec-

tively and p is the fluid pressure at any point. ρ and j are den-

sity of the fluid and gyration parameters respectively and are

assumed to be constants. The material constants (λ1, µ, k) are

viscosity coefficients and (α, β, γ) gyroviscosity coefficients.

These constants confirm to the inequalities

k ≥ 0; 2µ+ k ≥ 0; 3λ1 + 2µ+ k ≥ 0;

γ ≥ 0; |β| ≤ γ; 3α+ β + γ ≥ 0.
(4)

The stress tensor tij and the couple stress tensor mij are

given by

tij = (−p+ λ1 + div q) δij+

+ (2µ+ k) eij + kεijm (wm − vm) ,
(5)

mij = α (div ν) δij + βvij + γvj,i (6)

in which the symbols δij , eij , 2wm and vm respectively de-

note Kronecker symbol, components of rate of strain, vortici-

ty vector and microrotation vector. Comma denotes covariant

differentiation.

3. Mathematical formulation of the problem

Consider two confocal prolate spheroids S0 and S1 with foci

P, Q where PQ = 2c units. Let O be the mid point of PQ. In-

troduce the cylindrical polar coordinate system (r, θ, z) with

respect to O as origin and OQ extended on either side as Z

axis as in Fig. 1.
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Fig. 1. Schematic diagram of flow past the body

Let us consider the uniform slow stationary flow of an

incompressible micropolar fluid past the spheroid S1 with ve-

locity U in the direction of the z-axis far away from the body.

Let us denote the region outside the spheroid S1 by F1. Let

the region (F0) between S0 and S1 be porous. The spheroid

S0 is a solid.

We examine the flow generated with the assumption that

the flow in the porous region is characterized by the classical

Darcy’s law. Since the flow is slow, we assume that the flow

is axisymmetric and is the same in any meridian plane and

thus the flow variables are independent of the azimuth angle.

We shall introduce the prolate spheroidal coordinates

(ξ, η, φ) with (eξ, eη, eφ) as base vectors and (h1, h2, h3) as

the corresponding scale factors through the definition

z + ir = c cosh(ξ + iη). (7)

We assume that the flow is Stokesian as in the classical

investigation of the problem by Payne and Pell in the case of

classical viscous fluid [23] and Lakshmana Rao and Iyengar in

the case of micropolar fluid [16]). This enables us to drop the

inertial terms in the momentum equation and bilinear terms

in the balance of first stress moments.

Let (q(1), ν(1), p(1)) denote the velocity, micro rotation

and pressure in the region F1 and let (q(0), p(0)) be the veloc-

ity and pressure in the porous region F0.

In view of the symmetry of the flow, we take

q(1) = u(1)(ξ, η)eξ + v(1)(ξ, η)eη, (8)

ν(1) = C(1)(ξ, η)eφ, (9)

p(1) = p(1)(ξ, η). (10)

Here u(1), v(1) are the velocity components in F1 region and

C(1) is the micro rotation component therein.

Ignoring the body force and body couple f and l respec-

tively in the field equations, the basic equations governing the

Stokesian flow in region F1 can be written in the form

div(~q (1)) = 0, (11)

−gradp(1) + kcurl~ν (1) − (µ+ k)curl curl~q (1) = 0, (12)

−2k~ν (1) + k curl~q (1) − γcurl curl~ν (1)+

+ (α + β + γ)grad div~ν (1) = 0.
(13)

In view of the continuity equation, we introduce the stream

function ψ(1) through

h2h3u
(1) = −∂ψ

(1)

∂η
; h1h3v

(1) =
∂ψ(1)

∂ξ
. (14)

Using (8) and (14)

curl~q (1) =

(
1

h3
E2ψ(1)

)
~eφ (15)

in which the Stokes stream function operator E2 is given by

E2 =
h3

h1h2

(
∂

∂ξ

(
h2

h1h3

∂

∂ξ

)
+

∂

∂η

(
h1

h2h3

∂

∂η

))
. (16)

Evaluating the expressions for curl curl~q (1), div~ν (1)

(which is equal to zero), curl~ν (1), curl curl~ν (1), the basic

equations describing the flow in region F1 are

− 1

h1

∂p(1)

∂ξ
+

k

h2h3

∂

∂η
(h3C

(1))−µ + k

h2h3

∂

∂η
(E2ψ(1))=0, (17)

− 1

h2

∂p(1)

∂η
− k

h1h3

∂

∂ξ
(h3C

(1))+
µ+ k

h1h3

∂

∂ξ
(E2ψ(1)) = 0, (18)

−2kC(1) +
k

h3
E2ψ(1) + γ

(
∇2 − 1

h2
3

)
C(1) = 0, (19)

where ∇2 is the Laplacian operator given by

∇2 =
1

h1h2h3

{
∂

∂ξ

(
h2h3

h1

∂

∂ξ

)
+

∂

∂η

(
h3h1

h2

∂

∂η

)}
. (20)

Using the identity

h3

(
∇2 − 1

h2
3

)
C(1) = E2(h3C

(1)), (21)

the Eq. (19) can be recast in the form

2k h3C
(1) = kE2ψ(1) + γE2(h3C

(1)). (22)

Eliminating p(1) from (17) and (18), we have

(µ+ k)E4ψ(1) − kE2(h3 C
(1)) = 0. (23)

From (22) and (23), we get

2h3 C
(1) = E2ψ(1) +

γ (µ+ k)

k2
E4ψ(1). (24)

Operating E2 on Eq. (24) and using Eq. (23), we obtain
(
E6 − λ2

c2
E4

)
ψ(1) = 0 (25)

which can be written as

E4

(
E2 − λ2

c2

)
ψ(1) = 0, (26)

where
λ2

c2
=
k(2µ+ k)

γ(µ+ k)
. (27)

Here, in Eq. (23), the operator E4 stands for E2(E2).

Thus the flow variables in the region F1 are completely

determinable from the system of partial differential Eqs. (26)

and (24) using the appropriate boundary and regularity con-

ditions.
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As mentioned earlier, the flow in the porous region F0 is

assumed to be Darcian. In view of this, the equations govern-

ing the flow in the region F0 are given by

div(~q (0)) = 0, (28)

q(0) = −k(1)gradp(0), (29)

where the velocity ~q (0) has components u(0) and v(0). The

Eqs. (28) and (29) imply that the pressure p(0) is a harmonic

function given by the equation

∇2p(0) = 0. (30)

Boundary conditions:

At this stage, a comment regarding the boundary condi-

tions is in order. As observed by Bhatt and Sacheti [24], the

existing work concerning the flow past porous bodies in the

literature can be divided into three categories:

(i) Using Darcy’s law for the flow in the porous region and

the Navier Stokes equations for the flow in the free fluid

region, with continuity of normal velocity and pressure

at the outer surface of the porous body/shell and no slip

of the tangential velocity component of the free fluid.

(ii) The same equations as above with continuity of normal

velocity and pressure but the slip boundary condition for

the tangential component of free fluid velocity at the out-

er surface of the porous body/shell.

(iii) Using the Brinkman model for the flow inside the porous

region and the Navier Stokes equations for the free flu-

id region together with continuity of velocity, pressure

and stresses at the interface (outer surface of the porous

body/shell).

As the present problem is being tried with a porous spher-

oidal shell with solid core and the geometry involved is com-

plicated, as a first trial we have opted for the approach given

in (i).

The determination of the relevant flow field variables ψ(i),

C(i) and p(i) is subjected to the following boundary and reg-

ularity conditions.

(i) Continuity of the normal velocity component on the in-

terfaces1:

u(1) = u(0) on S1 (31)

(ii) Vanishing of the tangential velocity components on the

interfaces:

v(1) = 0 on S1 (32)

(iii) Vanishing of microrotation on S1:

C(1)(s, t) = 0 on S1 (33)

(iv) No slip condition on S0:

v(0) = 0 on S0 (34)

(v) Continuity of pressure on the interfaces:

p(1) = p(0) on S1. (35)

In addition to the above boundary conditions, it is natural

to have regularity of the flow field variables on the axis of

symmetry. Further as the flow is a uniform stream at infinity

we have,

ψ = −1

2
Ur2 far away from the body. (36)

4. Solution for the flow in the region S1

Since, we are dealing with a prolate spheroidal coordinate

system, we have

h1 = h2 = c
√

(s2 − t2), h3 = c
√

(s2 − 1)(1 − t2), (37)

E2 =
1

c2(s2 − t2)

(
(s2 − 1)

∂2

∂s2
+ (1 − t2)

∂

∂t2

)
, (38)

∇2 =
1

c2(s2 − t2)

(
(s2 − 1)

∂2

∂s2
+ (1 − t2)

∂

∂t2
+

+ 2s
∂

∂s
− 2t

∂

∂t

)
,

(39)

where

s = cosh ξ; t = cos η. (40)

We assume that the boundary of the spheroid is given by

s = s1.

The solution of Eq. (26) can be obtained by superposing

the solutions of the equations

E4ψ = 0 (41)

and (
E2 − λ2

c2

)
ψ = 0. (42)

Solution of Eq. (41). The solution of (41) can be written in

the form

ψ = ψ0 + ψ1, (43)

where

ψ0 = −1

2
Uc2(s2 − 1)(1 − t2) (44)

and

ψ1 = c2(s2 − 1)(1 − t2)

∞∑

n=0

Gn+1(s)P
′

n+1(t), (45)

where P ′

n+1(t) is the derivative of Pn+1(t) with respect to

t and the functions Gn+1(s) are to be determined later. The

function ψ0 in (44) represents the stream function due to a uni-

form stream of magnitude U parallel to the axis of symmetry

far away from the spheroid. We notice that E2ψ0 = 0 and

hence E4ψ0 = 0. In view of this, ψ1 must satisfy

E4ψ1 = 0. (46)

It can be verified that the expression

f = c2(s2 − 1)(1 − t2)

∞∑

n=0

An+1Q
′

n+1(s) P
′

n+1(t), (47)

1The authors thank the revered referee for the highly illuminating comment on the boundary condition (31). A more appropriate approach is certainly the

one mentioned in [24] as (iii). However, at present as a first iteration to the problem, the present approach is adopted. The problem is being considered with

approach (iii) by the authors and will be separately communicated.
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where Q′

n+1(s) is the derivative of Legendre function of sec-

ond kind Qn+1(s) with respect to s, satisfies E2f = 0. In

view of this, we shall impose the restriction on the functions

Gn+1(s) through

E2ψ1 = c2(s2−1)(1−t2)
∞∑

n=0

An+1 Q
′

n+1(s) P
′

n+1(t) (48)

so that E4ψ1 = 0.

Now operating E2 on the Eq. (43) and equating the result

with the right hand side of (46), we get

∞∑

n=0

[{
(s2 − 1)Gn+1(s)

}′′−

− (n+ 1)(n+ 2)Gn+1(s)
]
P ′

n+1(t) =

=

∞∑

n=0

An+1c
2(s2 − t2)Q′

n+1(s)P
′

n+1(t).

(49)

Following [Lakshmana Rao & Iyengar [16]], we note that

Gn+1(s) is governed by the differential equation

(s2 − 1)G′′

n+1(s) + 4s G′

n+1(s)−
−n(n+ 3)Gn+1(s) = gn+1(s),

(50)

where

gn+1(s) = c2
[

(n+ 1)(n+ 2)

(2n+ 3)(2n+ 5)
An+1−

− (n+ 3)(n+ 4)

(2n+ 5)(2n+ 7)
An+3

]
Q′

n+3(s)−

− c2
[

(n− 1)(n)

(2n− 1)(2n+ 1)
An−1−

− (n+ 1)(n+ 2)

(2n+ 1)(2n+ 3)
An+1

]
Q′

n−1(s).

(51)

The Eqs. (50) and (51) are valid for n = 0, 1, 2, 3 . . . with

an understanding that the term involving Q′

−1(s) is

− s

s2 − 1
and A−1 = 0. (52)

Using the method of variation of parameters we note that

Gn+1(s) = αn+1P
′

n+1 (s) +Bn+1Q
′

n+1 (s)−

− P ′

n+1 (s)

(n+ 1) (n+ 2)

s∫

s1

(
s2 − 1

)
Q′

n+1 (s) gn+1 (s) ds+

+
Q′

n+1 (s)

(n+ 1) (n+ 2)

s∫

s1

(
s2 − 1

)
P ′

n+1 (s) gn+1 (s) ds

for n = 0, 1, 2 . . . ,

(53)

where s = s1 represents the value specifying the spheroid

past which the flow is being studied. Thus the flow region

F1 is given by s > s1. As s → ∞, ψ(1) must tend to 0. In

view of this we have to take αn+1 = 0. Hence the appropriate

expression for Gn+1(s) is given by

Gn+1(s) = Bn+1Q
′

n+1(s)−

− P ′

n+1(s)

(n+ 1)(n+ 2)

s∫

s1

(s2 − 1)Q′

n+1(s)gn+1(s)ds+

+
Q′

n+1(s)

(n+ 1)(n+ 2)

s∫

s1

(s2 − 1)P ′

n+1(s)gn+1(s)ds

for n = 0, 1, 2 . . . .

(54)

Thus, the functions Gn+1(s) defined in Eq. (45) are com-

pletely determined.

As gn+1(s) involves one set {An+1} of arbitrary con-

stants, the functions Gn+1(s) involve two sets of arbitrary

constants {An+1} and {Bn+1}. Using this in Eq. (45), we

get ψ1.

Solution of Eq. (42). To solve the Eq. (42) (viz.)(
E2 − λ2

c2

)
ψ = 0 we take the solution in the form

ψ = c
√

(s2 − 1)(1 − t2)R(s)S(t). (55)

Substituting this in the Eq. (42), we notice that R(s) and

S(t) respectively satisfy the differential equations

(s2 − 1)R′′(s)+2sR′(s)−
(

Λ + λ2s2 +
1

s2 − 1

)
R(s) = 0

(56)

and

(1 − t2)S′′(t) − 2t S′(t) +

(
Λ + λ2t2 − 1

1 − t2

)
S(t) = 0,

(57)

where Λ is a separation constant [22]. These are spheroidal

wave differential equations of radial and angular type respec-

tively. To ensure regularity of solution at infinity and in the

flow region we have to choose the solutions of Eqs. (56) and

(57) in the form

R
(3)
1n (iλ, s) =

[
in+2

∞∑

r=0,1

(r + 1)(r + 2)d1n
r (iλ)

]
−1

(
s2 − 1

s3

)1/2 (
2

πλ

)1/2 ∞∑

r=0,1

(r + 1)

(r + 2)d1n
r (iλ)Kr+3/2(λs)

(58)

and

S
(1)
1n (iλ, t) =

∞∑

r=0,1

d1n
r (iλ)P

(1)
r+1(t) (59)

where

P
(1)
r+1(t) =

√
1 − t2

d

dt
Pr+1(t) (60)

denotes the associated Legendre function of the first kind.

The coefficients d1n
r (iλ) in the above expansions are con-

stants depending on the parameter iλ and the suffix r has

the value 1, 3, 5 . . . or 0, 2, 4, 6 . . . depending upon the odd or

even values of n+1. We have therefore the solution
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ψ2 = c
√

(s2 − 1)(1 − t2)

∞∑

n=1

CnR
(3)
1n (iλ, s)S

(1)
1n (iλ, t), (61)

where Cn‘s are constants.

Hence, the stream function for the region F1 is given by

ψ(1)(s, t) = −1

2
Uc2(s2 − 1)(1 − t2)+

+ c2(s2 − 1)(1 − t2)
∞∑

n=0

Gn+1(s)P
′

n+1(t)+

+ c
√

(s2 − 1)(1 − t2)

∞∑

n=1

CnR
(3)
1n (iλ, s)S

(1)
1n (iλ, t).

(62)

We can see that

E2ψ(1) = c2(s2 − 1)(1 − t2)

∞∑

n=0

An+1Q
′

n+1(s)P
′

n+1(t)+

+
λ2

c

√
(s2 − 1)(1 − t2)

∞∑

n=1

CnR
(3)
1n (iλ, s)S

(1)
1n (iλ, t)

(63)

and

E4ψ(1) =
λ4

c3

√
(s2−1)(1−t2)

∞∑

n=1

CnR
(3)
1n (iλ, s)S

(1)
1n (iλ, t).

(64)

Using Eqs. (63) and (64) in Eqs. (37), we have

C(1)(s, t)=
c

2

√
(s2−1)(1−t2)

∞∑

n=0

An+1Q
′

n+1(s)P
′

n+1(t)+

+
λ2

c2
µ+ k

k

∞∑

n=1

CnR
(3)
1n (iλ, s)S

(1)
1n (iλ, t).

(65)

Pressure distribution in F1. Equations (17) and (18), using

Eq. (37) lead to

∂p(1)

∂s
=

(2µ+ k)

2c(s2 − 1)

∂

∂t
(E2ψ(1)) − γ(µ+ k)

2kc(s2 − 1)

∂

∂t
(E4ψ(1))

(66)

and

∂p(1)

∂t
=− (2µ+ k)

2c(1 − t2)

∂

∂s
(E2ψ(1))+

γ(µ+ k)

2kc(1 − t2)

∂

∂s
(E4ψ(1)).

(67)

Using the expressions in Eqs. (63) and (64) in (66) and

(67), and integrating the resulting equations, we get

p(1)(s, t) = − (2µ+ k)c

2
∞∑

n=0

An+1Qn+1(s)(n+ 1)(n+ 2)Pn+1(t).
(68)

Thus ψ(1)(s, t), C(1)(s, t) and p(1)(s, t) given in Eqs.

(62), (65) and (66) give respectively the stream function, mi-

cro rotation and pressure distribution for the region F1. These

involve the three sets of constants {An}, {Bn}, {Cn} as can

be seen from Eqs. (61), (64) and (65).

5. Solution for the flow in the region F0

We have seen earlier that the flow in the porous region F0 is

governed by the Eqs. (28) and (29) which lead to the Eq. (30).

The Eq. (30) implies that the pressure distribution p(0)(s, t)
in F0 is harmonic and hence it is given by

p(0)(s, t) =

∞∑

n=0

(αnPn(s) + βnQn(s))Pn(t), (69)

where {αn} and {βn} constitute two sets of arbitrary con-

stants to be determined. The velocity components u(0)(s, t)
and v(0)(s, t) can be determined from Eqs. (29) and (69).

In view of the continuity equation in the region F0, we

introduce the stream function ψ(0) through

h2h3u
(0) = −∂ψ

(0)

∂η
; h1h3v

(0) =
∂ψ(0)

∂ξ
(70)

as in Eq. (14).Using (69) and (29), the stream function ψ(0)

takes the form

ψ(0)(s, t) = −k(1)c(s2 − 1)

∞∑

n=0

(
α2n+1P

′

2n+1(s) + β2n+1Q
′

2n+1(s)
)

t∫

−1

P2n+1(t)dt.

(71)

Thus, in all, we have five sets of unknown constants {An},

{Bn}, {Cn}, {αn} and {βn} and these can be determined

by using the boundary conditions given by the Eqs. (31)–(34)

and (35).

6. Velocity and microrotation components

in the regions F0, F1

The expressions for the velocity components u(1)(s, t) and

v(1)(s, t)as

u(1)(s, t) =
1

c2
√

(s2 − t2)(s2 − 1)

∂ψ(1)

∂t
,

v(1)(s, t) =
1

c2
√

(s2 − t2)(1 − t2)

∂ψ(1)

∂s
.

(72)

Further

u(0)(s, t) = − k(1)
√
s2 − 1

c
√

(s2 − t2)

∂p(0)

∂s
,

v(0)(s, t) =
k(1)

√
1 − t2

c
√

(s2 − t2)

∂p(0)

∂t
.

(73)

These can be obtained by using the expressions for ψ(1)

given in Eqs. (62) and p(0) given in Eq. (69). Thus the ex-

pressions for the velocity components u(1), v(1); u(0), v(0);

the micro rotation component C(1) can all be written explic-

itly. Using these expressions and those of p(0) and p(1) in the

boundary conditions given by Eqs. (31)–(34) and (35), we

can write the equations that lead to the determination of the

arbitrary constants.
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7. Determination of arbitrary constants

In view of the continuity of the normal velocity components

on the interface s = s1 given by Eq. (31), we have

Uc2(s21 − 1) − c2(s21 − 1)·

·
∞∑

n=0

Gn+1(s1)(n+ 1)(n+ 2)Pn+1(t)−

− c
√
s21 − 1

∞∑

n=1

CnR
(3)
1n (iλ, s1)

d

dt
·

·,
(√

1 − t2S
(1)
1n (iλ, t)

)
=

= −k(1)c(s21 − 1)
∞∑

n=0

(αn+1P
′

n+1(s1)

+ βn+1Q
′

n+1(s1))Pn+1(t).

(74)

As the tangential velocity components are to vanish on

the boundaries, the Eq. (32) leads to

−Uc2s1(1 − t2)P ′

1(t)+

+ c2
∞∑

n=0

d

ds

(
(s2 − 1)Gn+1(s)

)
s=s1

(1 − t2)P ′

n+1(t)+

c
∞∑

n=1

Cn
d

ds

[√
s2 − 1R

(3)
1n (iλ, s)

]

ons=s1

∞∑

r=0,1

d1n
r (iλ) (1 − t2)P ′

r+1(t) = 0.

(75)

The condition (33) on micro rotation gives rise to the equation

c

2

√
(s21 − 1)

∞∑

n=0

An+1Q
′

n+1(s1)
√

1 − t2P ′

n+1(t)+

+
(µ+ k)

k

λ2

c2

∞∑

n=1

CnR
(3)
1m(iλ, s1)·

·
∞∑

r=0,1

d1n
r (iλ)

√
1 − t2P ′

r+1(t) = 0.

(76)

The no slip condition on S0 given by (34) leads to

−k
(1)

√
(1−t2)

c
√
s2−t2

∞∑

n=0

(αn+1Pn+1(s0)+βn+1Qn+1(s0)) ·

·P ′

n+1(t) = 0.

(77)

The continuity of pressure on the interfaces given by Eq. (35)

yield

− (2µ+ k)c

2

∞∑

n=0

An+1Qn+1(s1)(n+ 1)(n+ 2)Pn+1(t) =

=

∞∑

n=0

(αn+1Pn+1(s1) + βn+1Qn+1(s1))Pn+1(t).

(78)

Using the orthogonality property of Legendre functions

and the associated Legendre functions, the Eqs. (74) to (78)

give rise to the following equations adopting some simple

algebraic manipulation:

Uc2(s21−1)δn0−c2(s21−1)Bn+1Q
′

n+1(s1)(n+ 1)(n+ 2)−

− c(n+ 1)(n+ 2)

∞∑

m=1

Cm

√
s21 − 1R

(3)
1n (iλ, s1)d

1m
n (iλ) =

= −k(1)c(s21 − 1) (αn+1P
′

n+1(s1) + βn+1Q
′

n+1(s1)) ,
(79)

−Uc2s1δ0n + c2Bn+1(n+ 1)(n+ 2)Qn+1(s1)+

c
∞∑

m=1

Cm
d

ds

[√
s2 − 1R

(3)
1n (iλ, s)

]

ons=s1

d1m
n (iλ) =0,

(80)

c

2

√
(s21 − 1)An+1Q

′

n+1(s1) +
(µ+ k)

k

λ2

c2
∞∑

m=1

CmR
(3)
1m(iλ, s1)d

1m
n (iλ) = 0,

(81)

− (2µ+ k)c

2
An+1Qn+1(s1)(n+ 1)(n+ 2) =

= αn+1Pn+1(s1) + βn+1Qn+1(s1),
(82)

αn+1Pn+1(s0) + βn+1Qn+1(s0) = 0. (83)

The coefficients d1n
r (iλ) in the equations above are con-

stants depending on the parameter iλ and the suffix r has the

value 1, 3, 5 . . . or 0, 2, 4 . . . depending upon the odd or even

nature of n+1 [22]. From Eqs. (79) and (80), the coefficient

Bn+1 can be eliminated and using (81), (82) and (83), we

get a non homogeneous linear system of algebraic equations

for the determination of constants {Cn}. This system is seen

to be
∞∑

m=1

DnmCm = −U cδ0n, n = 0, 1, 2 . . . (84)

where

Dnm = d1m
2n (iλ)




{
√
s21 − 1

d

ds
R

(3)
1m(iλ, s1) +

s1√
s21 − 1

R
(3)
1m(iλ, s1)

}
(s21 − 1)Q′

2n+1(s1)

−2(n+ 1)(2n+ 1)
√
s21 − 1Q2n+1(s1)R

(3)
1m(iλ, s1)

−(2µ+ k)(n+ 1)(2n+ 1)
µ+ k

k
λ2

c2 2k(1)(s21 − 1)
Q2n+1(s1)

Q′

2n+1(s1)

Q2n+1(s1)√
s21 − 1

R
(3)
1m(iλ, s1)

Q2n+1(s0)P
′

2n+1(s1) − P2n+1(s0)Q
′

2n+1(s1)

P2n+1(s0)Q2n+1(s1) − P2n+1(s1)Q2n+1(s0)




. (85)
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The above linear system splits into two complementary

sub systems where n is even and n is odd. The subsystem

when n is odd reduces to the homogeneous set of equations

∞∑

m=1

D2n+1,2mC2m = 0 (86)

and we therefore have C2 = C4 = C6 . . . = 0. Hence An, Bn

are all zero when n is even. The analytical determination of

the odd suffixed constants is not possible. In view of this, we

propose to determine them numerically. Here we truncate the

system (85) to fifth order and numerically evaluate the coef-

ficients C1, C3, C5, C7 and C9. This is the maximum extent

to which the order of truncation can be extended since the

coefficients of spheroidal wave functions needed for a higher

order truncation are not explicitly available in the standard

literature [22].

After determining these, it is possible to evaluate numeri-

cally the other constants. The details of the manipulations are

omitted in view of the lengthiness of the expressions and the

final system only is reported here.

8. Determination of drag

To evaluate the drag on the body, we need the stress compo-

nents and the couple stress components. The stress tensor is

given by Eq. (5) and we need to evaluate the rate of strain

components eij and the spin component ωφ.

The velocity vector ~q can be written in the form

~q = u~eξ + v~eη, (87)

where

u =
1

c2
√

(s2 − t2)(s2 − 1)

∂ψ

∂t
,

v =
1

c2
√

(s2 − t2)(1 − t2)

∂ψ

∂s
.

(88)

The rate of strain components are given by

eξξ =
1

c3(s2 − t2)

(
ψst +

t

s2 − t2
ψs −

− s(2s2 − 1 − t2)

(s2 − t2)(s2 − 1)
ψt

)
,

eξη = enξ =
(s2 − 1)ψss − (1 − t2)ψtt

2c3(s2 − t2)
√

(s2 − 1)(1 − t2)
−

− s
√
s2 − 1

c3(s2 − t2)2
√

1 − t2
ψs −

t
√

1 − t2

c3(s2 − t2)2
√
s2 − 1

ψt,

eµη =
1

c3(s2 − t2)

(
−ψst +

s

s2 − t2
ψt +

+
s(2t2 − 1 − s2)

(s2 − t2)(1 − t2)
ψs

)
,

eξξ =
1

c3(s2 − t2)

(
s

s2 − 1
ψt +

t

(1 − t2)
ψst

)
,

eξφ = eφξ = eηφ = eφη = 0

(89)

The spin =
1

2
curl~q has only one non zero component ωφ

in the direction of the vector ~eφ and this is given by

ωφ =
1

2c
√

(s2 − 1)(1 − t2)
E2ψ. (90)

The surface stress tij for the micropolar fluid is given by

Eq. (5) and we find that the only non vanishing components

of tij are tξξ, tηη, tφφ, tξη and tηξ . These are given by

tηη = −p+ (2µ+ k)eηη,

tφφ = −p+ (2µ+ k)eφφ,

tξη = (2µ+ k)eξη,

tηξ = (2µ+ k)eηξ.

(91)

The stress vector ~t on the boundary of the body is given by

~t = tξξ~eξ + tξη~eη. (92)

We find that

(tξξ)s=s1
= −p(1)(s1, t) +

k(1)s1(2s
2
1 − 1 − t2)(2µ+ k)

c2(s21 − t2)2
·

·
∞∑

n=0

(
αn+1P

′

n+1(s1) + βn+1Q
′

n+1(s1)
)
Pn+1(t)

(93)

and

(tξη)s=s1 =
(2µ+ k)c

2

√
(s21 − 1)(1 − t2)

∞∑

n=0

An+1Q
′

n+1(s1)P
′

n+1(t)+

+
(2µ+ k)

2

λ2

c2

∞∑

n=0

CnR
(3)
1n (iλ, s1)S

(1)
1n (iλ, t)+

(2µ+ k)

c2(s21 − t2)

√
(s21 − 1)(1 − t2)

∞∑

n=0

(αn+1P
′

n+1(s1) + βn+1Q
′

n+1(s1))P
′

n+1(t)−

(2µ+ k)s1k
(1)

c2(s21 − t2)2

√
(s21 − 1)(1 − t2)

∞∑

n=0

(αn+1P
′

n+1(s1) + βn+1Q
′

n+1(s1))P
′

n+1(t)+

k

2c
√

(s21 − 1)(1 − t2)



c2(s21 − 1)(1 − t2)
∞∑

n=0
An+1Q

′

n+1(s1)P
′

n+1(t)

+
λ2

c

√
(s21 − 1)(1 − t2)

∞∑
n=0

CnR
(3)
1n (iλ, s)S

(1)
1n (iλ, t)


 .

(94)

The stress vector has the component

(stress)axial =

=
1√

s21 − t2

(
t
√
s2 − 1tξξ − s

√
1 − t2tξη

)

s=s1

(95)
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in the direction of the axis of symmetry and

(stress)radial =

=
1√

s21 − t2

(
s
√

1 − t2 tξξ + t
√
s2 − 1 tξη

)

s=s1

(96)

in the radial direction of the meridian plane. The resultants

of these two vector components over the entire surface of the

body are obtained by integration and it is seen that the radial

component integrates to zero. Thus the resultant of the stress

vector on the body is the force in the direction of the axis of

symmetry and this gives the drag on the body. The drag D

can be written in the form

D=2π c2
√
s21−1

1∫

−1

(
t
√
s2−1 tξξ−s

√
1−t2 tξη

)

s=s1

dt

(97)

and this simplifies to

2π c2
√
s21 − 1




1∫
−1

t
√
s21 − 1 p(1)(s1, t)dt+

2(2µ+ k)s1(s
2
1 − 1)3/2k(1)

c2
∞∑

n=0

(
αn+1P

′

n+1(s) + βn+1Q
′

n+1(s1)
)

1∫
−1

tPn+1(t)
(s2

1
−t2)2

dt− (2µ+k)
c2 s1

√
s21 − 1 k(1)

∞∑
n=0

(
αn+1P

′

n+1(s) + βn+1Q
′

n+1(s1)
)

1∫
−1

(1−t2)P ′

n+1(t)

(s2
1
−t2)

dt−

(µ+ k)cs1
√
s21 − 1

∞∑
n=0

An+1Q
′

n+1(s1)

1∫
−1

(1 − t2)P ′

n+1(t)dt−

(µ+ k)s1
λ2

c2

∞∑
n=0

CnR
(3)
1n (iλ, s1)

1∫
−1

√
(1 − t2)S

(1)
1n (iλ, t)dt




.

(98)

Using the relations

1∫

−1

(1 − t2)P ′

n(t)

(s21 − t2)
dt = − 2

s1
(s21 − 1)Q′

n(s1) (99)

and
1∫

−1

tPn(t)

(s21 − t2)2
dt = − 1

s1
Q′

n(s1), (100)

drawn from “The Theory of Spherical and Ellipsoidal Har-

monics” due to Hobson [25], the drag simplifies to

D = 2π c

√
s21 − 1




cA
2/3
1

√
s21 − 1((2µ+ k)Q1(s1)−

−2(µ+ k)s1Q
′

1(s1))

−4

3
(µ+ k)

λ2

c2
s1

∞∑
n=0

/

CnR
(3)
1n (iλ, s1)d

1n
0 (iλ)



.

(101)

Using the Eq. (81), we may eliminate the series involving

the constants Cn in the above expression for the drag and after

further simplification we see that the drag due to the surface

stress is given by the simple formula

D =
4

3
(2µ+ k)π c3A1. (102)

Introducing the non dimensionalization scheme given by

An+1 =
U

c2
Ãn+1,

Cn = UcC̃n

D = 4π(2µ+ k)Uc3D̃

(103)

it is seen, after dropping the tildes, that the nondimensional

drag D is given by

D =
1

3
A1, (104)

where

A1 = −2(µ+ k)

k
λ2

∞∑
m=1

CmR
(3)
1m(iλ, s1)d

1m
0 (iλ)

√
s21 − 1Q′

1(s1)
. (105)

This depends upon the eccentricity of the spheroid, the

material constant λ, the micropolarity parameter pl =
k

µ+ k
and the non dimensional permeability parameter kp defined

through kp = k(1)µ+ k

c2
.

9. Numerical discussion

We have computed the non dimensional drag D for various

values of the parameters λ, pl, kp, s1 and a fixed value of s0.

This requires solving of the infinite non homogeneous system

of equations given in Eq. (84). As explained already, we trun-

cated this to a 5×5 system. This involves the determination of

constants of various radial prolate spheroidal wave functions

R
(3)
1m(iλ, s), the needed Legendre functions and their deriva-

tives. All the programs necessary were written in ‘C’ and the

constants C1, C3 . . . C9 have been evaluated. We have fixed

s0 as 1.2 and varied s1 through 1.5, 1.8 and 2.0. The drag is

calculated for λ = 1.0, 1.2, 1.5 and 1.8; pl = 0.2, 0.4, 0.6, 0.8

and kp = 0.001 and 0.005.

The variation of drag is presented through Figs. 2 to 7.

For a given s0, s1 and any prescribed pl, the drag is seen to

increase as the parameter λ increases (see Figs. 2 and 3). For

a given s0, given λ, given permeability parameter kp, for any

pl, the drag is increasing with s1. This is natural because as

s1 increases, the size of the spheroid increases and a larger

body experiences a greater drag. Figures 6 and 7, for a given

s0 and s1 and for different values of λ depict the variation of

drag with reference to the parameter pl. As pl increases, the

drag is seen to decrease. An increase in pl indicates greater

microrotation leading to dissipation of energy which results

in the reduction in the drag.
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Fig. 2. Variation of drag with respect to λ for different values of the

polarity parameter pl, when s0 = 1.2, s1 = 1.5 and permeability

parameter kp = 0.001

Fig. 3. Variation of drag with respect to lambda for different val-

ues of the polarity parameter pl, when s0 = 1.2, s1 = 1.5 and

permeability parameter kp = 0.005

Fig. 4. Variation of drag with s1 for different values of the polarity

parameter pl, when s0 = 1.2, s1 = 1.5 and permeability parameter

kp = 0.001

Fig. 5. Variation of drag with s1 for different values of the polarity

parameter pl, when s0 = 1.2, s1 = 1.5 and permeability parameter

kp = 0.005

Fig. 6. Variation of drag with respect to the polarity pl for different

values of λ when s0 = 1.2, s1 = 1.5 and permeability parameter

kp = 0.001

Fig. 7. Variation of drag with respect to the polarity pl for different

values of λ when s0 = 1.2, s1 = 1.5 and permeability parameter

kp = 0.005
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Fig. 8. Streamlines for kp = 0.01, pl = 0.4 and λ = 2.5

Fig. 9. Streamlines for kp = 0.01, pl = 0.4 and λ = 2.0

Fig. 10. Streamlines for kp = 0.01, pl = 0.6 and λ = 2.0

Fig. 11. Streamlines for kp = 0.01, pl = 0.6 and λ = 2.5

Figures 8 to 11 present the streamline pattern. For small

values of kp and pl, the flow is seen to be less disturbed (see

Figs. 8, 9). For larger values of kp, the fluid nearer the bound-

ary s1 is sucked into the porous region as seen in Fig. 10. This

is analogous to that observed by Raja Sekhar and Osamu Sano

in their study of viscous flow past a circular/ spherical void in

porous media [26]. For still higher values of λ, the flow is fur-

ther disturbed and divided steamline pattern is observed (see

Fig. 11). This is analogous to the streamline pattern found by

the present authors in connection with their investigation with

respect to a porous spheroid [21]. The analysis for an oblate

spheroid can also be similarly carried out and salient features

of the investigations can be communicated in a separate paper.
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