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Abstract. The paper is concerned with the problem of state assignment and logic optimization of high speed finite state machines. The
method is designed for PAL-based CPLDs implementations. Determining the number of logic levels of the transition function before the
state encoding process, and keeping the constraints during the process is the main problem at hand. A number of coding bits, as well as
codes for the states, are adjusted to achieve a machine with a determined number of logic levels. Elements of two-level minimization are
taken into consideration in the state assignment. The proposed optimization method is based on utilizing tri-state buffers, thus enabling
achievement of a one-logic-level output block.
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1. Introduction

Two most popular families of programmable logic devices
are FPGAs (Field Programmable Gate Arrays) and CPLDs
(Complex Programmable Logic Devices). FPGAs are devel-
oped definitely faster than CPLDs, however, the structure of
CPLDs is more efficient than LUT-based structures of the
FPGAs [1–3].

A large majority of CPLDs are built of a simple cell matrix
and a programmable interconnect array (PIA) – see Fig. 1.

Fig. 1. Typical CPLD structure

The core of most CPLDs is PAL-based cell. The general-
ized structure of the PAL-based cell is shown in Fig. 2.

Fig. 2. Generalized structure of PAL-based cell

PAL-based cell contains a programmable-AND/fixed-OR
structure (1), which can implement logic up to k prod-
uct terms. In most cases k = 5 (Altera: MAX3000A;
Xilinx: XC9500, MAX7000; Lattice: ispXPLD5000; Atmel:
ATF1500). The output of an AND-gate cannot be connected
to more than one OR-gate.

The register (in some cases programmable as D or T flip-
flop) can be bypassed for combinatorial operation (2). An
intrinsic part of the cell is the tri-state buffer (3). Generally,
an OE input can be driven by a combinational circuit (usually
an AND-gate) or is connected to logic ’high’ or ’low’. The
built-in tri-state buffer enables the expansion process, among
other things.

Logic blocks contained in CPLD structures usually fea-
ture additional logic resources that can facilitate product term
expansion. These resources include parallel expanders, folded
NAND feedback lines, often referred to as shared expanders,
logic allocators. The expanders enable unequal distribution
of product terms between cells, and extending the number of
products available for one function beyond the limit of k terms
contained in one PAL block. Anyway they can only move the
limit to a greater value, and they do not provide feasibility of
implementation for every function. Additional expansion of
the number of terms is thus necessary.

The proposed logic synthesis process consists of two main
procedures:

• PAL-oriented state assignment,
• PAL-oriented two-level optimization of output block.

An overview of the logic synthesis system is shown in Fig. 3.
The state assignment is basic and the most important stage

of FSMs synthesis. Despite the fact that methods considered
as optimal were developed [4, 5], the works on the synthe-
sis for CPLDs are still continued [6, 7]. To be certain, there
are also many aims for the optimization, like reducing the
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power consumption of automata [8, 9] or synthesis for testa-
bility [10, 11].

Fig. 3. Logic synthesis of FSMs for PAL-based devices

This paper is structured as follows. Section 2 focuses on
the basic definitions. The essence of the method is presented
in Sec. 3. Experimental results are reported in Sec. 4. The
paper concludes with a summary in Sec. 5.

2. Theoretical background

2.1. The automata theory. The mathematical model of a
sequential circuit is a Finite State Machine (FSM), which is
a five-tuple: {X, Y, S, δ, λ}, where: X is a finite input alpha-
bet, Y is a finite output alphabet, S is a finite set of states, δ

is the transition function, and λ is the output function. The
transition function of an FSM determines the next state of the
automata (S+), and is the mapping δ : X × S → S. The out-
put function is associated with each transition: λ : X×S → Y

or with each state: λ : S → Y. The structure of the FSM is
presented in Fig. 4.

Fig. 4. Structure of an FSM

Internal states of an FSM are given mostly symbolic val-
ues. The goal of the state assignment is to assign to every
state a binary representation. The minimum number of code
bits K can be calculated from Eq. (1):

K = ⌈log2 card(S)⌉ , (1)

where ⌈a⌉ is a minimum integer not less than a, and card(S)
is the number of internal states.

FSMs can be represented by a State Transition Table
(STT). Every row of an STT corresponds to the transition
between two states of the machine. The rows are divided in-
to four columns corresponding to the primary inputs, present

states, next states, and primary outputs (the kiss format). The
rows of a STT are called symbolic implicants. A state transi-
tion graph, with a corresponding STT, is presented in Fig. 5.

Fig. 5. State transition graph and corresponding STT

2.2. Basic definitions. A multi-output implicant of a func-
tion f : B

n → B
m is a pair of row vectors of dimension n

and m called an input and an output part, respectively. The
input vector items are taken from the set {0, 1,−} and repre-
sents a product of literals. The output part has entries in the
set {0, 1}. For each output component, a 1 implies a true or
don’t care value of the function in correspondence with an in-
put part. A multi-output Boolean function f : B

n → B
m may

be represented as a collection of m single-output functions
fi : B

n → B
1 (i = 0, . . . , m − 1).

An assigned STT is a collection of multi-output impli-
cants. An input part of a multi-output implicant corresponds
to the primary input and a present state; whereas an output
part of the same corresponds to a next state and the prima-
ry output. Generally, the δ and λ functions are multi-output
functions, so let δi be ith bit of the transition function and λj

be jth bit of the output function.
Let the state weight ηSi be a number of transits to the

state Si of the machine – the number of occurrences as a next
state in an STT.

Let ∆fi
be a number of implicants of the function fi, e.g.

∆δi
is the number of implicants of a single transition function

δi.
Let the µ-range be the number of bits equal to 1 in the

code.
The distance ν(A, B) between two minterms A and B is

the number of bits, they differ in. Let the ν(Si, Sj) be a num-
ber of code bits assigned to states Si and Sj in which they
differ in.

Let the ξδ be the number of logic levels of the transition
block.

Let card(Y ) be the cardinality of the Y set.
In order to simplify and increase a clarity of figures, sym-

bols of the PAL-based cell will be used in the paper, instead
of drawing a full cell. The PAL-based cell symbols used in
the paper are presented in Fig. 6.

Fig. 6. Symbols of PAL-based cell: a) with bypassed flip-flop, b)
with flip-flop, c) with tri-state buffer driven by AND-gate

Let σf be a number of PAL-based cells of the implemen-
tation of the function f .
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Let ξf be a number of cascaded PAL-based cells in the
longest signal path from the inputs to the outputs.

Product term expansion using feedbacks to a PIA caus-
es an addition of extra logic levels to the structure. Let the
structure of PAL-based cell (like in Fig. 6) insert to the path
a delay defined as a one-logic-level. Hereafter in this paper, we
will interpret the term “one-logic-level”, “ξf -logic-level” as
the number of cascaded PAL-based cells in the longest signal
path from the inputs to the outputs in the concerned circuit.
The exception to this rule will be the terms “two-level mini-
mization”, and “two-level optimization”. These terms are well
established in the literature, and we will be used in their tra-
ditional meaning, i.e. “two-level” = two levels of logic gates.

2.3. Introduction to a state assignment. Because a coded
STT is a collection of multi-output implicants, to decrease the
number of implicants:

1. Codes should be minimal with respect to µ-range.
2. States Si with greater weights ηSi should be assigned first.

The second conclusion is easy to explain – states that oc-
cur more frequently as a next state are assigned codes with
a smaller number of logic ’high’. Before going ahead, one
more thing should be noticed: the state with the greatest
weight should be assigned the code with all (µ = 0) bits
logic low. This is because none of the single transition func-
tions includes implicants corresponding to transition to the
state. Elements that refer to the weights of states have been
proposed in [12].

Considering the FSM realization, dedicated for PAL-based
CPLDs, the number of implicants of every single function
should fit the number of product terms best. So, the num-
ber of implicants should be known in the process of state
assignment. Of course the number of terms may be reduced
as the effect of two-level minimization. The main goal of the
state assignment process should be to assign states with codes
conveniently situated for implicant merger. It is complicated
for FSMs, because the input parts of the multi-output impli-
cants are connected with the output part. The next state of the
transition is the present state of another transition. Changing
one bit of the state code involves changes in both input and
output part of the implicants. On the other hand, elements of
two-level minimization must be included in the state assign-
ment process, in order to take advantage of the number of the
PAL-based cell terms. Primary and secondary merging con-
ditions enable the algorithm to include elements of two-level
minimization into the process of the state assignment.

2.4. Primary merging conditions. The idea of the state as-
signment is based on assigning to two states Sp and Sr,
which correspond to the transitions to another state Si for the
same input X , binary codes that differ only in one position,
ν(Si, Sj) = 1.

A fragment of an example FSM with two different state
assignment is shown in Fig. 7. There are two transitions pre-
sented in the figure. The state s3 is the next state for both
transitions. The inputs and the outputs are also the same for

both transitions. The present states are s1 in first transition
and s2 in the second transition. The state s2 should be as-
signed the code, such as the distance to the state s1 code is
one (ν(s1, s2) = 1). Two presented multi-output implicants
can be merged into one implicant (right branch in figure).
The distance for the case on the left branch in the figure is
ν(s1, s2) = 2. Implicants cannot be merged.

Fig. 7. Fragment of an example FSM with two types of state assign-
ment

Definition 1. A Primary Merging Condition (PMC)
{Sp, Sr}

Si

X
for a transition function is a condition formed by

two transitions from states Sp and Sr to the state Si that
correspond to the same input X .

A Primary merging condition for the output function
({Sp, Sr}

λi

X
) is defined as a condition formed by two tran-

sitions from states Sp and Sr, for which the output function
λi is 1, that correspond to the same input X .

To satisfy primary merging conditions, states Sp and Sr

have to be assigned binary codes, whose distance equals one.
Primary merging conditions {s1, s2}

s3
001 and {s1, s2}

λ0
001,

presented in Fig. 8, concern to fragment of an FSM presented
in Fig. 7.

Fig. 8. A part of STT with primary merging conditions

2.5. Secondary merging conditions. Product terms of the
PAL-based cell cannot be shared among the functions. So
the structure extorts independent realization of every function
fi : B

n → B for i = 0, . . . , m−1. The two-level minimization
is carried out for every function fi independently (each func-
tion is minimized one at a time as a single-output function).

As a result of the state assignment, the transition function
δi can contain implicants, the distance of which is 1, but not
as the effect of satisfying primary merging conditions. This
can happen, if the transition function contains implicants that
refer to:
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• transitions from two different actual states Si and Sj , that
are carried out for the same input xu, if the distance be-
tween the codes of those states equals one – ν(Si, Sj) = 1,

• transitions from the same state Si for two different inputs
Xu and Xw, the distance between which is also one –
ν(Xu, Xw) = 1.

Consider the example shown in Fig. 9. No primary merg-
ing conditions exist for the presented fragment of the unas-
signed STT. The states are assigned codes and then the list
of multi-output implicants is split to single-output implicants
(because product terms of PAL-based cell cannot be shared
among the functions). The list of implicants is reduced to two
after the two-level minimization. One pair of implicants is
merged because there is pair of transitions from the states s1
and s3 for the same input 01 and the output has a 1 on the
same position δ2. It is of course possible because the distance
between codes of the states s1 and s3 equals one.

Fig. 9. A part of an STT before and after the state assignment process

The second pair of implicants can be merged because there
are transitions from the state s3 for two different inputs 01
and 11, the distance between which is one (ν(Xu, Xw) = 1)
and two implicants that correspond to the transitions belong
to the same function δ1.

Definition 2. A Secondary Merging Condition (SMC)
{Sp, Sr}

Sa,Sb

δi,X
is a condition that is formed by two present

states Sp and Sr from which there are transitions to next
states Sa and Sb for the same input X . The symbolic impli-
cants, referring to the present states Sp and Sr, belong to the
same transition function δi.

To satisfy the secondary merging conditions
{Sp, Sr}

Sa,Sb

δi,X
, the states Sp and Sr have to be assigned

binary codes with the distance between them equal to one –
ν(Sp, Sr) = 1.

One more secondary merging condition ({Sp}
Sa,Sb

δi,Xu,xw
)

can be defined as a condition that is formed by the present
state Sp, from which there are transitions to the next states
Sa and Sb for inputs Xu and xw. The symbolic implicants,
referring to the present state Sp, belong to the same transition
function δi. The secondary merging condition {Sp}

Sa,Sb

δi,Xu,Xw

is always fulfilled, and two implicants are merged. The con-
dition is written in order to eliminate multiple merging of the
same implicants.

SMCs emerge during the process of state assignment. One
step of the state encoding process is shown in Fig. 10. The
mechanism of the SMC arising is also presented.

Fig. 10. The mechanism of the SMCs forming, during the process
of state assignment

2.6. The implicants distribution table. The basic difficulty
of effective term use, when functions are to be implemented
in PAL-based devices, is two-level minimization. As a rule, it
is carried out after the state assignment process, so the result
cannot be foreseen. The elements of the two-level minimiza-
tion or methods of counting the number of implicant (as the
effect of the minimization process) have to be included in the
process of state assignment. It is easy to write primary merg-
ing conditions, but secondary merging conditions appear only
in the state assignment process, and come from the distribu-
tion of implicants among single functions.

Definition 3. The Implicants Distribution Table (IDT) T is
a table divided into columns, corresponding to the weights
∆δi

of the single functions δi. Every row of the table cor-
responds to the number of implicants which is equal to the
weights of the states. These are written into those columns
∆δi

, for which there is a 1 on ith position of the code.
When the PMC or SMC is fulfilled, a −1 is written into

the column corresponding to the function δi, for which two
implicants are merged.

2.7. Elements of two-level optimization. Classical logic
synthesis of combinational circuits implemented in great ma-
jority of vendor tools consists of two steps. First a two-level
minimization is applied separately to every single-output func-
tion. Then, implementation of the minimized functions in
PAL-based blocks, containing a predefined number of product
terms, is performed. If the number of implicants ∆fi

, repre-
senting a function after minimization, is greater than the num-
ber of product terms k, available in a logic block, a greater
number of logic blocks has to be utilized to implement the
function. The classical product term expansion method con-
sists in utilizing feedback lines to build a multi-level cascaded
structure, which increases propagation delays significantly.

Fig. 11. The example of product term expansion exploiting tri-state
output buffers
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Consider the function y = acd + abcde + bcde + abcde +
acde + abcd. This function can be implemented using two
PAL-based logic blocks with 3 terms per output and tri-state
output buffers (Fig. 11).

Product term expansion that exploits tri-state output
buffers seems to be the most attractive solution, as it does
not lead to expansion of logic levels. This idea is the basis of
two-level optimization.

3. The design method

3.1. PAL-oriented state assignment. The main cost of ex-
panding product terms using feedbacks to a PIA is a reduction
of the system speed, caused by the added extra logic levels
to the structure. The number of logic levels of fast automata
must be as few as possible. The logic level extraction problem
is solved in the presented approach.

If the number of logic levels of the transition function ξδ

were known before the state assignment, the number of code
bits and codes as such could be adjusted to achieve the num-
ber of logic levels. The question is: is it possible to estimate
the minimum number of logic levels of the transition block,
for which a realization is possible? The answer is yes. It can
be determined from the Eq. (2).

ξδ =

{

1 if ηSi < k
⌈

lgk ηSi
⌉

if ηSi ≥ k
(2)

where ηSi is the greatest but one weight (unless there are
two, or more states with the same greatest weight). Why the
greatest, but only one? Because the state with the greatest
weight is assigned the zero code, so none of the functions has
implicants corresponding to transitions to the state. Of course
the logic level number of the transition block ξδ is equal to
the number of cells used in the longest path.

The main idea is to count the number of logic levels of
a block for every single transition function during the state
assignment process. In the following steps of the algorithm,
unassigned state with the greatest weight, is assigned a mini-
mum µ-range code. If the number of logic levels exceeds the
assumption, the number of coding bits is increased. Codes
already assigned to states are supplemented with 0.
The algorithm ml (state assignment oriented on the

minimization of logic levels):

1. Calculate the number K of bits of coding word (Eq. (1)).
2. Specify the PMCs of the transition function.
3. Assign to the state with the greatest weight ηsi the zero

code (µ = 0). If there is more than one state that satisfies
the condition, choose the state si which can satisfy most
PMCs {si, sr}

sj

x .
4. µ := 1.
5. Calculate the number ξδ of logic levels of the transition

function (Eq. (2)).
6. Choose the state with the greatest weight ηsi . If there is

more than one state that satisfies the condition, the sort key
is as follows:

(a) choose the state si, which can satisfy more primary
merging conditions {si, sr}

sj

x ,

(b) choose the state si, which can satisfy more
non-excluding secondary merging conditions
{si, sr}

sa,sb

δj ,x ,

7. If none of the µ-range codes is free, µ := µ + 1.
8. Assign to the chosen state si a free code of the µ-order; if

there is more than one possibility, the sort key is as follows:

(a) the number of PAL-based cell incrementation is the
smallest,

(b) the sum of all ∆δi
is the smallest,

(a) and b) are calculated after making allowance for every
satisfied merging condition)

9. If exists δi : ξδi
> ξδ , then:

(a) cancel the last assignment,

(b) K := K + 1,

(c) µ := 1,

(d) supplement the already assigned codes with 0 on the
MSB,

(e) return to point 8.

10. Refresh the IDT.
11. Revise the secondary merging conditions.
12. Cancel the satisfied or the excluded primary and secondary

merging conditions.
13. If not all states have been already encoded, than return to

point 6.
14. End.

Let’s consider an example. The STT of the example FSM
with weights of states are given in Fig. 12 (kiss2). The coding
length K is 4. It has been assumed that k = 5. The number
of logic levels is determined on the basis of weight of the
state 4 and of course equals one.

Fig. 12. An example function with weights

The state 3 is assigned first of all because the weight η3 is
the greatest. According to the algorithm the state 3 is assigned
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0000. Next, states 6, 7, 13 and 4 are assigned respectively
0001, 0010, 0100 and 1000. According to the definition 3,
the weights of states are written into those columns δi, for
which there is a 1 on the ith position of the code. Four rows
of the presented in Fig. 13 part of the IDT correspond to
the numbers of implicants, which are equal to weights of the
states, that is 2.

Because none of the 1-range codes are free, so µ := 2.
First, the state 8 is assigned 0011, and then the state 11 is
assigned 1010. The SMC {7}

7,11
δ1,11−−−−,10−−−−

is fulfilled,
so a −1 is written into ITD for the column corresponding
to the function δ1 (∆δ1

is decremented). A similar situation
occurs after encoding the state 9. Next, states 2, 10, 12 and
14 are encoded.

Fig. 13. State assignment process

Fig. 14. Example function with IDTs being the effects of the different
state assignment

A starting point to assign state 5 is an IDT form Fig. 13.
The state 5 should be assigned one of the free code, e.g.
1011. Using this code, as well as any other free code, makes
the structure of the transition function two-logic-level. In this
situation, an additional bit of code must be used. A state 5
is assigned with code 10000. The number of the logic levels

still remains one, and used logic cells are smaller than in the
case of using 4-bit codes. Codes, which are already used, are
supplemented with 0 on the MSB position. An assignment of
the state 5 is presented in Fig. 14.

3.2. PAL-oriented two-level optimization. The concept of
two-level optimization of FSM’s output block lies in the back-
ground of the original method of product term expansion uti-
lizing tri-state terminals.

The set of multi-output implicants of a Boolean output
function f : B

n → {0, 1,−}
m serves as the starting point for

a two-level optimization. The two-level optimization consists
of a two-level splitting minimization, PAL-oriented term par-
titioning, and PAL mapping. The optimization process starts
with the two-level splitting minimization. Then partitioning
of the individual minimized functions is performed. As a re-
sult of the two procedures, the set of implicants of a Boolean
function is divided into subsets with cardinality less than the
number of terms available in one PAL-based cell.

The objective of the classical two-level minimization is
to reduce both the number of products in the Boolean for-
mula representing a function, and the number of literals in
a product. Because of a limited number of multi-input terms
available in PAL-based cell, the primary goal of the two-level
splitting minimization is to reduce the number of products.
Reduction of literals is non-essential. The idea of the two-
level splitting minimization is presented in Fig. 15.

Fig. 15. The essence of the two-level splitting minimization: a) re-
sults of the classical two-level minimization, b) results of the two-

level splitting minimization

The process of two-level splitting minimization starts from
classical two-level minimization using the Espresso algorithm.
Then, modification of individual minimized functions is exe-
cuted in succession by means of an implicant splitting proce-
dure.

Let an implicant Ays = a(n−1)s, . . . , a1s, a0s covers 2rs

minterms of single-output function y = f(in−1, . . . , i1, i0)
that form the set of minterms Is, whereas implicant Ayt =
a(n−1)t, . . . , a1t, a0t covers 2rt minterms that form the
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set of minterms It. Where the two implicants Ays =
a(n−1)s, . . . , a1s, a0s and Ayt = a(n−1)t, . . . , a1t, a0t are
half-mutual-covering, it turned out that there exists the pos-
sibility to modify one of the two implicants, while the set
Is∪t = Is ∪ It would not be changed. The search for half-
mutual-covering pairs of implicants consists in analysis of
ordered pairs 〈ais, ait〉, where i = 0, . . . , n − 1. Let the Ays

implicant contains not fewer components, such as ais = {−},
than the Ayt implicant. The implicants Ays and Ayt are half-
mutual-covering ones in the case, when among components
of set of ordered pairs, there are pairs that belong to the
set {〈0, 0〉 , 〈1, 1〉 , 〈−,−〉 , 〈−, 0〉 , 〈−, 1〉} and there is only
one pair 〈a∗

is, a
∗

it〉 that belongs to the set {〈0,−〉 , 〈1,−〉}.
Modification, that would not change the set of minterms
Is∪t = Is ∪ It covered both by Ays and Ayt implicants con-
sists in replacing of the a∗

it component following the rule: if
a∗

is = 1, then a∗

it := 0, whereas if a∗

is = 0 then a∗

it := 1.
For instance, if set of implicants is

{

0 − − −

− − 0 0

}

i3i2i1i0

then, after carrying out modification,
{

0 − − −

1 − 0 0

}

i3i2i1i0

.

The presented rule serves as a basis for an implicant split-
ting procedure that carries out a search for all the half-mutual-
covering implicants and converts one of these belonging to
that pair. As a result of that process all the pairs of half-
mutual-covering implicants are to be modified, which leads

to obtaining a set of implicants which consisting of a mini-
mized number of components ai = {−}.

The consecutive steps of splitting implicants for one func-
tion of 5xp1 are presented in Fig. 16.

After two-level splitting minimization, PAL-oriented term
partitioning is executed. The objective of the PAL-oriented
term partitioning procedure is to subdivide the set of impli-
cants into subsets, for which cardinality is less or equal to the
number of terms (k) available in PAL-based cell.

Let us consider the function from Fig. 15. Let us assume
that the function is to be realized by means of the PAL-based
logic cells, each of them containing 3 terms. Having complet-
ed the two-level splitting minimization, we obtained the result
shown in the left-hand column of Table 1. Then we attempt to
find the partition of y function implicants into such two sub-
sets Y1 and Y2, that cardinality of the Y1 set is less or equal
to the number of terms (k) included in PAL-based logic cells
(card(Y1) ≤ k), while (card(Y2) = min). The theoretical
background of PAL-based partitioning is presented in [13].

In the example i4 implied partition of implicants into two
subsets Y1 and Y2, for which card(Y1) = 3 and card(Y2) = 4
is presented in the next column of Table 1. The first one char-
acterizes the y1 function that is active for i4 = 0 (Table 1,
column 2), while the second one is related to the function y2

being active for the vectors i4 = 1 (Table 1, column 3).
In the next step, the partitioning of y2 function implicants

is executed. A variable i2 implied partition of implicants in-
to two subsets Y21 (function y21) and Y22 (function y22), for
which card(Y21) = card(Y22) = 2 < k, presented in the 4th

and 5th column of Table 1 respectively.

Fig. 16. Consecutive steps of splitting procedure (only input part of implicants)

Table 1
Partitioning of y.pla file implied by the variable i4

y.pla y1 active, if i4 = 0 y2 active, if i4 = 1 y21 active, if i4i2 = 10 y22 active, if i4i2 = 11

.i5 .i5 .i5 .i5 .i5

.o1 .o1 .o1 .o1 .o1

.ilb i4,i3,i2,i1,i0 .ilb i4,i3,i2,i1,i0 .ilb i4,i3,i2,i1,i0 .ilb i4,i3,i2,i1,i0 .ilb i4,i3,i2,i1,i0

.ob y .ob y1 .ob y2 .ob y21 .ob y22

.p 7 .p 3 .p 4 .p 2 .p 2

0000- 1 0000- 1 1-0-1 1 1-0-1 1 111-- 1

1-0-1 1 011-1 1 10010 1 10010 1 10110 1

10010 1 00-10 1 111-- 1 .e .e

111-- 1 .e 10110 1

011-1 1 .e OE OE

00-10 1 OE 1-0-- 1-1--

10110 1 0---- OE

.e 1----
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The PAL-oriented partitioning scheme and PAL mapping
of the y function using blocks consisting of three terms are
presented in Fig. 17.

Fig. 17. Results of PAL-oriented partitioning and PAL mapping

The two-level optimization is especially attractive with re-
spect to dynamic parameters. The algorithms discussed above
can be used as independent FSM synthesis methods, improv-
ing the dynamic properties of final solutions.

An implementation of the ex4 automaton after state as-
signment and optimization is presented in Fig. 18.

Fig. 18. Implementation of the ex4 automaton

4. Experimental results

The experiments were carried out by means of:

• JEDI [14]: the input dominant algorithm (i), the output
dominant algorithm (o) and the coupled dominant algo-
rithm (c);

• NOVA [4]: the input and output (dominance) constraints
(iohybrid code – ioh), the input constraints (ihybrid code
– ih) and the input constraints (iexact code – ie);

• the presented ml-algorithm (ml) and two-level optimization
(ml+o).

Experiments were carried out using some selected bench-
marks [15].

4.1. Analysis. Experimental results are presented in form of
graphs. Two conceptions of graphs were applied:

• yield of the logic cells Uσf and yield of the logic levels
Uξf ,

• direct comparison of selected benchmarks.

The yield of the logic cells Uσf is calculated from the
equation:

Uσf =
(
∑

σf )A − (
∑

σf )M

(
∑

σf )A

∗ 100%, (3)

where (
∑

σf )A denotes the average of cells of implementa-
tion for the function f for all the benchmarks, while the av-
erage is calculated for all tested methods; (

∑

σf )M denotes
the whole number of cells of the selected benchmarks for se-
lected encoding methods. The yield of the logic levels Uξf

is calculated analogically to the yield of the logic cells Uσf .
The yield of the logic cells (levels) should be interpreted as
a percent of the number of the logic cells (levels) for which
selected method is better (or worst if the yield is negative)
than the average. The yield is calculated for 36 benchmarks
(bbara, bbsse, bbtas, beecount, cse, dk14, dk15, dk16, dk17,

dk27, dk512, ex1, ex4, ex6, keyb, lion, lion9, mark1, mc, opus,

pma, s1, s208, s27, s386, s420, s820, s832, sand, sse, styr, tav,

tbk, tma, train11, train4).

Fig. 19. Yield of the logic cells Uσδ+λ and logic levels Uξδ+λ for
different methods

As it is shown in Fig. 19, the ml state assignment carries
out better results in comparison to NOVA and YEDI in analyz-
ing yield of the logic levels Uξδ+λ. The obtained results may
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be additionally improved as an effect of two-level optimiza-
tion of the output block. The yield Uξδ+λ for ml+o method
exceeds 20%. Of course, in many cases reduction of the logic
levels is relevant with utilization of the excessive PAL-based
cells. For the whole group of benchmarks the yield of logic
cells Uσδ+λ is about -10% for ml algorithm and nearly 15%
for ml+o method.

Direct comparison of selected benchmarks (bbsse, ex4,

keyb, s420, sand) is presented in Fig. 20 and Fig. 21 for the
transition and output block respectively.

Fig. 20. Direct comparison of selected benchmarks: a transition block

Fig. 21. Direct comparison of selected benchmarks: an output block

The logic levels ξδ obtained after state encoding by ml al-
gorithm are the same (bbsse, ex4, s420, sand) or better (keyb)
than results obtained by NOVA or JEDI. Moreover the results
obtained for keyb benchmark are the best in respect to logic

cells σδ in comparison to NOVA nad JEDI. However, in some
cases ml algorithm carries out to utilize more logic cells than
NOVA or JEDI (s420). In other cases results are comparable.

Analyzing the results of logic levels ξλ of the output block
is always one-logic-level (for the whole set of 36 analyzed
benchmarks). Sometimes there should be used extra logic cells
to achieve one-logic-level output block as the effect of two-
level optimization (ml+o) like for s420 or sand benchmarks.

4.2. Interface to vendor tools. If thousands of experiments
are to be carried out, interfacing prototype software to tools
supplied by PLD vendors becomes an important issue. Soft-
ware tools developed by companies or institutions indepen-
dent from PLD vendors are capable of performing only the
logic synthesis stage. Then, the design has to be transferred
to a vendor-specific system for completing the implementa-
tion stage. This regards also academic software, developed by
research teams.

The main problem in porting a design to a vendor-specific
system is to find an appropriate intermediate format for the
design data exchange. Commercial vendor-independent sys-
tems (e.g. Synplify, Leonardo Spectrum, Precision RTL) use
low level netlists for this purpose. This approach is secure, be-
cause there is little chance, that the low level structure will be
interfered with by implementation tools. The method is how-
ever not universal, because low level netlists contain much
vendor-specific and architecture-specific information. Using
this approach thus requires equipping the synthesis software
with procedures or plugins responsible for converting formats,
and preparing data specifically for the implementation tools.
This is acceptable for commercial companies, but difficult for
academic research teams, as it requires much “scientifically
worthless” extra work.

It was thus desirable to find alternative formats for the da-
ta exchange, possibly more universal, and using a higher level
of abstraction. Here using a Hardware Description Language
(HDL) seems to be the most obvious, and natural choice.
Choosing the right abstraction level for the intermediate for-
mat is an important task, because vendor implementation soft-
ware can change and “destroy” logical structures generated by
synthesis tools.

Behavioral HDL description seems to be the design spec-
ification format most preferred for design entry nowadays.
Because of its high abstraction level it allows the designer to
concentrate on proper description of the desired functionality.
As a textual format, following the standard of the chosen lan-
guage, it is universal and portable between technologies and
software tools.

A number of experiments were carried out to examine var-
ious synthesis tools, and, in particular, the effects of selecting
different data exchange formats, on the quality of results. The
tools were tested using the standard benchmarks [15]. The test
circuits were implemented in CPLD structures.

It turned out that, if behavioural description was used as
the entry format, the quality of the solutions was not good.
High abstraction level in behavioural modeling gives a large
degree of freedom to the software. Logical structures can eas-
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ily be “spoiled” by vendor implementation programs. During
the experiments it turned out, that it is possible to propose as
the intermediate format a style of VHDL description, lying at
a lower level of abstraction, than behavioural modeling, but
still portable between software tools, and comprehensible to
a human. The proposed style of VHDL modeling resembles
the dataflow description commonly known in the literature.
More details are reported in [13, 16].

5. Conclusions

The paper concerns the problem of high speed finite state
machine designing. The automata are to be implemented in
PAL-based structure, which is the core of most CPLDs.

An original method of state assignment and optimization
is developed. The non-minimal state encoding is based on
determining the number of the logic levels of the transition
function and adjusting the number of coding bits to keep the
constraints. The second idea is to keep the output block one-
logic-level thanks to utilizing tri-state buffers.
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